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It is shown that a fi~ld is a free field as so~n ~s the states generated by the Heisenberg field and the incoming 
field operators operatmg on the vacuum comcide [statement (i)]. Several conclusions are drawn from state­
ment (i) concerning the stro?g convergence. of the field for t tending to infinity [statement (ii)], the useless­
ness of the local clothed partIcle representatIOn [statement (iii)], and the diagonalization of the Hamiltonian 
[statement (iv)], as well as the time behavior of the mathematical vacuum [statement (v)]. 

I. INTRODUCTION 

I N this note we prove [statement (i)], under pretty 
weak conditions, that a field is a free field satisfying 

canonical commutation relations provided that the 
states generated by the field operator and the incoming 
field operator operating on the vacuum coincide. We 
use throughout the formalism of Lehmann, Symanzik, 
and Zimmermann. Our statement (i) is closely related 
to that made recently by Federbush and Johnson.! 
They gave a rigorous proof of it using powerful mathe­
matical tools. Our proof is an elementary one although 
not so general as theirs (e.g., we assume the asymptotic 
conditions to be valid). Our argument is applicable also 
to some nonrelativistic field theories. Our statement is 
also related to the work of Greenberg2 on clothed 
particle representation in relativistic field theories as 
well as to the theorem due to Haag.3 

From the basic statement (i) some conclusions can be 
drawn. It follows for instance that, for each physically 
reasonable theory, the field renormalization constant 
must be necessarily different from one [statement (ii)]. 
It follows also [statement (iii)] that the concept of local 

* This work was supported by the National Sciences Foundation 
while the author was a temporary member at the Institute. 

t On leave of absence from the Institute of Theoretical Physics 
University of Wroclaw, Wrodaw, Poland. ' 

1 P. G. Federbush and K. A. Johnson, Phys. Rev. 120 1926 
(1960). See also R. Jost, Proc. Kiev Conference 1959, as ~ell as 
B. Schroer, unpublished thesis, Hamburg, 1958. 

2 O. W. Greenberg, Phys. Rev. 115, 706 (1959). 
3 R. Haag, Kg!. Danske. Videnskab. Selskab, Mat-fys. Medd. 

29, No. 12 (1955). 

clothing operation (for definition see Sec. III B) 
becomes useless in the relativistic theory even if one 
uses the nonorthogonal set of asymptotic stationary 
states (for definition see Van Hove4). We show also 
[statement (iv)] that it may be sometimes sufficient 
to find the vacuum and one particle eigenstates of the 
Hamiltonian expressed in terms of the Heisenberg 
operators at t= 0 (in the Schr6dinger picture) to achieve 
complete diagonalization of this Hamiltonian. This 
diagonalization of the Hamiltonian has, however, a 
kinematic significance only, it does not solve the 
dynamics of the problem. Finally we show [statement 
(v)] that in a physically reasonable theory with inter­
action the mathematical (bare) vacuum for finite 
time t belongs to a different Hilbert space than the 
physical vacuum. 

II. THE BASIC STATEMENT 

Let us consider a relativistic real scalar renormalized 
field A (x) given by the formulaS 

1 f d
3
k A (x)=-- --{eikxa(k xo)+e-ikxa+(k x)} 

(21T)! (2ko)!' , 0 

=Ain(X)-f I1ret(x-y)j(y)dy, (1) 

4 L. Van Hove, Physica 21, 901 (1955); 22, 343 (1956). 
5 We assume Za-1 to be finite in 

(0 I [a (k,xo), a+(k',xo)] I 0) = (l/Za)o(k- k'). 

743 
Copyright © 1961 by the American Institute of Physics. 



                                                                                                                                    

744 JAN LOPUSZANSKI 

From 

A (x) [k)=Ain(X) [k)-f ,lret(x-y)j(y) [k)dy 

with 
X {eikxa,·n(k) +e-ikxa,·n+(k)} (2) (7) and it follows that 

[ain(k),ain+(k')]=o(k-k'), otherwise O. 

ko=+(k2+m2)!; kx=kx-koXo. 

The operator j(y) accounts for the interaction of the 
field A (x) with itself or with another field. 

We assume6 

[j(y,t),A (x,t)]=O. (3) 

We assume in addition that a(k,t) converges7 weakly to 
ain (k) for t ~ - 00 and that 

ain+(k)···ain+(kn)[0)=[k1, ···k2),n=0, 1,2, ... 

form a complete set of eigenfunctions of the energy 
momentum four-vector P, H. The normalizable physical 
vacuum state [0) is defined by 

ain(k) [0)=0. (4) 

We assume that the physical vacuum and the one 
particle states are not degenerate. The metric is positive 
definite. 

Under these assumptions we have 
Statement (i): If 

A (x) [O)=Ain(X) [0), (5) 

then A (x) = A in (X), i.e., the field under consideration 
is a free field. 

Proof: From 

A(x)[O)=Ain(X)[O)-f ,lret(X-y)j(y) [O)dy 

and (5) it follows that 

j(X) [0)=0. 

On account of (3) and (5) we have 

A (y,t)j(x,t) [0)= j(X,t)Ain (y,t) [0) 

(6) 

which vanishes because of (6). We insert now for 
Ain(y,t) the expression (2) and taking into account (4) 
we get 

f fi3k-
1
-e-i (ky-kO!) j(x t)ain +(k) 10) = o. 

(2ko)i ' 

The Fourier transform with respect to y must vanish 
too, viz., 

j(x)ain+(k) I 0)= j(x) I k)=O. (7) 

6 Notice that if 

[A (x,t),A (y,t)] = [A (x,t),A (y,t)]=O 

and [A (x,t),A (y,t)] is independent of t, then (3) follows. 
7 To be more rigorous we should consider the convergence of 

integrals over the k space involving test functions and linear in 
the a(k,t) rather than a(k,t) itself. 

A (x) I k)= A in (X) I k). (8) 

Using (3) and (8) as well as (7) we get 

A (x,t)j(y,t) I k)= j(y,t){A in (+) (x,t)+ A in (-) (X,t)} I k)= O. 

The term A in (+) [k) is either the vacuum state or it 
vanishes; so we recall (6) and we are left with 

j(y,t)A in (-) (x,t) I k)= o. 
The Fourier transform with respect to x yields 

j(y) [q,k)=O. 

Proceeding in this way we are able to show that 

j(y)[kl, .. ·kn)=O n=1,2,···. 

Since the set is complete it follows that: 

j(y)=O 

and the proof is accomplished on account of (1). 

III. CONCLUSIONS 

The following few conclusions can be drawn from 
statement (i). From now on we contine ourselves to the 
case of the interaction of the field with itself. The 
results can be easily extended to more complex!cases. 

A. The Case of Strong Convergence 

Statement (ii): 

Let a(k,t) and a+(k,t) converge strongly to ain(k) and 
ain+(k), respectively, then the theory is a free field 
theory. 

Proof: The assumption implies 

Z3=1, (9) 
wheres 

Z3-1=1+ ioocr(T)d(X2); cr(X2)~0. (10) 

From (9) and (10), 

(11) 

follows, which is equivalent with (5) or (6). From here 
the statement (ii) follows in virtue of statement (i). 

Thus the renormalization of the field operators is 
an essential feature of each physically reasonable 
theory. In other words the theory becomes trivial if the 
cloud effects of virtual quanta are absent. 

8 H. Lehmann, Nuovo cimento 2, 342 (1954); H. Umezawa and 
S. Kamefuchi, Progr. Theoret. Phys. (Kyoto) 6, 543 (1951); see 
also G. Kallen, Helv. Phys. Acta 25,417 (1952) and H. Lehmann, 
Nuovo cimento 11, 342 (1954). 
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B. Uselessness of the Local Clothing Operation 

The clothing operation consists in finding (in addition 
to the physical vacuum) such operators9 c+(k,O) and 
c(k,O) which operating on the physical vacuum 
generate the physical one-particle states 

Hc+(k,O) 10)=koc+(k,0) 10) (12) 

and destroy the vacuum 

c(k,O) 1 0)= ° respectively.lO 

They satisfy also 

[c+(k,O),C+(q,O) J= [c (k,O),c (q,O) ]= 0. 

(13) 

All this is performed using the Schrodinger picture 
(i.e., t=O). In addition c+(k,t) has to converge weakly 
to ain +(k) for t ~ TOO. It is clear that the states 

out 

c+(k,O)·· ·c+(kn,O) 10) n=2,3,··· (14) 

do not have to be eigenfunctions of the Hamiltonian 
and even do not have to be orthogonal; at least it is so 
for each finite t.4 

Statement (i) discloses the trivial nature of a certain 
class of the clothed particle representations, called here 
for convenience the local one.11 The local clothed field 
is supposed to satisfy the locality condition (3). After 
we replace the A field by the C field in (3) as well 
as in other formulas (mutatis mutandis) we have 

Statement (iii): 

Let us assume that the clothed particle field satisfies 
the assumptions listed at the beginning of this note, 
in particular (3), then the clothed particle field is a 
free field. In other words: a physically reasonable 
theory of a clothed field cannot satisfy canonical 
commutation relations; moreover, it cannot be local 
[in the sense of (3)] for finite time t.11a 

C. Diagonalization of the Hamiltonian 

We are going now to present a statement slightly 
different from (iii), viz., 

Statement (itl): 

Let us assume that the field C satisfies assumptions 
listed at the beginning of this note, [in particular (3)] 

• From now on we reserve the letter A and a for the Heisenberg 
field which represent really the physical situation and which 
secures the connection between Ain and Aout fields. We call this 
A field the physical field. 

10 L. Van Hove, see reference 4; O. W. Greenberg and S. S. 
Schweber, Nuovo cimento 8, 378 (1958); J. Lopuszanski, Physica 
25, 745 (1959). 

11 The name "local clothed field" is somewhat confusing. We 
chose this word because we could not find any better name. 

11. M. A. Braun and Yu. V. Novozhilov, U. Exptl. Theor. Phys. 
39, 1317 (1960)] arrived at a similar conclusion. I am obliged to 
Dr. Schweber for calling it to my attention. 

and let the field c(k,O) and c+(k,O) satisfy the relation 

1 
c(k,O)c+(k',O) 1 0) =---t5(k- k') 10), (15) 

Zs 

and assume that the interaction Hamiltonian affects 
neither the vacuum nor the one-particle states, then 
the theory is a free field theory. 

Proof: In Schrodinger picture the Hamiltonian reads 

H{c(O)} =ZsHo{c(0)}+H1{c(0)} =HO{Cin}. 

Because of our assumption, we have 

ZaHo{c(O)} 10)=0 

ZsHo{ C(O)}Cin +(k) 10)= kOCin+(k) 10). 

On the other hand, from (15) it follows that 

ZsHo{c(O)}C+(k,O) 1 0) = koC+(k,O) 1 0). 

(16) 

(17) 

(18) 

Taking into account that the one-particle spectrum is 
not degenerate and Eqs. (17) and (18), we get 

cin+(k) 1 O)=c+(k,O) 1 0) 

and from (16) it follows that 

c(k,O) 1 O)=cin(k) 1 0); 
since 

eik01c+(k,t) = eiHIc+(k,O)e-iHI (t-finite) 

holds it follows from (19) that 

C(x) 10)=Cin(x) 10); 

(19a) 

(19b) 

(20) 

(5) 

then statement (iv) follows from statement (i) [pro­
vided that (3) holds]. 

Let us exhibit a certain aspect of the statement (iv). 
Let us assume that we start working with the Hamil­
tonian in the Schrodinger picture expressed in terms of 
the Heisenberg physical field a(k,t). The physical field 
must not necessarily satisfy the canonical commutation 
rules for equal time. Let us further assume that we 
succeed in finding the physical vacuum and the one 
particle state. This allows us to diagonalize the Hamil­
tonian in the sector of Hilbert space containing the 
vacuum and the one particle states. Let us then con­
struct in a reasonable but otherwise arbitrary manner 
a complete orthonormal set 1 k 1,· •• kn,t) c in the Hilbert 
space in such a way that the vacuum and one particle 
states are the constituants of this set. After this is 
accomplished we are able to define the creation and 
destruction operators c+(k,O) and c(k,O), respectively, 
which in the 1 )c representation have the form 

° v1 

° ° 
(21) 

We have then 1 k1,· •. kn,t)c= combinatorial factor 
Xc+(k1,t)·· ·c+(kn,t) 10). Since the states I)c are ortho-
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normal the operators c+ and c will satisfy the canonical 
commutation relations. 

Statement (iv) may enable us to diagonalize the 
Hamiltonian without having found c explicitly. After 
we found the vacuum and one particle states we just 
construct on their basis the complete orthonormal set. 
In terms of this set the Hamiltonian may be diagonal­
this depends on whether the C field satisfies (3). This 
does not mean, however, that the scattering problem 
is also solved. 

To make it clear we should like to emphasize the 
following: the Heisenberg a field is weakly convergent 
to a certain incoming field ain (k) for t ~ - 00. Although 

ain+(k) I 0) = c+(k,O) I 0), (22) 

it is not necessarily true that 

The fields in x space built up from the ain and c 
operators, respectively, are both free fields. Both 
operators generate two complete sets of eigenfunctions 
of the Hamiltonian, in general, independent from each 
other. They are related by an unitary transformation; 
say D{ain} =D{c(O)}: 

ain +(k) = D-1c(k,0)D. 

D accounts for the degeneracy of the spectrum of H 
for more than one particle. For instance, the scattering 
operator S is an example of the D transformation. 

D. On the Time Behavior of the 
Mathematical Vacuum12 

The statement we are going to display in this para­
graph is closely related to that of Haag,13 more precisely 
to the first part of Haag's theorem concerning the 
vacuum.14 

We shall show that the time behavior of the vacuum 
determines whether the field is free or not. To show it 
we do not have to assume either that the field (Z3)!A (x) 
is related to the free field by a unitary transformation 
or that both of them satisfy canonical commutation 
relations for a fixed time. 

We have 

Statement (v): 

If the state 10 (t) defined by 

a(k,t)IO(t)=O (23) 

exists for each finite t and has the properties that it is (a) 
invariant with respect to 3-dimensional space trans-

12 This paragraph is based on the suggestion made by Dr. 
Friedrichs in a conversation. 

13 See reference 3. 
14 D. Hall and A. S. Wightman, Mat. fys.-Medd. Dan. Vidselsk 

31, No.5 (1957). L. Van Hove, Physica 18, 145 (1952). 

lations, and that (b) 

(k1•• ·knIO(t)¢O n=O, 1,2, ... (24a) 

as well as 
o«O(t) I O(t»< 00 (24b) 

hold, then the theory is a free field theory. 
Proof: Assumption (b) means that 10 (t) is a vector 

of the Hilbert space spanned on the incoming eigen­
states of the energy-momentum 4-vector. There exists 
at least one operator Vet) which transforms 10) into 
10(t); the matrix elements of Vet), e.g., 

(k1···knIV(t)IO), 

do not vanish identically [by assumption (b)]. 
Assumption (a) implies that 

PIO(t)=O. (25) 

But the physical vacuum is also an eigenstate of the 
vanishing 3-momentum; it is well known that there 
do not exist other normalizable eigenstates of vanishing 
3-momentum. Because of (24b) and (25) it must be 

10(t)=N(t)10) N(t) is a finite c number, ".0. 

From (23) we get 
a(k,t) 10)=0. (26) 

So far all this is well known [see, e.g., reference 3]. 
From (1) and (2) it follows that 

a(k,t) I 0)= ain (k) 10)- [if (27r)!(2ko)!] 

X I dyj(y)fJ(t-yo)e-ikuIO). (27) 

In view of (4), (26) and (27) we get 

It dYoe-ikOyoI d3yj(y)e-ikYI0)=0. 
-00 

We differentiate with respect to t and get 

I d3yj(y,t)e-iky /0)=0 (28) 

or taking the Fourier transform of (28) 

j(y)/O)=O. (6) 

Thus we succeeded in reducing the problem to the 
problem considered in statement (i) and this ac­
complishes the proof. 

Conclusion 

The necessary condition for a field theory with 
interaction to be a physically reasonable one is that the 
mathematical vacuum for finite time t shall be ortho­
gonal to all physical incoming states including the 
physical vacuum. The same is true for all mathematical 
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states (provided that Za is finite). In other words, the 
mathematical vacuum has to belong to a different 
Hilbert space than that of incoming states, both 
Hilbert spaces belonging to a larger inseparable Hilbert 
space. No restrictions, however, are imposed on the 
field (Zs)iA (x) to satisfy canonical commutation 
relations for fixed t; we have to use, at any rate, a 
myriotic representative of the commutation relations. 

To carry through the proof of statement (v) we do 
not need as much relativistic invariance of the theory. 
What we need is that all quantities appearing in the 
theory are functions of A (x); then the a(k,t) and 
a+(k,t) operators appear symmetrically in the theory 
mutatis mutandis. In the nonrelativistic model theories 
like Lee's or Ruijgrok-Van Hove's model the pair 
production is not taken into account which causes that 
the theory is not a free field theory although I O(t»= 10). 
In the first mentioned model there is in addition a lack 
on crossing symmetry. 

Note added in proof. A different, elegant proof of 
statement (v) was suggested to me by Haag. The out­
line of the proof is as follows. One starts with 

Because of (26) and 

vA (x)jaxo= i[H,A (x)] 
we get 

Since the one particle states are supposed not to be 
degenerate the vector 

is a one particle eigenstate with momentum - k. Since 
(5) holds we can apply statement (i). 
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The problem of mapping certain domains in the space of complex four-vectors onto the space of their 
inner products is solved by a novel method. The "primitive" domains of regularity of the three and four 
point Wightman functions are determined. The domains whose X-space characterization was obtained by 
Streater, for the holomorphy envelope of the union of several primitive domains (both for the three and 
four point function) are also determined. The corresponding problem in perturbation theory is examined, 
and the analytic form of the perturbation theory boundary of the three and four point functions is obtained 
by the same method. The problem of the four-point function is reduced to constructing the holomorphy 
envelope of the union of three domains. It is shown that the boundary of the domain of four-point singular­
itites in perturbation theory bears no resemblance to any part of the boundary of the primitive domains, 
or the domains found or conjectured by Streater. 

INTRODUCTION 

I N this paper we solve the algebraic problems of 
mapping certain domains in the space of n complex 

four vectors onto the complex space of their invariant 
inner products. The background for this problem is, 
very briefly, the following. 

A theory of quantized fields A(Yl ), B(Y2),.··, 

satisfying a set of fundamental postulates (positive 
energy, causality, unitarity, relativistic invariance) is 
completely specified by the vacuum expectation values 
of products of field operators,l The latter are invariant 
functions of coordinates and are called Wightman 
functions, and the fundamental postulates reduce to 
postulated properties of these functions. Consider the 
three-point function 

ABC=(A (Y l )B(Y2)C(Ya), 

and its Fourier transform 

with X,fl=Y/'-Y,fl+1. The postulates of posltlve 
energy and relativistic invariance imply2 that ABC is 
the limit of a function of the inner products (X;Xj), 
regular when X,fl is in the "extended tube" '[". This is 
defined as follows. Let X,J'E'[' mean that ImX,fl is 
in the forward lightcone. Then X,JJoE'[" if there exists a 
complex Lorentz transformation A such that (AXi)I'E'.f. 
Similarly, the permuted function ACB is the limit of a 
function regular in a permuted domain. The con­
sequence of causality (local commutativity of the 
field operators) is that ABC and ACB are limits of 
the same analytic function. l Hence the function ABC 
may be continued into the union of the two domains. 
The envelope of holomorphy of these two domains may 
then be computed. 

Streater's3 theorem gives this holomorphy envelope 
in X space. In the first part of this paper we explain 
our method in detail by deriving the boundary, in the 
space of the invariants, of both the primitive domain 
and Streaters holomorphy envelope. 

In the case of the three-point function it turned out4 

that perturbation theory examples gave a useful clue 
to the problem of finding the holomorphy envelope. 
We therefore rederive the form of the three-point 
boundary manifolds in perturbation theory. Perturba­
tion theory leads to integral representations for the 
Wightman functions. We shall assume that the reader 
is familiar with these, since solving the perturbation 
theory problem is not our main task. Any background 
that may be needed may be found in reference 5. 

In the second part of this paper we apply our methods 
to the four point function. Our methods may be used 
to obtain, in a simple way, the mapping in the space 
of invariants of all the domains which have been 
discussed in the literature. The holomorphy envelope of 
the union of 4 primitive domains (not related by TCP) 
is discussed in a preliminary way. It turns out that our 
methods are well suited to decide whether the manifolds 
thus obtained bear any resemblance to the perturbation 
theory boundary. Thus, the conjecture5 that the 
perturbation theory boundary might be related through 
simple changes of sign to the primitive boundary is 
disproved. (This result has no bearing on the possibility 
of a similarity of the perturbation theory boundary to 
the complete 4-point function domain.) 

I. THE THREE-POINT FUNCTION 

In the following, a rather detailed derivation of the 
domain of analyticity of the three-point function is 
given. By so doing we shall be able to put the subsequent 
discussion of the four-point function in a better relief. 

3 R. F. Streater, Proc. Roy. Soc. (London) A256,39 (1960). 
* Present address: University of California, Los Angeles, 4 G. Killlen and A. Wightman, Danske Videnskab Selskab, 

California. Mat.-fys. Skr.l, No.6 (1958). This paper gives the first derivation 
1 A. Wightman, Phys. Rev. 101, 860 (1956). of the holomorphy envelope of the union of the three primitive 
2 This is the Bargman-Hall-Wightman theorem. D. HaJJ and doniains. 

A. Wightman, Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 6 A. Chi-Tai Wu, University of Maryland, Physics Department 
31, No.5 (1957). Technical Report No. 186 (July, 1960). 
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The field theoretical primitive domain is derived4 

in Sec. A, and extended by means of Streater's theorems 
in B. The perturbation theory boundary manifolds are 
found6 in Sec. C, and compared with the field theoretical 
results in D. 

As parts of the following discussion are applicable 
without added complication to the four-point function 
(and to the five-point function) as well, it is sometimes 
convenient to refrain from specialization. 

A. The Primitive Domain 

The algebraic problem may be described as follows. 
Let X,.!', i= 1, "', n-1, be n-1 complex four-vectors, 
and a,.!', b/ the real and imaginary parts. That is 

X/Ea,.!'+ib,.!', i=1,"', n-1. (1) 

The forward tube '.f is the domain defined by 

XE'.f, if bi2~0, biO> 0, i=1,"',n-1, (2) 

where the metric is such that 

(3) 

Let Zij=Zji, i, j=l, "', n-1, be a set of !n(n-1) 
complex numbers. Points in X space are mapped on 
points in Z space by 

(4) 

The points XE'.f are mapped by (4) on a subset M'!' 
of Z space. The number of (real) dimensions of M'!' is 
the same as that of Z space if n ~ 5, and then equals 
n(n-1). The n2-n-l dimensional boundary of M'!' 
will be denoted BM'!'. The problem of this section is 
to be determine BM'.f. 

Let Z be a regular point on BM'!'. By this is meant 
that there exists a n2-n-1 dimensional plane which is 
tangent to BM'.f at Z. Then there exists a vector N, 
with components N;j=Nji, normal to BM'.f at Z, 
and such that Z+ANEM'.f for sufficiently small real 
positive A. 

If ZEBM'.f, and Z'EM'.f is in a neighborhood of Z, 
then there exist complex infinitesimal four-vectors dX,.!' 
such that 

where 

and 
(6) 

(7) 

The projection of Z'-Z on N, with respect to a 
Euclidean metric in the n(n-1) dimensional real Z 
space is 

(Z'-Z, N)E L Re{Ni/(Z;/-Z;j)} 
i,f 

=2 L Re{Ni/(XjdXi )}. (8) 
il 

• These were first determined in reference 4. 

Here only the lowest order in dX ,.!' has been retained, 
because for any Z' not on BM'!', Z may be so chosen 
that (8) does not vanish. The definition of N requires 
that (8) be non-negative for any dX,.!' that satisfy (7). 

The only components of dX,JIo not left arbitrary by 
(7) are (b;db;) and (f,dbi), where f,.!' is a real four-vector 
in the forward lightcone. Therefore, (8) must be of 
the form 

(Z'-Z, 1V)= L {A,(bidbi ) + (f,db,)} ~o. (9) 
i 

Comparing coefficients of dX,JIo in (8) and (9) we get 

L: Ni/X/= -iAib/-ifi~. 
; 

(10) 

Here f/~O only in the case that db/ is restricted by (7), 
that is when b,JIo=O. Then ImZii=O, which defines a 
subspace of the same dimension as BM'!'. For this to be 
a measurable part of BM'.f, all the Xl, j~i, must be 
arbitrary.7 Hence Njk=O except N ii, and (10) reduces 
to Nii*a,JIo= -if,JIo. Thus a,J' is timelike and ReZ'i> 0. 
That this is a cut rather than a boundary proper is 
seen from the fact that the sign of N ij is undetermined. 
A glance at (10) also shows that this ~s the only kind of 
cut in the domain. The A; must vanish unless (bi, dbi) 
is restricted by (7),8 that is when b,2=0, and in that 
case Ai must be non-negative. If the right-hand side 
of (10) vanishes for any i, then any variation of X,JIo 
leads to a point Z' on BM'!', which means that the 
equations defining BM'!' do not involve X,.!'. Hence, if 
any Ai vanishes we get only the n-1 point parts of 
BM'!'. The only nontrivial part of BM'.f is that on which 
all J/ and no Ai vanish. It is characterized by the 
existence of a unique (up to a positive factor) Nij(Z) 
satisfying 

n-l 

L Ifi/X/=-iAib,.!', i=1, "',n-1, (11) 
i-I 

bi2=O, bio>O, Ai>O, i=1,···,n-1. (12) 

If (11) is multiplied by X/ and summed over i, the 
symmetry of N ij gives 

(13) 

Equation (11) can always be solved for Ni/ but the 
solution will be symmetric iff (13) is satisfied. Hence 
(11) and (13) are equivalent. The result (13) was first 
obtained by Wightman.9 Even though our method of 
the normal leads to a well-known result in this particular 
case, its very great generality makes it a valuable tool 
in more complicated situations. 

7 Except, of course, that XE'!'. 
8 This simple observation (together with the similar remark 

above) constitutes a proof of the fact that of all XE'!', only points 
on B'!' can be mapped on BM'!'. This result was first obtained in 
reference 2. 

9 Appendix II of reference 4. 
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Before proceeding with the task of solving these 
equations in the three-point case, it is useful to discuss 
the general properties of (13). As a means of showing 
the close relationship of the methods of this and later 
sections with those of Wightman9 and others,1° we 
give another derivation, We have already noted that 
N ij must depend on Z only; it is therefore invariant 
under the complex Lorentz group. From (11) we obtain 

L N,./Nkl*Zjl= -AiAk(bibk), i, k= 1, . ", n-1. (14) 
i, I 

The left-hand sides of these equations are invariant 
under any complex Lorentz transformation 

X/' ~ (AX i )'" 

such that AXiET. Therefore, the right-hand sides 
must also be invariant. In particular, taking i = k in 
(14) we see that no A must exist such that bi ~ b/ 
with b/2>0. Specializing to infinitesimal transforma­
tions this is expressed by the condition that no real 
matrix (3",. exist such that 

(lS) 
"',v 

and this is equivalent to (13). 
As an aid in the practical task of solving (11) or (13), 

we shall prove that no more than n-l among the 
al', bi'" can be linearly independent. Suppose that m of 
the bl' are linearly independent, and let cp"', p= 1, 
.. ·4-m, be 4-m linearly independent vectors normal 
to bi"'. Then (13) gives 

L Ai (cpai)bi'" = 0, p= 1, "', 4-m. (16) 

Of these 4-m linear equations for the b,J', only n-l-m 
can be independent. Hence there exist 

(4-m)- (n-l-m)=S-n 

relations of the form 

LhpUAi(cpai)=O, 0"=1, ···,S-n. (17) 
p 

Since Ai~O, this means that S-n linearly independent 
vectors (note that S-n<:4-m) are normal to ai'" and 
to bi"'. Therefore only 4- (S-n)=n-l among the 
al', b,p can be linearly independent; Q.E.D. 

We now return to the practical task of solving (11), 
(12). We could, instead, choose to solve (12), (13), 
but without gaining in simplicity. 

There is always a set of real Lorentz transformations 
Ai such that 

10 Unpublished work, especially by R. Jost. 

(18) 

(19) 

with real Si and ti. Points in the forward tube are 

XE'l' iff ImWi>0, Imri>0, (20) 

and bi
2=0 is the same as 

Imri=O. (21) 

In this way the jn(n-l) inner products are expressible 
in terms of n-l complex numbers and a set of real 
parameters. The complex numbers may conveniently 
be eliminated by the relations Zii= (XiXi ) = (XiXi), 
which give 

Wi= rrl(Zii+Si2+ti2). 

The Wi are arbitrary except for (20), or 

riImZii>O. 

(22) 

(23) 

It will turn out that (11) implies conditions on the 
real parameters only. 

In the three-point case it is convenient to distinguish 
the case of bl '" and b2'" parallel (which gives the S curve) 
and bl '" not parallel to b2'" (which gives the F12 curve). 

Parallel bl and b2• 

In this case a Lorentz frame exists in which, on the 
boundary, 

Xi= {Hri+wi), Hri-wi), 0, A}, i= 1, 2. (24) 

Putting the last two components equal to zero is 
possible because we have proved that only two among 
the four vectors a/, b,J' are linearly independent. 
Equation (11) now reduces to four equations, of which 
two are homogeneous and give 

Ni/=p(l, k), k= _~, 
k, k2 r2 

(25) 

and the two inhomogeneous equations are 

p(wI+kw2) = -iAI ImwI= -iA2k-1 Imw2. (26) 

From (24) we find Zl2=rlw2+r2wI. Eliminating Wi by 
means of (22) [with Si=ti=OJ, we obtain 

S: Zll+2kZl2+k2Z22=0. (27) 

The restriction to positive Ai in (26) gives the relevance 
condition 

ImZll ImZ22 <0, 

and when this is compared with (23); 

k>O. 

(28) 

(29) 

The results (27), (28), and (29) are identical to those 
of Kallen and Wightman.4 

Nonparallel bl and b2 • 

In this case a Lorentz frame exists such that the 
space parts of bl'" and b2'" are antiparallel, and on the 
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boundary 

Xi= U(ri+wi), (_)i Hri-wi), 0, O}, i= 1,2. 

Instead of (25) and (26) we now find 

'YP(W1W2-'Y) = -iA4l Imwl= -iA2r2 Imw2. 

Eliminating Wi as above we get 

F: ZllZ22-2'YZ12+'Y2=0. 

Positive Al and A2 in (32) means 

ImZl1 ImZ22>0; 

and when this is compared with (23), 

'1'>0. 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

The results (33)-(35) are identical to those of Kiillen 
and Wightman.4 

We end this section by giving some compact expres­
sions for N ij. If (27) and (33) be solved for k and '1', we 
may write 

N i/= -ikE(Zll)iJk/iJZih k= -[Z12±(-D)!J/Z22 (36) 

on the 5 curve, and 

N i/= -it(Zl~);J')'/iJZih 'Y=Z12±( -D)t (37) 

on the F12 curve. Here t(Zll) is the sign of ImZu, and 
D is the determinant of the matrix Zij. Introducing (36) 
into (8) we get 

(Z'-Z, 2\7)=1: Re{Nij*dZd=kt(Zu) Imdk, (38) 
ij 

which shows that the allowed side of the 5 curve is 
that on which 

kt(Zl'l) Imk>O. 

Similarly, the allowed side of the F 12 curve is 

t(Zll) Im'Y>O. 

B. Analytic Completion 

(39) 

(40) 

Up to now we have explored the analyticity in 
x space which follows from the positiveness of the 
energy of a complete set of states. This domain may 
be considerably enlarged by using local commutativity 
of the field operators. The consequence of local com­
mutativity is the following. l Let 

(41) 

Then, to the primitive domain must be added all 
domains which may be obtained by applying a permuta­
tion to the n complex four-vectors Vi"~. 

It happens that the Z-space domain obtained in this 
way is not a natural domain of holomorphy. We are 
therefore confronted with the very difficult task of 

computing the holomorphy envelope. Fortunately, 
StreaterS has found a shortcut to part of the answer. 
!he Streater theorem, which is based on Dyson's 
Integral representationll is this. 

Theorem A.s The holomorphy envelope of the union 
of the two domains 

Y n- l- Y n, Yn-Yn+l E '[" (42) 
and 

Yn-l-Yn+l, Y n+l - Y n E '[" (43) 

is the domain 

Yn-l-Yn, Y n-l- Y n+l E '[", (44) 

less the cut 
(Yn -Yn+l)2=real positive. (45) 

Here '[" is the extended tube, or the inverse image of 
M'['. 

The application of this to the three-point case IS. 

straightforward. The three primitive domains are 

X l,X2 E '[", -Xl,Xl+X2 E '[", 
X l+X2,-X2 E '[". (46) 

Streater's theorem says that the holomorphy envelope 
of the union of these domains is not smaller than the 
union of the domains 

X 1,X1+X2 E '[", -X1,X2 E '[", 
X 1+X2,X2 E '[" (47) 

less the X 12, X 22 and (Xl+X2)2 cuts. Hence part of the 
analytic completion is accomplished by replacing each 
of the primitive domains by a "secondary domain." 
One such domain is 

(48) 

the others are obtained by applying a permutation of 
the Yl' to (48). 

The boundary of the secondary domain is easily 
determined. It contains, of course, the three cuts. To 
obtain the three-point part of the boundary we have 
only to reverse the sign of Imwl in (20). Then (23) is 
replaced by 

r1 ImZll <0, '2 ImZ22>0. (49) 

Now (23) was used to obtain (29) and (35). Using (49) 
instead we get k<O and '1'<0. With negative k and 'I' 
(27) and (33) become the 5' and F 12' curves of Wight~ 
man and Kiillen.4 

If we construct the union of the three secondary 
domains we get a domain that is bounded by the cuts 
and by the three Fi;' curves: 

Z;Zj+'Y(Zk-Z;-Zj)+'Y2 = 0, 0>'1'> - co. (50) 

Here i, j, k is a cyclic permutation of 1, 2, 3, and 

Zi=Zii, i= 1,2, 

Zs= (X1+X2)2=Zl1+2Z12+Z22. 
(51» 

----
11 F. ]. Dyson, Phys. Rev. 110, 1460 (1958). 
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This domain is only slightly smaller than the holo­
morphy envelope.12 

C. Perturbation Theory 

The algebraic problem is the following13 : Let Y,J" 
be n complex four-vectors,14 satisfying 

Y i2= ai~ 0, i= 1, . ", n, 

Let n-l complex four-vectors be defined by 

and let 

(52) 

(53) 

(54) 

(55) 

Conditions (52), (53) define a manifold D in Y space, 
which is mapped on the domain M D in Z space by 
(54), (55). This latter domain is of n(n-l) real dimen­
sions. It is bounded by BMD, which is a manifold of 
n2-n-l real dimensions. We shall determine the 
analytical form of the equations which define BMD. 

On a point on the boundary in Z space there exists 
a complex symmetric matrix N ij(Z), unique up to a 
real (positive except on cuts) factor, with the property 
that 

n-l n-l 

O~Re{ L N i/dZ;j}=2 Re{ L Ni/(XjdXi )}, (56) 
i,i=l i.i=l 

for all infinitesimal dX,J"=dY/'-dYi+l1" such that 
(52) and (53) are preserved under the transformation 
Y,Jl ~ Y,Jl+dY,Jl. This definition of N,j is entirely 
analogous to that of Sec. A. 

Because (52) and (53) are conditions on Y,J" rather 
than on X,J<, it is convenient to re-express (56) in terms 
of dY,Jl. Then we get 

n 

O~Re{ L Mi;*(YidYj)}, (57) 
i,i=l 

where Mij is related to N ij and satisfies 

n 

L Mij=O. (58) 
i=l 

Preservation of (53) does not impose any restriction on 
dY,Jl that is relevant for the discussion of (57), but (52) 

12 What remains to be done is to continue through some of the 
"corners" formed by the Fil curves to the 5' curve of reference 4. 
Our inability to do this by means of integral representations is 
due to the difficulty of incorporating the Jacobi identity into the 
Streater representation for the double commutator. 

13 As explained in the introduction we treat only that part of the 
perturbation theory problem which is essential for our applica­
tions. The reader is referred to reference 3 for an introduction and 
what is, in some respects, a broader treatment. 

14 The Yil" and XiI" of this section are introduced as a set of 
parameters, in terms of which the singularity domain can be 
defined. They should not be interpreted as spacetime coordinates, 
although it will be shown later that the XiI" may be so interpreted 
without error. 

implies that 

(Y;dY;) are real, and if Y 1=0, positive. (59) 

Because of the particular importance of the case Y;2=0, 
we shall introduce a positive integer m defined by 

Yl=a;>O, i~m, 

Yl=O, m+l ~i~n. 

(60) 

(61) 

We proceed as with the solution of (7), (8), to find 
that the solution of (57), (59) is 

n 

L Mi/Y/= -u,Y,Jl, 
i-1 

ReUi=O, i=l, "',m, 

~O, i=m+l,"', n. 

(62) 

(63) 

(64) 

When N i; and X/ are reintroduced, (62) and (58) 
become16 

n-l i 

L Ni/X/=- L UkYkl", i=l,"', n-l, (65) 
i-1 k~l 

(66) 

The existence of a solution of (62), and therefore of 
(65), (66), is guaranteed by (53). Our problem is 
therefore reduced to writing down the conditions on 
Y,Jl which are necessary and sufficient for Nij(Z) to be 
determined up to a real positive factor by (63)-(66). 
This approach to the problem is closely analogous to 
that suggested following (13) for solving (8). 

Because of the formal covariance of Eqs. (63)-(66) 
under complex Lorentz transformations, the uniqueness 
of Nij is simply the requirement that 

(i) No complex vector yl" exist such that Y,Jl+yI'ED, 
i.e., such that Y,Jl ~ Y,J"+yl" preserve (52), (53). 

(ii) The Ui be determined up to a real positive 
common factor by (63), (64), (66). 

(iii) The X,J< be linearly independent. The first 
condition insures that the X,Jl determine the Y,J<ED, 
the second that Y,J< determine the Ui. Together these 
conditions ensure that the right-hand sides of (65) be 
expressible in terms of X,Jl. The third requirements says 
that (65) be solvable, giving Nij as unique functions of 
X,J<, and hence because of invariance, as unique 
functions of Xij (up to a real positive factor). 

When condition (iii) is satisfied, (53) is preserved 
only if yl" lies in the (n-l)-dimensional complex space 
spanned by the n Y,Jl. In the following we may therefore 
treat Y,Jl and yl" as complex (n-l)-vectors. 

Condition (i) requires the nonexistence of a complex 

16 It is interesting to notice that (66) implies (53). Thus the 
same boundary would have been obtained without imposing (53) 
in the first place. 
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vector 1" that satisfy 

(Y,+y)2=ri ~o, r, real. (67) 

This condition, being nonlinear in yl', is very difficult to 
handle, and we shall be content to explore the conse­
quences of the weaker condition: 

(i') No complex vector yl' exist such that 

(68) 

Re(Y,y) ~o, i>m, (69) 

y2=real and positive. (70) 

Another way to say this is that we consider only 
solutions of (67) such that pyl' is a solution when 
yl' is, p being an arbitrary positive numbe~. In this way 
the problem is, essentially, reduced to a lmear one. 

It is now necessary to go back to (64), and to prove 
that Reui for i>m, can vanish only on a non-measur­
able part' of BMD. First note that the manifold on 
which I (y,Yj ) I =0, and all Yl=O, that is the case 
m=O, is mapped on a manifold in Z space of real 
dimension n2-n-2. Since the real dimension of BMD 
is n2-n-l, the case m=O can henceforth be neglected. 
For m>O the real dimension of the mapping in Z 
space of the manifold defined by (53) and (60)-(64) is 
exactly (n2-n)+m-2-(m-l)=n2-n-1. The sub­
manifold on which one of Reui, i>m, vanishes, is of 
one lower dimension, and does not, therefore, make up 
a measurable part of BMD. 

Now, if we multiply (68) or (69) by Ui, sum over i, 
and compare with (63), (64), and (66), we find that 
(68), (69) can have no solution, except possibly wit? 
all equalities in (69). Actually the existence of Ui IS 
even more closely connected with that of yl'. In fact, 
if m>O, the existence of Ui is equivalent to (a) the 
nonexistence of any solution of (68), (69) with inequal­
ities and (b) the existence of a m-l parameter family 
of solutions with equalities. We next show that if 
m ~ 3, then a member of this family can be found 
that satisfies (70), which means that this case does not 
give any part of the boundary. 

Every member of the m-l parameter family of 
solutions just referred to may be represented by a 
point in the y2 plane. The aggregate of points in the y2 
plane which represents solutions will be referred to as 
the allowed part of the y2 plane. What we have to prove 
is that this allowed part includes part of the real positive 
axis when m ~ 3. First we note that the allowed part 
is a'domain. In fact, if m ~ 3, the family of solutions 
contains, in general, m-l ~ 2 independent para~eters. 
The mapping onto the y2 plane therefore gIves a 
two-dimensional manifold, except in very special 
degenerate cases. Indeed, the condition that the allowed 
part of the y2 plane be of dimension less than 2 is 
equivalent to imposing m- 2 new conditions on the 
Zi;, which cannot be satisfied on a measurable part of 
BMD. 

Next we show that the allowed part, in the cases in 
which it is a domain, is the whole y2 plane. Indeed, if it 
were not, it would have a boundary, on which a complex 
number N (y2) could be defined, with the significance of 
a normal, which would be determined up to a real 
positive factor by 

Re{N*(ydy)} ~O, (71) 

for any dyl' such that 1"+dyl' belongs to the family of 
solutions. The condition on dy" is 

(dyY,) = real, and zero for i>m. (72) 

Whatever yl'~O, the sign of dyl' is not restricted. Hence 
the sign of N is not defined, contrary to the assumption. 
Therefore, no boundary exists, and the allowed part of 
the y2 plane includes the real axis. Therefore the cases 
m~ 3 do not contribute to the boundary. This result 
was known4 for n=3, and conjectured as well as made 
plausible5 for n= 4. 

We have thus seen that only the cases m = 1 and m = 2 
are interesting. As we have replaced condition (i) by 
the weaker condition (i') we do not know what part, if 
any, of these two manifolds make up BMD. We also 
do not know what part of BMD constitutes the bound­
ary of the singularity domain,16 Nevertheless, we 
proceed to write down the analytical equations for the 
"one-mass" (m= 1) and "two-mass" (m= 2) manifolds, 
hoping that their form might give useful hints in the 
problem of finding the holomorphy envelope of the 
field theory domain. 

The one-mass manifold is trivially written down. All 
we have to do is to write down (53) in terms of Zi;, 
using (54), (55), (60), and (61). Then we have to 
calculate Ui, in order to impose condition (64). To 
obtain the two-mass manifold we impose the reality 
of UijU2=P, and eliminate the other Ui from (66). 
Writing the result in terms of Zi;, using (5-1), (55), (60), 
and (61), we end up with two equations involving the 
three real numbers ai, a2, and p. In this case too, the 
Ui must be explicitly calculated, in order to impose 
condition (64). Carrying out this program, we specialize 
to the case n=3. 

It is convenient to introduce, rather than the Zij 
defined by (55), the Z" i= 1, 2, 3, defined by (51). 
Then the solution of (66) for the Ui is, with Y12=ai=0, 

Ui -2a2(Z3-a;I)- (Zl-a2)(Z2-a2-a3) 
(73) 

-=----. (74) 

Inserting this into (66) we get 

aa(Zl- a2)2+ (Z2-a2-aa) (Zl-a2) (Za-a3) 
+a2(Za-aa)2=0. (75)) 

16 What we do know, from reference 3, is that the singularity 
domain is bounded by cuts and by part of BMD. 
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We obtain a one-mass manifold simply by putting where 
aa=O, which gives either Za=O or 

(76) 

which is just the F12' curve. Of course the other F;/ 
curves are obtained by puting either al = a2= 0 or 
a2= aa= O. The "relevance criterion" (64) reduces to, 
using (76), 

(77) 

which is just the relevance criterion (34) for the F 12' 

curve. 
The two-mass manifold, on the other hand, is 

obtained by leaving a2 and aa nonzero in (73)-(75), and 
imposing U2/Ua=p=real: 

(Za- aa)+p(Zl-a2)=0. (78) 

Inserting this result into (75) we get 

(79) 

Since only two real parameters, namely p and (aa+pa2) 
are involved in (78), (79), we have the surprising result 
that the two-mass manifold is four-dimensional, and 
therefore it does not contribute to the boundary 
(n2-n-l=5). 

The over-all results of this section are (a) only two 
kinds of manifolds, the m= 1 and the m= 2 manifolds, 
,contribute to the perturbation theory boundary, and 
{b) in the special case n=3, we find that the m=2 
manifold is degenerate. 

D. Comparison 

In the particular case n= 3 we were lucky to discover 
immediately that the two-mass manifolds are the same 
as those encountered in the field theoretical problem. 
For higher values of n we are less fortunate. On the 
other hand it is very difficult, from the parametrized 
equation for two surfaces, to prove that they are 
distinct. In this section we therefore compare the 
surfaces obtained in Secs. (A) and (B) with those of 
Sec. (C), by trying to identify the respective normals 
Nij. 

Suppose that a point in Zij space is on the perturba­
tion theory boundary. We want to determine under 
what circumstances this boundary is tangent to the 
field theoretical boundary at that point. If that is the 
case, we have two alternative definitions of the normal, 
namely17 

n-l i 

L Ni/X/"= - L Uk Yk/L = -iA; ImX/", (80) 
i=l k=l 

17 Here we made a seemingly unwarranted indentification of 
the Xi of Secs. A and B with the Xi of Sec. C.'4 That this can be 
justified is shown in Part II, Sec. D. 

L UkYk/L=O, Reui>O if Y i2=0, 
k=l 

(81) 

(82) 

The most obvious consequences of (80)-(82) are the 
following; assuming all Ui~O: 

ImY/"=O if Y ?>O. 

(83) 

(84) 

When n= 3, (83) means that we are on the one-mass 
manifold, while (84) can always be made to hold by 
applying a complex Lorentz transformation. We next 
find 

u22Y22=2AlA2(ImXl,lmX2). (85) 

On the S curve, the right-hand side vanishes, and we 
would have (YiYj ) =0. On the F curve, the right-hand 
side is positive, while the left-hand side is negative. 
But on the F' curve, both sides of (85) are negative. 
Using (84), and17 Xl/L= Y/- Y i+l/L, (80) reduces to 

(86) 

Hence we have the expected result, that the boundary 
of perturbation theory agrees with the boundary of the 
secondary domain when they are both relevant, 

II. THE FOUR-POINT FUNCTION 

In the following we rely heavily on Part I to apply 
our methods to the four-point function. In order to 
minimize the inconvenience caused by the necessity of 
frequent references, this part is organized along the 
same lines as the foregoing: (A) the primitive domain, 
(B) analytic completion, (C) perturbation theory, and 
(D) comparison. 

A. The Primitive Domain 

The discussion of Part I needs no modification up to 
Eq. (23). We note that it was proved that only n-1 = 3 
among the 6 vectors a • ..u=ReX • ..u, b • ..u=lmX/ can be 
linearly independent at a point that is mapped on the 
boundary BM'.f in Z space. 

We must distinguish three cases, according to 
whether the b • ..u are colinear, coplanar, or neither. In 
the following, we discuss the last possibility only. A 
parallel treatment of the other two cases leads quickly 
to the conclusion that manifolds of too low dimensions 
are obtained. 

There exists a Lorentz frame such that, on the 
boundary, 

X l/L= a(rl+wl), !(rl-wl), Sl, t l}, 

X~={!(r2+w2), t2, !(r2-w2), S2}, (87) 

Xa/L={t(ra+Wa), Sa, ta, !(ra-Wa)}. 
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The condition that only 3 among the 6 vectors ReX/" 
ImX il" be linearly independent is that the vector 
{l, -1, -1, -1}, which is normal to the imaginary 
parts, be normal to the real parts as well, that is 

(88) 

In analogy with the 3-point case we see that (11) 
reduces18 to 6 homogeneous and 3 inhomogeneous 
equations for the six N;/. A novel feature, however, is 
that the six homogeneous equations are not automat­
ically solvable. We therefore get new conditions on the 
parameters by setting the secular determinant equal 
to zero. Notice that, because of (88), (87) contains only 
12 real parameters. Since the dimension of BM'l' is 11, 
only one more real condition can be imposed. Therefore, 
the vanishing of the determinant must be an identity 
in the Wi. If we calculate, e.g., the highest power of Wi, 
we find that it is 

WIW2W3(SIS2Sa- tlt2t3)' 

We impose the condition 

(89) 

(90) 

and find that a solution of the 6 homogeneous equations 
then exists, giving all the Ni/ up to a common complex 
factor p. Inserting this result into the three inhomo­
geneous equations, we find that AdA2 and A2/A3 are 
real, as they must be, and that they are positive iff 
(assuming Imwi>O) 

Sitj> 0, (ij) = (12), (23), (31). (91) 

Using (87) we may write down expressions for 
Zij= (XiXj). The diagonal elements may be solved 
for Wi [Eq. (22)J, and used to eliminate Wi from the 
three off-diagonal elements. In this way we obtain 
the following three complex equations, involving five 
independent real parameters [(ij) = (12), (23), (31)]: 

4(Si+ ti) (Sj+ tj) [Zij- th- SiSj- Sitj+tiSj] 

- (Zii+2ti2) (Zjj+2sl) =0, (92) 

SIS2S3= tlt2ta. (93) 

The "relevance conditions" (23) become 

(Si+ti) ImZii<O, i= 1,2,3. (94) 

An interesting form of (92) is 

2sHZii+2kijZij+ki/Zjj] 
+ [ZiiZjj- 2'YijZij+'Yil]=0, (95) 

where 

k ij= - til Sj, 'Yij= 2 (SiSj+titj+Sitj), 
(ij) = (12), (23), (31). (96) 

Results equivalent to these were first obtained by Jost.l9 

18 In this case it would be simpler to solve (13). 
19 R. Jost, to be published in the Proceedings of the Naples 

Conference, 1959. 

The particular form (95) was first written down by 
Kleitman.2o 

In addition to the cuts and the four-point boundary 
that has just been determined, we obtain the three-point 
boundary by setting anyone of the Ai equal to zero. 
The result is the following set of S curves and Fij curves: 

Zii+2kijZij+kilZjj=0, kij>O, (97) 

ZiiZjj-2'YijZii+'Yil=0, 'Yij>O. (98) 

Here i, j is 1, 2 or 2, 3 or 3, 1. 

B. Analytic Completion 

There are 24 Wightman four-point functions, but 
only 12 distinct primitive domins. These may be 
divided into three groups of four domains each, such 
that Streater's theorem is applicable to four pairs of 
domains within each group, but not to any pair of 
domains from different groups. One such group consists 
of the following four domains 

ABCD: Y 1-Y2, Y 2-Ya, Y 3-Y4E'l", 

BACD: Y 2-Y1, Y 1-Ya, Y a-Y4E'l", 

ABDC: Y 1-Y2, Y 2-Y4, Y 4-YaE'l", 
(99) 

BADC: Y 2-Y1, Y 1-Y4, Y 4- Ya E 'l". 

Streater's theorem may be applied to, e.g., the first 
two and to the last two, to give 

E.H.{ABCDUBACD} = {Y1-Ya, Y 2-Ya, 

Ya- Y 4 E 'l"}n{Y1- Y 2 E 'l"}, (100) 

E.H.{ABDCUBADC}={Y1-Y4, Y 2-Y4, 

Y 4- Ya E 'l"}n{ Y 1- Y 2 E 'l"}. (101) 

Each of these domains will be called a secondary 
domain. As in the three-point case, a secondary domain 
is the envelope of holomorphy of two primitive domains. 

The boundary of (100) may easily be determined. 
Except for the (Y 1- Y 2)2 cut it may be obtained from 
the boundary of the primitive domain by means of the 
substitution X 11"--7 X 11"+ X 2'". If we introduce the 
notation 

Zi=Zii=X?, i= 1,2,3, 

X 4= (X1+X2)2, Z5= (X2+Xa)2, 
Z6= (Xl+X2+Xa)2, (102) 

the curves (98) become 

Z~2+'Y12(ZI-Z2- Z4) +"1122 = 0, "112>0, (103) 

Z2Z3-'Y2a(Z5-Z2-Z3)+'Y232=0, 'Y2a>0, (104) 

Z 4Za+'Y31(Zs- Za- Z4)+'Y31 =0, "131>0. (lOS) 

These are all, except for the minus sign in (104), 
part of the corresponding perturbation theory boundary 
manifolds. From (97) are obtained, in a like manner, 

20 G. Kallen, Lecture notes of the summer school at Les Houches, 
1960. 
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two 5' curves and one 5 curve, and the modified form 
of (95) may immediately be written down. 

Streater3 has also succeeded in finding a characteriza­
tion of the "quartic domain" which is the holomorphy 
envelope of the union of the four primitive domains 
(99). 

Theorem B.a The envelope of holomorphy of the 
union of the four domains (99) is the domain 

U l(Xl,X 2,X a)n{X IE '(') n {X aE '('), (106) 

where U 1 is the common domain of analyticity of all 
functions 

i(p ·X,+q ,X2+r ,X3) 

F(Xl,X2,Xa)= f f(p,q,r) 

Xd4pd4qd4r, (107) 

whose Fourier transforms f(p,q,r) vanishes unless 

q>p>O, q>r>O. (108) 

Here p > 0 means pE V +, the forward ligh tcone. 
In order to determine Ul(Xl,X2,Xa), write the 

exponential in (107) in terms of (q- p), (q-r), p, and r. 
The most general form is 

p·Xl+q·X2+r·Xa= (q-p)·X+(q-r)· (X2-X) 
+p(Xl+X)+r' (X2+Xa-X), 

XI'= alX 11'+a2X 21'+asX a!'. (109) 

Writing sl'= ql'-r, 11'= ql'- rl', (107) becomes 

F(Xl,X2,Xa)= f exp{i[s·X+t· (X2-X)+p· (Xl+X) 

+r· (X2+Xa-X)]) f(p,r,s,t)d4pd4rd4sd4t, (110) 

1'(p,r,s,t) = f(p, r+l, r)b(s-I+p-r). (111) 

The function F (X 1,X 2,X a) is analytic if XI' can be 
chosen such that the coefficients of s, t, p, r in (110) 
all lie in the future tube. We call this domain Ut': 

X iE U / (X 1,X 2,X a) iff there exists an X, such that} 
X, X2-X, Xl+X, X 2+X3-X E '('. 

(112) 

Since l' (p,r,s,l) is not the most general function of the 
four arguments, F(Xl,X2,Xa) may be regular in a 
larger domain, and we can only conclude that U/CUI 

and hence that the envelope of holomorphy of the four 
domains (99) is bigger than or equal to 

Ul' (Xl,X2,X 3)n {XlE'('}n{XsE'('}. (113) 

There are two domains that can be obtained from (113) 
by permutations, namely 

U2' (X 1,X 2,X a)n {X 1+ X zE '('}n {Xz+ X aE'('}, (114) 

Ua'(Xl,X2,X3)n{X2E'('}n {Xl+ Xz+XsE'('}, (115) 

where U 2' and U a' may be defined in a manner similar 
to (112): 

X iEU2' iff there exists an X, such that } 
X, -X2-X, Xl+X2+X, X3-X E '(', 

(116) 

XiEUa' iff there exists an X, such that } 
X, -X2-X3-X, Xl+X2+X3+X, (117) 

-X3-X E '('. 

The problem of computing the envelope of holomorphy 
of the union of the 12 primitive domains is now reduced 
to finding the envelope of holomorphy of the union of 
(113)-(115). We shall content ourselves with showing 
how the boundary of (112), say, may be found. 

The method of the normal is easily adaptable to 
finding the mapping of U/ directly, without explicitly 
calculating U/. The procedure is exactly analogous 
to the treatment of (56). Writing x, Xi for the imaginary 
parts of X, Xi, we find at once 

iNliX."= hl'+O'l(Xl+X)I', 

iN2;X/= hl'+ izl'+0'1(Xl+X)I'+0'2XI', 

iN3;X/= hl'+ ff- Jf+0'1(Xl+X)I'+0'2XI'-0'3(X2-X)1' 
= N+0'4(X2+X3-X)I'. (118) 

Here fl' are real vectors in V +, and J/ = 0 unless the 
coefficient of O'i vanishes. The 0', vanish unless their 
respective coefficients are lightlike. The solution of (118) 
is straightforward. Explicit results will be published 
elsewhere. 

Before ending this section we mention that Streater21 

has proposed that the following theorems might hold: 

Theorem C (conjectured).Zl The envelope of holo­
morphy of the union of the domains A BCD, ABDC, 
ACDB, and ADCB is 

{Xl, Xl+X2, Xl+X2+Xa E 'T'} 

n{X2, X2+Xa E '('}n{X3 E 'T'}. (119) 

Theorem D (conjectured).21 The envelope of holo­
morphy of the union of the domains ABCD and BDCA 
IS 

{Xl, X 1+X2, Xa, Xl+X2+X3 E '(') 
n{X2, X 2+X3 E '('}. (120) 

The boundaries of (119) and (120) are easily deter­
mined by our methods. Thus to find the boundary of 
(120) we would consider 

L ~Yi/Xjl'= -iAlbll'-i")1.2(bll'+b21')-i")l.a(bll'+b21'+ba"), 
i 

L N 2/Xl= -iA2(b11'+bz")-iA3(b11'+b2"+b 3"), 

i 

21 R. F. Streater, Nuovo cimento 15, 937 (1960). 

(121) 
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C. Perturbation Theory 

First a word about the three-point parts of the four­
point boundary. These are obtained by setting one of 
the Ui equal to zero. Suppose U4= 0; then the right-hand 
side of (65), and a fortiori the left-hand side, become 
independent of Y 4"'. The problem then reduces to that 
of a three-point function depending on YI "', Y 21', and 
Ya"'. The interesting point is that one obtains no Fi/ 
curve such that X,fl, X/ are conjugate X variables, 
but all the others. This selectivity mirrors that of 
other sources of singularity of the four-point function 
in perturbation theory. In this particular respect the 
perturbation theory boundary agrees with the bound­
aries of the quartic domains (113)-(115). 

Turning now to the four-point part of the boundary, 
we solve (66). Taking al=a4=0, and writing Y ij for 
(YiYj), we find 

UI/Ua= - (Y34+pY24)/Y14, 

U4/U3= - (Y I3+pY12)/Y14. 

U2 Y 2aY 14- Y 12 Y 34- Y I3 Y 24 
p=-= 

U3 2YI2Y24-a2Y14 

(122a) 

(122b) 

(123a) 

(123b) 

We consider first the one-mass manifold, with al = a2 
=a4=0, a3=a>0. Then the last equality in (123), 
which expresses the solubility of (66) [it is the expansion 
of (53)J, is the only equation. To write it in terms of the 
Z-space variables we introduce the notation (102), and 
obtain22 

[(Z2-a)Z6- (Z3-a)ZI- (Z4-a)ZsJ2 

=4ZIZ6[Z3Z4+a(Z6-Z3-Z4)+a32]. (124) 

As we have stressed before, we do not know all the rele­
vance criteria for this manifold/6 but (63) gives 

1m (u;jua) >0, i=1,2,4. (125) 

This simply means that the relevance of the one-mass 
manifold changes at the intersection with one of the 
two-mass manifolds. 

On the two-mass manifold, with al=a4=0, a2, 
aa~O, p is real, and (123) gives22 

(Z2-a2-aa)Z6- (ZI-a2) (Za-aa)- (Z4-a3) (Z6- a2) 

= 2p[ZIZ6+a2(Za-ZI- Z6)+a22] (126a) 

=2p-I[ZaZ4+aa(Za-Za-Z4)+aa2]. (126b) 

22 The forms (124) and (126) agree with the results of reference 
3. The relevance criteria (125) and (127) do not appear to have 
been given in that paper, however. 

The relevance criteria (63) become 

(127) 

Perhaps a more interesting presentation of (126) is 
the following 

We see the analogy with the corresponding two-mass 
manifold in the three-point case; (128) corresponds to 
(79), and (129) to (74). Indeed, while the numerator 
and denominator of (74) vanish on cuts, those of (129) 
vanish on Fi/ curves. Notice that (128) involves p and 
(aa+pa2) only. The same is true of (79), and "by 
accident" (74) also depends on these two parameters. 
This "accident" causes the degeneracy of the m= 2 
manifold for n=3. For n=4 there is no accidental 
degeneracy, however. Another aspect of (128) is that 
it represents a nearly successful attempt to simplify 
(127) (the right-hand side is "nearly" real). 

We found above that the three-point parts of the 
four-point perturbation theory boundary bears signifi­
cant resemblance to the extended field theoretical 
domains. No such agreement is apparent for the 
four-point parts. The most striking difference is that 
the perturbation theory manifolds are obtained in 
terms of one and three parameter representations, 
while field theory yields five parameter representations. 
We know of no way of deciding whether or not in a 
given case the number of parameters can be reduced 
without destroying the analytic form of the equations. 
The method of the following section is therefore indis­
pensible in this case. 

D. Comparison 

A common feature of all the domains discussed in 
Sec. A, both the primitive domains and the proven or 
conjectured envelopes of holomorphy, is that they are 
all intersections of mappings of tubes. We shall now 
prove that no part of the one- or two-mass manifolds 
of the last section is the mapping of a tube. 

In order to apply our method of comparing the two 
normals, it is necessary to justify the dual roles of both 
Y," and Xl". Suppose our attention be fixed on a 
particular point °Zij in Zij space. In our discussion of 
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the axiomatic approach, and, in particular, in the 
definition of Nih there occur vectors X,JI.. Let °Zi; be on 
the boundary of one of the four point field-theoretical 
domains. Then values °Xi" of XI can be found, such 
that (OXi, OX;) = 0Zih and 

(130) 

Here, Ai" is a set of real vectors. Thus, in the case of 
the primitive domain, A,JI.= -Ai ImoX,JI.. The important 
point is that Ai" are always real for the mapping of 
tubes. 

In our discussion of perturbation theory, complex 
vectors X,JI. and Yi" likewise occur. Suppose that the 
point °Zi; is on the perturbation theory boundary. 
Then particular values of X,JI.= Y i"- Y i-H" can be 
found which satisfy (XiX;)=OZi;, and 

L N;;*Xi"= - L UkYk". (131) 
k=l 

However, we have no assurance that Xl equals °Xl, 
so that the comparison of (130) and (131) is not 
immediately possible. We note, however, that (131), 
along with all the subsidiary conditions on Ui and YI, 
are form-invariant under complex Lorentz transforma­
tions. We may therefore apply a complex Lorentz 
transformation which carries Xl into °Xl without 
changing the form of (131). This is possible because 

i 

L N;;* °X,JI.= - L Uk °Yi", °X,JI.=oY,JI._oYi+1". (132) 
i k=l 

Now (130) may be compared with (131). If the two 
boundaries touch (rather than cross) at °Zi;, then 
°Ni; and N i; must be equal up to a positive over-all 
factor. We therefore conclude that 

(133) 

But this is possible on a 10-dimensional subspace of 
Zi; space only. Therefore, the perturbation theory 
boundary cannot be the boundary of the mapping of a 
tube. Q.E.D. 

The meaning of this is that, if perturbation theory is 
to be of any help in finding the holomorphy envelope 
for the four-point function, then the partial results 
obtained up to now bear little similarity to the final 
result. 
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The notion of generalized free field is introduced, as an obvious extension of a discrete superposition of 
independent free fields with different masses. The following assumptions are also made: there is an under­
lying Hilbert space JC (positive-definite metric), the theory is Lorentz invariant, the vacuum belongs to JC 
artd is there unique, the spectrum of the energy-momentum operator is-apart from the origin--completely 
contained within the region p2 ~ E2, po>O. It is then shown that a necessary condition for a cyclic field to have 
support in p2 only on a finite interval of the positive real axis, is that A (x) be a generalized free field. In the 
Appendix a similar result is derived under slightly weaker conditions. 

1. INTRODUCTION AND DEFINITIONS 

L ET :te be a Hilbert space on which a unitary 
representation U(a,A) of the inhomogeneous 

proper Lorentz group Lt+(a,A) is defined. Let 7T" be 
the infinitesimal generators of translations. We assume 
that there exists in :te, and is there unique, the eigen­
state of 7T" to the eigenvalue zero. This state will be 
called the "vacuum" and denoted by ! n). Apart from 
this state, the spectruml of 7T2=7T"7T" is assumed to be 
bounded from below by a positive number, say ~2>O. 
It is also assumed that, apart from the vacuum, the 
spectrum of 7TO is positive definite. 

We now introduce the definition of "generalized 
free fields"2 restricting ourselves to real, scalar fields; 
the definition can be extended in an obvious way to 
the case in which the field is not real and/or transforms 
according to a finite-order representation of the homoge­
neous proper Lorentz group. The theorems to be 
proven below (Theorems I and II) remain valid also in 
this case, with obvious modifications in form. We 
restrict ourselves throughout this note to real scalar 
fields only to simplify the algebra involved in the 
proofs. We shall also assume that all quantities we 
introduce are tempered distributions; the proofs 
remain valid, however, also in more general cases. 
Definition: Let A(x) be a real field, A (x)=A+(x). 
Define 

a(<p)= ! a(p)cp(p)dp, 
(Ll) 

<p*(p) = <pC - p), ate <p) = a( <p*). 

We shall say that A (x) is a generalized free field if: 
a(<p)=O if <pcp) has support only at p2<O or at p=O 
and there exists a measure JI.(a) such that the following 

* On leave of absence from the Istituto Nazionale di Fisica 
Nucleare, Milano, Italy. 

t Supported by a National Science Foundation grant. 
t Now at Istituto di Fisica Teorica dell' Universita, Napoli, 

Italy. 
1 Metric +1 -I -I -I 
2 An analog~us definition' has been given by O. Greenberg 

(Proceedings of the 1961 Washington meeting of the American 
Physical Society). 

identities hold: 

[bt(~),b(~')]= -1 d4#*(p)~'(p) 
p •• P'>O 

(1.2) 

all other commutators=O 

b(~)=i d4Pb(p)~(p); bi(<p)=!tFPb(p,mi)<p(p) 
p.>o 
P'>O 

with 

a(p)=fJ(po) f"'dJl.(cr)b(cr,P)O(PL cr) 
o 

+(J( - po) f"'dJl.(cr )bt(cr, - p)O(p2-cr). (1.3) 
o 

~(p), <pcp) are infinitely many times differentiable 
functions with compact support. {mil is the set of 
points to which the measure JI.(cr) attributes finite 
weight. Notice that, if 

N 

dJl.(cr)= LiC;o(cr-mh 
1 

A (x) is a superposition of N independent real free 
fields. Equation (1.3) takes in fact the form 

a(p) = (J(p) Li Cibi(p)Polo(p2_ m2) 
+fJ( -po) Li Cib;t( -p)po!o(pLm2) (1.3') 

with bi(p)=po-lb(cr,p)! .. =mi' and (1.2) reads 

[b;(k),bjt(p)]=Oi;O(k-p) ; 

[b;(p),bj(k)]= [b;t(p),bjt(k)]= o. 

2. CONSEQUENCES OF A RESTRICTION ON 
THE SUPPORT OF a(p) 

(1.4) 

The purpose of the present article is to give a proof of 
the following statement: 

Theorem I. If a field A (x) is cyclic in :te with respect 
to the vacuum and it satisfies the following conditions: 

U (a,A)A (x) U-l(a,A) = A (Ax+a), (1) 

759 
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where U (a,A) is a representation of the inhomogeneous 
proper Lorentz group. 

when (X-y)2<0. 
[A (x),A (y)]=O 

a(p)~O 

(2) 

(3) 

only3 for 0~p2~M2 (M2 is some positive number), 
then A (x) is a generalized free field. 4 

The first step in the proof of the theorem will be to 
show (Lemma I) that, under conditions (1)-(3) (and 
with our assumption about the vacuums and the 
spectrum of 71"2), the commutator [A(x),A(y)] is a 
c number. This result, together with Theorem II (to be 
proven in the next section) will then give the proof of 
Theorem 1. 

Lemma I. Under conditions (1)-(3) of Theorem I, the 
quantity F(x,y)=[A (x),A (y)] is a c number. 

Proof: Consider F</>(x,y) = (cf> I [A (x),A (y)] Ig) where 
Icf» is an eigenstate6 of 71"1'. We shall first prove that 

F</>(x,y) =0 
if 

(2.1) 

(2.2) 

Since the vacuum is, according to our assumptions, the 
only eigenstate of 71"2 in JC for which (2.2) is not satisfied, 
(2.1) implies that 

[A (x),A (y)] In)=C(x,y) Ig), (2.3) 

where C(x,y) is a certain function of (distribution in) 
x, y. To prove (2.1) let us consider separately the two 
functions 

F/(x,y) = (cf> IA (x)A (y) I g) (2.4) 
and 

F</>2 (x,y) = (cf>1 A (y)A(x) In). (2.5) 

Inserting in (2.4) a complete set of eigenstates of 71"1' we 
get 

F/(x,y) = Ln (cf>IA (x) I n)(nIA(y) Ig)= 

(the symbol Ln stands for summation over discrete 
indices and integration over a continuum) 

= Ln e-iP¢ .x+ipn,(x--Y)(cf>1 A (0) I n)(nl A (0) I g), 

where pn is defined through 7I"l'ln)=Pnl'ln). We now 
define a function F </>' (ZlZ2) by 

F/(ZlZ2)=e-iN '" Ln eipn(z,-z,) 

X (cf> I A (0) I n)(n I A (0) In). (2.6) 

This function is analytic in every finite region of the 

a The theorem is also true under the weaker assumption a(p) =0 
for P'<O, a(p) 10)=0 for p2>M'. 

• Or a superposition of derivatives thereof, if A (x) is not a 
scalar. 

, A result analogous to Theorem I can be obtained relaxing the 
condition that there is only one eigenstate of 1f'. to the eigenvalue 
zero. A discussion of this case is given in the Appendix. 

6 One should, strictly speaking, introduce "wave packets." 
This is irrelevant for the proof and amounts to a certain compli. 
cation in the algebra involved; we shall therefore make free use of 
"eigenstates of 1f' •• " 

Zl, Z2 space provided only 

Im(zl-z2)EV+ (V+ is the forward lightcone). (2.6') 

We also have 

lim 
Imll ~O 

Im(Zl-.,) EV + 

We consider now 

F</>2(X,y) = Ln e-iP¢.u+ipn'(Y-x)(cf> I A (0) I n)(n I A (0) I g) 

and introduce a new function 

F</>2(ZlZ2) = Ln e-iP¢ . z2+ipn(z,-z,)(cf> I A (0) I n)(n I A (0) I g). 

It will be convenient for what follows to consider as 
independent variables Zl and Za=Zl-Z2. F/(zl,za) is 
analytic for ImzaE V + and every finite value of Zl. 
F</>2(ZlZa) will be rewritten 

F </>2 (ZlZ2) = e-ipq. .z,+ipq. .zaf dpe- ip ,zaG(p) (2.7) 

with 
G(p) = La (cf> I A (0) I p,a)(p,a I A (0) I g). (2.8) 

We want now to show that G(p) has compact support. 
The restrictions on the spectra of A (p) and 71"2 imply 

unless 

and 

(cf>IA(O)ln)(nIA(O)lg)=O (2.9) 

(2.10) 

(2.11) 

Let us choose the reference frame m which p</>=O. 
Then conditions (2.10), (2.11) read 

E2~ (pno'-Pn2)~M2, (2.12) 

O~ (pno-p</>o)2-Pn2~M2, (2.13) 

which can be solved to give 

max{ E, (p</>o'_ M2+ E2)/2p</>O} ~ pno 

~ (p</>O'+M2)/2p</>o. (2.14) 

Together with (2.10), (2.14) shows that the support of 
G(p) is compact. It follows7 that fdpe-ipzaG(p) is 
continuous for Imza=O and can be extended to be an 
entire function for Imza~O. The factor eiN ' (zs-z,) is also 
entire and therefore such is F,l(ZlZ2)' In addition 

lim Fi(ZlZ2) = Fi(X1X2). 
ImSl • .32 -+ 0 

We notice then that both F/(ZlZ2) and F</>2(ZlZ2) are 
analytic in the domainS D: 

D: ImzaE V +, Imzl finite (Za= Zl- Z,2)' 

It is important for what follows that all real points 
belong to the boundary of D. 

7 L. Schwartz, Theorie des Distributions (Hermann & Cie, 
Paris, France, 1951), Tome II, p. 128, Theoreme XVI. 

8 As a matter of fact, both are entire functions. 
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According to (2.2) if (X-y)2<0, F,p'(x,y)=F",2(X,y). 
The function F",(ZlZ2)=F,p'(ZlZ2)-F",2(ZlZ2), analytic 
in D, has therefore zero as the boundary value on (a 
two-dimensional) part of the boundary of D. The 
"edge-of-the-wedge" theorem9 assures then that 
F",(ZIZ2)=0 and therefore that also its boundary values 
on the remaining part of the boundary of D are zero, i.e., 

F",(x,y)=F.p'(x,y)-F",2(X,y) all x,y. (2.15) 

Equation (2.1) is thereby proven. One can see that 
the arguments which led to (2.15) fail if p",=O or if 
p",z=O (in this case one cannot chose a reference frame 
in which p",=O; choosing p",o=p.,l=p",; p",2=P.p3=0 
the inequalities (2.12) and 2.13) give pno- pnl~ M2/2p"" 
pno ;:;: I Pn I and the region characterized by these 
res trictions is no t finite). 

So far, we have proven that 

[A (x),A (y)] In)=c(x,y) In), (2.3) 

where C(x,y) is a c-number function of x, y. Consider 
now 

{<I>I {[A (x),A (y)]-C(x,y)) lib), (2.16) 

where 1<1», lib)E3C. Since A (x) is, by assumption, 
cyclic in 3C, we will have proven that 

[A (x) ,A (y)]=C(x,y) 

if we can show that 

0= (niA (Xl)' .. A (xn){[A(x),A (y)] 

(2.17) 

-C(x,y)}A (YI)' . ·A (Ym) In) (2.18) 

Using (2.2), we see that, on this part of the boundary 
of S, 

G1(XI' .. Ym,x,y)-G2(XI' . 'Ym,x,y)-Ga(Xl' . 'Ym,x,y) 
= (nl A (Xl)" . A (xn){[A (x),A (y)] 

-C(x,y)}A (Yl)' .. A (Ym) I n) 
= (n I A (Xl)' .. A (xn)A (Yl)' .. A (Ym) 

X{[A(x),A(y)]-C(x,y)}ln)=o, by (2.3). 

Therefore 

G(Zi,r j,x,y)=GI(Zi,r j,x,y)-G2(Zi,r j,x,y) -G3(Zi,r j,x,y) 

is analytic in S and goes to zero on (a n-dimensional) 
part of the boundary of S. 

According to the edge-of-the-wedge theorem, there­
fore, G(Zi,rj,X,y)=O in S and, since all real points are 
on the boundary of S, G(Xl" 'Ym,x,y)=O for all Xi, yj. 
Equation (2.18) is thereby proven and (2.17) follows. 
(Notice that 3C is the closure of the set of all vectors 
which can be given the form 

where <l>n(Xl' . . xn ) is a function with compact support.) 

3. CONDITIONS UNDER WHICH A FIELD IS 
A GENERALIZED FREE FIELD 

Our next task will be to prove: 
Theorem II. The following three are equivalent 

statements: 
for all configurations (Xl'" Xn) and (Yl'" Ym) and all 
values of the indices m, n. Consider the functions1o A(x) is a generalized free field, (3.1) 

GI(x\ . .. Ym,x,y) [A (x),A (y)]=G(x-y) 
=(nl A (Xl)' .. A (xm)A (x)A(y)A (YI)' .. A (Ym) In), [G(x-y) is, in general, an operator], (3.2) 

GZ(XI" 'Ym,x,y) 
= (niA (Xl)' .. A (xn)A (y)A (x)A (YI)' .. A (Ym) In), 

Ga(Xl' .. Ym,x,y) 
=C(x,y)(n I A (Xl)' .. A (xn)A (Yl)' .. A (Ym) In), 

Since we have assumed that the energy-momentum 
vector of all states in 3C lies in the forward lightcone, 
one can find three functions GI(Zl" ,Znrl" . tmX,y) , 
G2(ZI' .. t m,x,y), G3(ZI' .. r m,x,y), analytic in the tube S: 

Im(zi-Zi+I)EV_ ImznEV+ 
S; Im(ri-ti+I)EV- ImtlEV- real parts arbitrary 

and such that Gi(XI' .. Ym,x,y) is the boundary value of 
GI(ZI' "rm,x,y) when Imzi-O, Imri-O, (zi,rj)ES. 
Let us now choose the y/s in such a way that 

(X-yj)2<O, (y-yj)2<0 all j's. 
----

9 H. Bremerman, R. Oehme, and J. G. Taylor, Phys. Rev. 109, 
2178 (1958); F. T. Dyson, ibid. 110, 579 (1958); H. Epstein, J. 
Math. Phys. 1, 525 (1960). 

10 From here on, the proof follows R. Jost, Lectures at the 
International School of Physics, Spring 1959, Naples. 

[A (x),A (y)]=C(x,y) [C(x,y) is a c number], (3.3) 

provided 

(a) the transformation properties of A(x) under the 
inhomogeneous Lorentz group are 

U(a,A)A (x) U-l (a,A) = A (Ax+a), 

(b) A (x) is cyclic, 
(c) A (x) is local, 
(d) A (x) is a tempered distribution in X and an operator 

in a Hilbert space 3C, 
(e) a state with lowest energy exists in 3C and is there 

unique. We shall call this state the vacuum and its 
symbol will be In). 

We prove first the equivalence of (3.2) and (3.3). 
Proposition 1. (3.2) implies (3.3). 
Proof: Let r be on 3C the infinitesimal generator of 

translations; let In) be an eigenstate of 7r'" to the 
eigenvaluell pn"'. 

11 See reference 6. 
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By assumption the expression 

(nl G(x-y) I ~)= (n I [A (x) ,A (y)] I~) (3.4) 

depends on x and y only through the difference x-y; 
therefore 

(~+~)<nIG(x-Y)I~)=O. (3.4') 
ax" oy" 

On the other end, if 7r" is the infinitesimal generator of 
translations, we have 

(n I [A (x),A (y)] I~) 

Therefore, 

for all I n) and for all values of x+y. This implies 

G(x-Y)=(~IG(x-y)I~). (3.6) 

By standard methods, using the locality and cyclicity 
of A (x) and the positive-definiteness of the energy, one 
concludes 

G(x-y)=G(x-y) Q. E. D. (3.7) 

From (3.7) we also see that G(x-y) is an invariant 
function of its arguments. 

Proposition 2. (3.3) implies (3.2). 
Proof. By assumption, 

C(x,y) = <~I [A (x),A (y)] I~) 

Q.E.D. 

We shall now prove the equivalence of (3.2) and (3.3). 
Proposition 3. (3.1) implies (3.3). 
Proof. This is a part of the definition of generalized 

free field. 
Proposition 4. (3.3) implies (3.1). 
Proof. Let us introduce the Fourier transform of A (x) 

a(p)= !eiPXA(x)dX. (3.8) 

By assumption, 
oA(x) 

[7r",A (x)]=i--. 
ax" 

Equation (3.9) can be rewritten as 

[7r",a(p)]= -p"a(p), 

from which follows: 
Lemma 2. [a(p),a(k)]=O for all k if p2<0. 

(3.9) 

(3.9') 

Proof. Since there is no state in X with a space-like 
energy-momentum four vector, we have 

and also 

therefore 

a(p) I~)=O if p2<0, 

(~la(p)=O if p2<0, 

<~I [a(p),a(k)]lo) if p2<0 

and Lemma 2 follows since the commutator is a c 
number. We write now A (x)=B(x)+C(x) where 

C(x)= f eipxa(p)d4p. 
p'<O 

It follows from Lemma 2: 

[B(x),C(y)]=O= [C(x),C(y)], (3.10) 

and moreover 
C(x) I~)=O. (3.11) 

We shall now prove Lemma 3. 
Lemma 3. If A (x) is cyclic, B(x) is also cyclic. 
Proof. Cyclicity of A (x) means the vectors 

form a complete basis in X. But 

= J f/>(Xl·· ·Xn)B(Xl)·· ·B(xn) I~)dxl·· ·dxn 

due to (3.10), (3.11). (3.12) 

Therefore, also the vectors 

form a complete basis in X and this completes the 
proof of the lemma. 
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Lemma 4. C(x)=O. 
Proof· 

(xl C(x) IlP)= ~ f dYl·· ·dYnlP(Yl·· ·Yn) 

X (x I C(x)A (Yl)· . ·A (Yn) IQ)=O 

by (3.10) and (3.11), for every pair of states I X), I lP). 
We also have 

[[a(p),a(k)],lI"l'] = (r+kl')[a(p),a(k)]. (3.13) 

By assumption, the commutator is a c number. Equa­
tion (3.13) therefore implies 

(r+kl')[a(p),a(k)]=O. (3.14) 

We conclude that [a(p),a(k)] is an invariant function 
with support, in the variable (p+k), at the origin [the 
invariance follows from that of G(x-y)]. 

The support property for a(p) as a function of p2, ex­
pressed in Lemma 4, allows an invariant decomposition 
of a(p) into positive- and negative-frequency parts: 

a(p)=()(po)b(p)+()( -po)bt ( -p). (3.15) 

Let p. be a positive measure on the positive real axis. 
We introduce a new field b(p,u) on JC defined through 

f b(p,u) 'I' (u)du = f dp.(u)b(p,u) rp(u) (3.16) 

for all rp(u)ES. The measure p. has to be such that 
b(p,u) has no Il-like singularities. Our aim will be to 
show that the measure p. can be so chosen that the 
field b(p,u) satisfies the "generalized canonical commu­
tation relations" (3.2). We shall rewrite (3.16) in the 

L C,Cj(4pOkO)t[b;(p,ml) ,bjt (k,m?)]1l (pL m;2)1l (k2-m?) 
if 

form 

b(p,u)= f dp.(p)1l (u-p)b (p,p) (3.16') 

with the understanding that all the expressions in 
what follows have to be taken in the sense of the theory 
of distributions. The measure p. consists of one part 
which gives finite weight only to a finite (or denumer­
ably infinite) number of points and a second part p.' 
which assigns zero weight to isolated points. We 
therefore have 

b(p,p2)= L C;(2pO)tb;(p)ll(p-m;2) 
; 

+ f dp.' (u)1l (u-p2)b(p,u), (3.17) 

where the C;'s are positive numbers. (The factor 
(2pO)t is added for reasons of normalization.) 

On the other end, [b(p),bt(k)] is a c number, and 
therefore equal to its vacuum-expectation value. The 
most general form of such expectation value is known12 

and we can write therefore 

f dp.(u) f dP.(A)Il(u-P)Il(A-k2)[b(p,u),b t(k,A)] 

=1l4(P-k{ ~ d;1l(p2_p.;2)+ f d{3«()Il(P-() 1 (3.18) 

where {di} is a finite (or denumerably infinite) set of 
positive numbers and (3 is a Lorentz-invariant, positive 
measure which assigns zero weight to single points. 
Substituting (3.17) into (3.18) one has 

+ ~ Ci (2kO)i f dp.' (u)1l (u- P)[b (p,u),b;t (k,m;2)]Il(k2-m?) 

+ f dp.'(u) f dp.'(A)Il(u-p2)Il(A-k2)[b(p,u),bt(k,A)] 

=~ d;(2pO)O(p2_p.?)Il(k2-p.;2)1l3(p-k)+1l4(p-k) f d{3«()Il(p2_(). (3.19) 

We now recall that [b(p,p2),bt(k,k2)]=0 if k~p. Com­
puting [b(p,j),bt(k,g)], b(p,j) = fb(p,P2)f(p2)dp2 and 
choosing properly the support of f, g one then deduces 

[b;(p,mhb;t(k,ml)]=O if k~p or m?~m?, (3.20) 

[b(p,u),bt(k,A)]=O if k~p or (j~A, (3.21) 

[b(p,u),b;t(k,m?)]=O if k~p or u~m? (3.22) 

Equation (3.21) implies 

ll(p2_ m?)Il(k2-ml)[b(p,m;2),bt(k,ml)] 
= all (p2 - m;2)1l (k2 - m?)1l (p - k)1l m;'m;', 

where a is some constant, Ilra is the Kronecker symbol. 

12 R. Lehmann, Nuovo cimento 11, 342 (1959); G. Kallen, Relv. 
Phys. Acta 25, 417 (1952). 
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If we choose, in (3.17), 

Ci=dit, 

we have therefore, from (3.19), 

(3.23) 

[b(p,m;2),bt(k,mj2) J=omjmio(k- p) (3.24) 

and also mi= J.l.i. From (3.22) we have moreover 

[b(p,er) ,bit (k,m;2) J 
= {310 (ml-er)o (p-k)+{3~mi2 ... 0 (p-k). 

Using the fact that the measure p.' attributes weight 
zero to isolated points, one can show that {31 = O. The 
second and third term in (3.19) are then proportional to 
{32.f..=m.~dp.'(er)=0. From (3.21) we have finally, 
using invariance considerations13 

[b(p,er),bt(k,;\.)J= g(er)o (p- k)o( (er- p2)1_ (;\. - k2)t). 

Equation (3.19) implies therefore 

f dJ.l.'(er) f dJ.l.'(;\.)0(er-k2)0(er-;\.)g(er)0(p-k)0(pO-kO) 

=04(p-k) f d{3«(J)O(p2_(J). (3.25) 

Let p be the distribution defined by (p,j)=.J jd{3, 
where (3 is the measure which appears in (3.18). By 
assumption, p is a tempered distribution. We shall 
assume that "the square root of p" exists in the following 
sense: There exists a positive measure v on E such that14 

(p,j) = v (erj) where er",= vy[o(x-y)]. 

In particular, if p is a function integrable on every 
finite subset of E and if (p(x»t exists, then the measure 
II is given formally by dv= [P(x)Jtdx. In fact 

er(x) = f [P(y)J!o(x-y)dy=[p(x)J! 

and 

v (erj) = f [P(x)J![P(x)Jtj(x)dx= f p(x)o(x)dx=. (p,j). 

If one chooses15 

one has, for all (3-measurable functions, 

(3(j)= f dJ.l.'(er) f dJ.l.'(;\.)j(er)o(er-;\.). 

[b(p,po),bt(k,k o) J = o(p- k)o (po- ko). 

(3.26) 

(3.27) 

(3.28) 

13 P. Methee, Comm. Math. Relv. 28, 225 (1954). 
14 E is the positive real axis. 
16 We shall not give here the detailed proof that this choice 

defines indeed b(p,u) as a bona-fide operator on 3C; let us however 
remark that, if d{J(rT) =0 [and therefore d",(rT) =OJ for rTl <rT<rT2, 
then a(p rT) =0 on the same interval. In fact, d,s(rT) =0 for rTl <rT<U2 
implies ila(p,u) 10)11 =0 on the same interval, and this, together 
with [a(p,rT),a(k,X)J=O u~X and the cyclicity of A (x) with 
respect to 10), leads to a (p,rT) =0, rTI <rT<rT2. 

With the choices indicated in (3.23), (3.26) (we assume 
that the two-point function (nl[A(x),A(y)Jln) of the 
field A is given), we have then relations (3.24), (3.28) 
which, as we said, stand for the more precise forms: 

[bi( \,,),b jt ( \,,') J= Oij( \",\,,') \"= \,,(p), 

[b(1ft),b t (1ft')J= (1ft,1ft') 1ft = 1ft (p,po). 

(3.24') 

(3.28') 

All other commutators are zero. From Eqs. (3.15), 
(3.19), (3.24'), and (3.28'), Proposition 4 follows. 
Propositions 1 to 4 complete the proof of Theorem II. 
To Theorem II we may add the following corollary. 

Corollary. From the arguments of L. S. Z.16 one can 
see that only bi(p) and not b(p,u) [as defined in (3.21)J 
can satisfy an asymptotic condition in their sense. If 
such condition is postulated and the resulting free 
fields are taken to form a cyclic algebra with the vacuum 
as cyclic vector, then b(p,er) =0. 

This follows immediately from the identity 

[b(1ft),b i t ( \")J= [b(1ft),b;( \")J=O (3.29) 

for all i, 1ft, \" and the equivalence, for free fields, of 
cyclicity with respect to the vacuum and irreducibility. 
Equation (3.29), in fact, implies b(1ft) = c number; on the 
other hand, from (nl A (x) I n)=o and (nl bi (\,,) I n)=o it 
follows o=(nl b(1ft) In)=b(1ft) Q.E.D. Therefore, if an 
asymptotic condition of the L. S. Z. type is introduced, 
the first statement in Theorem II should be strength­
ened to read 

(1') A (x) is a discrete superposition of independent 
free fields. 
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APPENDIX17 

Theorem I'. Under the assumptions of Theorem I, but 
allowing for the existence in X of N orthonormal 
eigenstates I n)i i= 1· .. N, of 71"1' to the eigenvalue zero, 
A (x) takes the following form: 

A (x) = Li Ai(x)Pi. (A.l) 

In (A.1), the P/s are projection operators into orthog­
onal subspaces Xi of X (LliN EBXi=X) and Ai(X) 
[the restriction of A (x) to XiJ is in Xi a generalized 
free field cyclic with respect to I W)i, the unique (in Xi) 
eigenstate of 71"1' to the eigenvalue zero. 

16 R. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo 
cimento 1, 205 (1955); also O. W. Greenberg and A. S. Wightman, 
"The asymptotic conditions in quantum field theory" (un­
published). 

17 We would like to thank Professor E. C. G. Sudarshan for an 
interesting discussion which originated this Appendix. 
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To prove this theorem we notice that the equality 
(2.1) is still valid, since nowhere in its proof the unique­
ness of the vacuum was used. Now, however, (2.3) does 
not follow from (2.1). One has rather 

[A (x),A (y)] I!l)i=i Lj Cij(x-y) I n)j. (A.2) 

We now notice that the matrix IICII: 
Cij= -ij(n I [A (x),A (y)] In); 

is Hermitian (strictly speaking, the matrices IIC,II: 
Cfii=fC;j(x)f(x)dx are Hermitian for all real f(x) 
with compact support). 

In fact 

Cj;*(x-y)=i(i(nl [A (x),A (y)] I n)j)* 

= -ij(nl [A (x),A (y)] I n);=C;j(x-y). (A.3) 

The matrix IIClI can therefore be reduced to diagonal 
form by a unitary matrix Uij(x-y) which will in 
general depend on x-Yo 

Let us consider the N orthonormal vectors I w)iEX 
defined by 

IW)i= Lj[U-I(x-y)];jln)j. (A A) 

The I w);'s are evidently eigenstates of 7r1' to the eigen­
value zero. From (A.2) and (AA) one also derives 

[A (x),A (y)] I w)i=ib;Cx-y) I w);, (A.S) 

where bi(x-y) is the ith eigenvalue of the matrix IICII. 
Let Xi be the subspace of X defined as follows: Xi 
is the closure (with the topology of X) of the set of 
vectors that are obtained from I W)i by the action of 
finite-order polynomials in A (x). In other words, Xi 
is the subspace of X in which A (x) is cyclic with 
respect to the state IW)i. 

We want now to show that, if bi(x)rf:bj(x), then 

XinXj=O. 

Let 1~)EX;nXj. Consider [A(x),A(Y)]I~). We shall 
have proven that 

[A (x) ,A (y)] I~)=ib;(x-y) I~) (A.6) 

if we can show that 

<x I [A (x),A (y)]A (Xl)' .. A (x n ) I w); 

=ibi(X-y)(xIA(XI)" 'A(xn)lw)i alllx)EX. (A.7) 

In fact, by assumption, I ~ )EXi and A (x) is cyclic in 
Xi with respect to I W)i. 

The proof that (A.4) implies (A.7) is completely 
analogous to the proof that (2.3) implies (2.15) and 
will not be repeated here. In the same way, considering 
now I~) as a vector in Xj, we can deduce 

[A (x),A (y)] I ~)= ibj(x-y) I~)· (A.8) 

But (A.6) and (A.8) are contradictory unless I~) is the 
null vector [we have assumed b;Cx-y)rf:bj(x-y)]' 
Therefore, 

XinXj=O if bi(~)rf:bj(~). (A.9) 

Let M be the number of distinct bjW's. Then 

(A. 10) 

where X/ is the subspace on which [A (x),A (y)] takes 
on the value b;(x-y). We assume that A (x) is cyclic 
with respect to the set {I W M. In other words, we 
assume that 

UiX/=X. (A.H) 

From (A.1O) and (A.H) it follows 

M 

Li EBX/=X. (A.12) 
I 

This and (A.13), 

[A(x),A(y)]I~)=ibi(X-Y) I~) if I~)EX/, (A.13) 

lead then to 
M 

[A (x),A (y)]=i Lj bj(x-y)P/, P/X=Xj. (A.14) 
I 

From (A.12) and the identity 

A (x)X/CX/, (A.1S) 
it follows 

[A (x),P/J=O all i's and x's. (A.16) 

From (A.16) it is now possible to show that also 

[7rI',P/J=O, (A.17) 

where the 7r1' are the infinitesimal generators of trans­
lations. In fact, one has 

aA(x) 
[7rI',A(x)]=i--, (A.18) 

axl' 
and therefore 

[P/,[7rI',A(x)]]=O all j's, 

and, due to (A.16), also that 

[A (x),[P/,7rI']]=O. 

On the other hand, 

[P/,7rI']IW)i=O all i, j, jJ.. 

(A.19) 

(A.20) 

Therefore, [P/,7rI']=O on xl, all i, j, and, since 
M 

X=Li EBXl, 
I 

[P/,7rI']=O on X. With similar arguments one can 
prove that 

[U(a,A),P/J=O on X. (A.21) 

We shall now show that, if xl contains Si vacua 
I W)ik' k= 1· . ·s, then 8. 

xl=Lk EBXik 
I 
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where I W)ikEXik and A (x) is cyclic in Xik with respect 
to I W)ik. Equation (A.17) has the consequence that 
the restriction of 11"1' to X/ provides a representation of 
the infinitesimal generators of translation and this, 
together with the assumption that no state with 
negative energy exists in X, implies that the energy­
momentum PI' of the states in X/ (apart from IW)ik' 
k= 1·· ·s) lies in the forward lightcone (and in fact 
satisfies also the requirement p2> E2). 

This allows an invariant decomposition of the 
restriction of A (x) to xi' into positive and negative 
frequencies (Lemmas 2-4 in the text; the proof does not 
make essential use of the uniqueness of the vacuum). 

We shall now prove that 

XiknXij=O for krf j (A.22) 

by showing that the two sets (P(Ai) IW)ik} and 
{PI (Ai) IW)ij} are mutually orthogonal if krf j. P(A i) 
and PI(A i) are (smeared) polynomials of any finite 
order in the Ai(X)'S. The two sets are dense in Xik, Xij, 
respectively; if 1,p)EXiknXihi! I ,p)11 = 1, there exist two 
vectors l,po)E{P(A i) IW)ik} and I ct>o)E (PI(Ai) IW)ij}, 
111,po)11 = 111ct>o)11 = 1, such that 

111,p)-I,po)11 < E, (A.23) 

III ct»-I ct>o)11 < E, (A.24) 

with E arbitrarily small. Conditions (A.23) and (A.24) 
imply 

(A.2S) 
and also 

II 1,p)II+ I (,pl,po) I + I (,p I ct>o) I + I (,pol ct>o) I <E. (A.26) 

If (,polct>o)=O, then (A.2S), (A.2S /), and (A.26) imply 

111,p)11 < E. (A.27) 

Since E is arbitrary, (A.27) implies 1,p)=0. It 
remains to be proven that the two sets (P(A i) I W)ik} 
and {PI (A i) I W)ij} are mutually orthogonal. This is 
true if 

ik(wIAi(XI)·· ·Ai(xn ) IW)ij=O, krf j (A.28) 

for all configurations {Xl·· ·X n }. To prove (A.28) we 

make use of the decomposition of Ai(X) into positive 
(Ai+) and negative (A i-) frequencies and remember that 
Ai+(x)lw)ik=O for all k, since such state would have 
negative energy. We also know that [Ai(x),Ai(y)] and 
therefore also [Ai+(x),Ai-(y)]==ibi(x-y) is a c number. 
We can, therefore, follow precisely the same steps as 
in the reduction of a polynomial in a free field to its 
ordered form, to obtain 

ik(W I A JXI)· .. Ai(Xn) I W)ij 
=C(XI·· ·Xn)ik(wlw)ij=O, if irfj, 

where C(XI· .. Xn) is a properly symmetrized product of 
bi(x-y)'s. This completes the proof thatXiknXij=O if 
krfj. Introducing projection operators Pik(PikXi=Xik), 
one can easily see that 

[Pik,Ai(x)]=O, 

[Pik,1I"1'] = 0. 

(A.29) 

(A.30) 

From (A.12), (A.16), (A.17), (A.22), (A.29), and 
(A.30), we conclude 

N 

X= Li EBXi, [A (x),Pi]= [1I"1',Pi], (A.31) 
I 

where Ai(X) is cyclic with respect to IW)i. One also has 
[U(a,A),Pi]=O and 

N 

[A (X) ,A (y)]=i Lj Cj(x-y)P j • 

I 

Therefore, [Ai(x),Ai(y)] is a c number and Ai(X) is 
cyclic in Xi with respect to I W)i. In Xi, I W)i is the 
unique vacuum (i.e., eigenstate of 11",~ to the eigenvalue 
zero). We can use Theorem I and conclude that Ai(X) is 
a generalized free field. We have, finally, the result: 
under the conditions of Theorem I', 

A(x)=LiA;(x)Pi, 

where Ai(X) are generalized free fields; they are charac­
terized by the "eigenvalues" iCk(x-y) of the matrix 
Ilbll: bij=ij(nl [A(x),A(y)]ln)i. Pi are projection 

N 

operators into orthogonal subspaces Xi (L; EBXi=X). 
I 
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The formulation of field theories by means of Wightman functions is studied. It is shown that, given 
two field theories that satisfy all the axioms, one can construct a family of Wightman fields with the same 
properties by a process of superposition of Wightman functions. The condition of unitarity is formulated 
without reference to asymptotic conditions, and it is proved that the Wightman fields constructed by the 
above superposition process (starting with "unitary" fields) fail to preserve unitarity, and a fortiori, the 
standard asymptotic condition. 

1. INTRODUCTION 

I N the search for a dynamical scheme for describing 
elementary particle phenomena consistent with 

relativistic invariance and quantum mechanical prin­
ciples, the theory of quantized fields has been favored 
with more study and has provided more insight than 
any other scheme. The use of manifestly covariant local 
Lagrangians as a starting point and the use of perturba­
tion expansions lead to questionable mathematical 
operations with infinite quantities. In view of this, 
during the last few years the study of general field 
theories without starting with any specific Lagrangian 
has received much attention. l The more fundamental 
part of such a program concerns the study of an 
abstract axiom system more or less suggested by earlier 
Lagrangian theories. In such a study it is worthwhile 
to know if the axioms are independent and whether­
they are compatible; while the axioms are "related" to 
general physical requirements their truth is neither 
"self-evident" nor can one trust intuitive "physical" 
justifications for the compatibility of these axioms. 

Among the set of axioms usually taken as character­
izing quantized fields, these comments apply partic­
ularly to the so-called "asymptotic condition"2 which 
enables one to relate the field operators to particle 
scattering amplitudes. The somewhat provisional nature 
of this axiom has been noted before; and perhaps not 
unconnected with this is the fact that the other "field 
axioms" have been the subject of a structure analysis 
by Wightman.3 Making use of the tools developed in 
this brilliant study we show in this paper that the 
"asymptotic condition" is an independent axiom and 
that one can construct systems satisfying all other 
axioms but not this axiom provided that at least one 
quantum field theory yielding a nontrivial scattering 
matrix exists. In the course of this study we have been 

* Supported by the U. S. Atomic Energy Commission. 
1 See, for example, the Proceedings of the "Colioque sur les 

Problemes Mathematiques de la Theorie Quantique des Champs" 
(Lille, 1957); see also, "Problemi Matematici della Teoria 
Quantistica delle Particelle e dei Campi" Supp!. Nuovo cimento 
14 (1959) and references given there. 

2 R. Haag: Dan. Mat. Fys. Medd. 29, No.1 (1955); H. Leh­
mann, K. Symanzik, and W. Zimmerman, Nuovo cimento 1, 
205 (1955); O. W. Greenberg, Ph.D. thesis, Princeton University 
1956 (unpublished). 

3 A. S. Wightman, Phys. Rev. 101, 860 (1956). 

able to construct several examples of fields with a 
trivial scattering matrix. 

In Sec. 2 we review Wightman's theory and construct 
certain elementary families of Wightman fields using 
the technique of vacuum expectation values. Section 3 
discusses the weak axiom of asymptotic particle 
interpretation and the normalization of the field. The 
main result of the present paper is to show that almost 
all members of the families of fields constructed in 
Sec. 2 do not satisfy the (weak) axiom of asymptotic 
particle interpretation; this result is stated and proved 
in Sec. 4. Certain related comments are made in the 
concluding section. 

2. FAMILIES OF WIGHTMAN FIELDS 

According to Wightman,3 a quantum field theory is 
defined in terms of a Hilbert space JC and a set of 
hermitian linear operators (more specifically, operator­
valued distributions) fjJ(x) labeled by a four-vector 
x provided the following conditions are satisfied: 

(I) Manifest Lorentz invariance. There must exist 
unitary operators U(a,A) such that 

fjJ(Ax+a) = U(a,A)fjJ (x) U-l (a,A) 

for every proper orthochronous inhomogeneous Lorentz 
transformation. 

(II) Absence of negative energy states. The spectrum 
of the Hamiltonian operator must be nonnegative, the 
Hamiltonian being defined as the hermitian generator 
of time translations. 

(III) Local commutativity. The commutator of 
two field operators at space-like points must vanish, 

[fjJ(x),fjJ(y)]=O for (X-y)2<0. 

(IV) The existence of the "vacuum" state. There 
exists a unique state [0) invariant under all U(a,A). 

We now form the vacuum expectation values of 
products of n field operators labeled by the points 
Xl, X2, "', Xn: 

W(n) (Xl,X2,' .. ,xn ) == W(n) ({ x}) 
=(O[fjJ(Xl)" ·fjJ(Xn) [0). (1) 

It can then be shown that, as a consequence of the 
conditions imposed on the Hilbert space JC and the 

767 
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linear operators cf>(x), this set of functions labeled by 
the four-vector variables (hereafter called Wightman 
functions) has the following properties: 

(i) W(n) ({Ax+a})= W(n) ({x}), (Lorentz invariance). 
(ii) W(n)({x}) is the boundary value of a complex 

function W(n) ({z}) analytic for Im{z} in the backward 
light cone (absence of negative energies). 

(iii) W(n)({x})= W(n) ({x'}), where {x'} is any per­
mutation of the n variables {x}, provided the permuted 
variables have space-like separations (local com­
mutativity). 

(iv) 

Xf.(Yl' .. ,Ys)d4Xl' . 'd4x,d4y1 ' .. d4ys ~ 0, (2) 

where fr are suitable arbitrary functions (positive 
definite metric). Wightman has also shown3 that these 
conditions are sufficient, that is, given a set of functions 
W(n)({x}) satisfying these conditions, one can construct 
a theory of a (neutral scalar) field satisfying the four 
conditions stated at the beginning of this section which 
has these functions for its vacuum expectation values. 

Before the field theory so defined can be used to 
describe a model of relativistic quantum theory of 
particles, one must introduce some particle concepts. 
The structure satisfying only the conditions introduced 
in this section is a more general system; we shall refer 
to this structure as a "Wightman field." 

We now state two obvious properties of a Wightman 
field in terms of its Wightman functions in the form of 
two theorems. 

Theorem I (scale change). If W(n)({x}) are a set of 
Wightman functions, the set of functions k"W(n) ({x}) 
defines a Wightman field for every real number k. 

This statement is immediately verified by noting 
that if cf>(x) is the Wightman field which corresponds to 
W(n) ({x}), then kcf>(x) corresponds to knW(n) ({x}). 

Theorem II (convexity). If W 1(n) ({x}) and W2(n) ({x}) 
are two sets of Wightman functions, the convex set 

W(n) ({x}) = >-W1(n) ({x})+ (1->-)W2(n) ({x} ) (3) 

defines a Wightman field provided the real number >­
lies between 0 and 1. 

The theorem is proved by noting that the functions 
W(n) ({x}) satisfy all the conditions imposed on Wight­
man functions: Lorentz invariance, analyticity in the 
future tube, permutation symmetry for space-like 
separated arguments, and finally the condition specified 
by Eq. (2). Hence they define a Wightman field. Note 
that, in this case, it is not easy to construct the field 
operator in a simple manner but these functions satisfy 
all the conditions imposed on Wightman functions; 
hence they define a Wightman field. If >- is real but not 

necessarily in the interval 0:::;>-:::; 1 then all conditions 
are satisfied except positive definiteness; even this last 
condition may be satisfied in special cases [as is seen 
by considering W(n) ({x}) and W1(n) ({x})]. 

Thus, given one Wightman field we can construct 
an infinite number of distinct Wightman fields using 
Theorem I; however, out of this infinite set, a specific 
choice can be made by stating a normalizati.on condition. 
We shall state such a condition in the next section. 
Theorem II allows us to construct an infinite set of 
Wightman fields (normalized, if so required) from two 
(or more) distinct Wightman fields. Let us call the set 
of all Wightman fields W(n) ({x}) generated by 
W 1(n) ({x}) and W2(n) ({x}) the "family"; every point 
in this family is labeled by a parameter >-. We have 
remarked above that while 0 ~ >-:::; 1 is allowed in all 
cases, values of>- outside this interval are not necessarily 
forbidden. It is then interesting to state the following 
theorem regarding the boundedness of the allowed 
values of >-: 

Theorem III (semibounded families). There exists 
either a lower limit >-1 or an upper limit >-2 (or both) 
such that for either >- <>-1 or >-2<>- (or both) the 
combinations 

V(n) ({x} )=>-W1(n) ({x})+ (1->-)W2(n) ({x}) 

cannot be a set of Wightman functions. 
To prove the existence of such limits, we use the 

positive definiteness condition showing that these are 
violated for sufficiently large negative or positive values 
of >-. Consider in particular W 1(2) ({x}), which is non­
negative according to (2). It cannot be everywhere zero 
without making the field operator cf>l(X) trivial. Choose 
any suitable testing function fey) such that 

and let 

Then, 

f f*(y)V(2) (x+!y, x-!Y)f(y)d4y=a+>-(1-a), 

which becomes negative >-< -a/!1-a! or for a/I a-1! 
>>- according as a is less than or greater than unity. 
Hence, the statement made in the theorem is proved. 

This demonstration however does not guarantee 
that provided >-1 <>-<>-2 the set V(n) ({x}) are Wightman 
functions since the positive definiteness condition in 
its complete form may still be violated; it may even be 
violated for other testing functions using W(2) ({x}) 
only. However, from Theorem II we know that there 
exists the nontrivial family 0:::; >-:::; 1 at least. In general 
the family is, of course, larger. 
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It is also remarkable that of the original fields 
obeyed canonical commutation relations the family of 
Wightman fields so generated also satisfy canonical 
commutation relations. This statement is consequent 
upon the identification of all matrix elements of the 
commutator of the field and its time derivative (at 
the same time) in terms of the Wightman functions. 

3. ASYMPTOTIC PARTICLE INTERPRETATION 
AND THE SCATTERING MATRIX 

If this field theory is to become a theory of interacting 
particles, one must introduce particle variables into the 
theory and identify at least some subspace of the 
Hilbert space JC as being associated with the particle 
states. Such a program4 has so far not been carried out 
except for free fields. There is however another type of 
particle interpretation which is less ambitious in the 
sense that certain linear combinations of vacuum 
expectation values of the fields are identified with a 
scattering amplitude for "asymptotically free" par­
ticles. 6 Since there are certain properties to be satisfied 
by the scattering amplitude this identification in tum 
imposes some restrictions on the Wightman fields. How­
ever the scattering amplitudes themselves provide only 
an incomplete characterization of the field j and it 
appears that without the use of sufficiently strong 
additional postulates, the scattering amplitudes do not 
determine the Wightman field. In support of this, it 
is known that one can construct several distinct 
Wightman fields with a trivial associated scattering 
amplitude. 6 

It is conventional2 to state the requirement of an 
asymptotic particle interpretation in terms of an 
appropriately stated "asymptotic condition" and then 
to "derive" the scattering amplitude in terms of certain 
linear combinations of vacuum expectation values. 
We shall follow the alternative method of stating the 
connection between the scattering amplitude and the 
vacuum expectation values as the additional axiom. 
This apparently arbitrary procedure has certain 
advantages: first of all, unlike the other axioms of 
quantum field theory, the asymptotic condition has so 
far been stated only in unsatisfactory forms and their 
plausibility is not immediately obvious. The best 
defense seems to be that it leads to a covariant expres­
sion for the scattering amplitude; but the expression 
itself could be obtained by other means, say for example, 
by a formal summation of the perturbation series.7 

Secondly the question of completeness of the particle 
scattering states which is generally a prerequisite to 
the axiomatization of the asymptotic condition seems 
too strong j it is conceivable that the field Hilbert 

4 A. S. Wightman and S. S. Schweber, Phys. Rev. 98, 812 (1955). 
6 This point of view is somewhat more general than the classi­

fication of particle interpretations discussed by Wightman and 
Schweber (reference 4). 

6 H. J. Borchers, Nuovo cimento 15, 784 (1960). 
7 See, for example, Y. Nambu, Phys. Rev. 98, 803 (1955). 

space is considerably larger than the particle Hilbert 
space. 

We shall hence take as an axiom the following 
conditions: 

The scattering matrix element related to the transi­
tion to a state containing r particles with four-momenta 
PI, .. " pr from a state containing s particles with 
four-momenta ql, "', q. (with pI2= ... = q.2 = p.2) is 
given by the expression 

S(PI, .. ,PT j ql, .. ,q.) 

XA(Pl,XI)" ·A(PT,xT)A( -ql, YI)' . ·A( -q., Y.) 

where 
x(OI T[I/>(XI),' ·,I/>(y.)JIO), (4a) 

-z 
A(p,x) =--eipx(O ,,2_p.2) 

(211")4 
(4b) 

and p. is a "mass" parameter. Hence, the T product 
vacuum expectation value is defined in terms of the 
Wightman functions by the equations 

(01 T{I/>(XI),' ',I/>(x n )} 10)= W(n) (Xl, . 'X n ) (Sa) 

(01 T{I/>(XI),., ',I/>(Xn )} \0) 
=(0\ T{I/>h'),.· ',I/>(Xn')} \0), (Sb) 

where Xl', "', xn' are any permutations of Xl, "', xn • 

(Asymptotic particle interpretation.) 
At this point, we must restrict our further discussion 

to Wightman fields for which the T-product vacuum 
expectation values exist. Given any Wightman field 
we can now calculate the particle scattering matrix 
in terms of this identification j but there is no guarantee 
that the scattering matrix so defined satisfies the 
conditions imposed on a scattering matrix, in particular 
unitarity. It is considered further necessary that the 
one-particle states are "steady" so that the S-matrix 
elements connecting one-particle states to any other 
state vanish identically (and that the two-particle 
scattering is elastic below the three-particle threshold). 
This condition can be used to normalize the field 
operator: 

f d4xA(p,x) f d4yA( -q, y)(O 1 T{I/> (x) ,I/> (y)} 10) 

= (211")4lJ(p_q)lJ(p2_p.2) (6) 

with p2=q2-tp.2. It then follows that if W(n)({x}) 
denotes the Wightman functions for this normalized 
field of mass p. then knW(n) ({x}) defines a field which is 
not normalized except for the special case k = ± 1. The 

8 This choice is very closely related to the work of K. Nishijima, 
Phys. Rev. 119, 485 (1960). 
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fields defined in terms of two (or more) sets of normal­
ized Wightman functions in the form W(n)=xWl(n) 
+ (1-x)w2(n) is also normalized in the above manner if 
and only if the masses are identical. 

The axiom of asymptotic particle interpretation 
introduced here is weaker than the usual asymptotic 
condition in the sense that we do not assume either the 
completeness of the many particle states nor the 
existence of asymptotic fields. But if the asymptotic 
condition is postulated as an axiom of the theory in 
addition to the axioms for a Wightman field, we can 
derive the expression for the particle scattering matrix 
yielding the so-called reduction formulas. 9 Thus the 
axiom of asymptotic particle interpretation for a 
Wightman field yields a more general system than the 
Wightman field with the stronger axiom of asymptotic 
condition. Needless to say everything we have proved 
in the following sections apply a fortiori to fields 
satisfying the usual system of axioms including the 
asymptotic condition. We now proceed to show that 
Wightman fields in general do not have an asymptotic 
particle interpretation. 

4. WIGHTMAN FIELDS WITHOUT ASYMPTOTIC 
PARTICLE INTERPRETATION 

In terms of the scattering matrix S one may define 
the scattering amplitude f in the standard manner; 
and then note that the scattering amplitude so defined 
is linearly related to the Wightman functions. The 
unitarity relation imposed on f(Pl, ... ,pr; ql, ... ,q8) is 

X8(k n
O)f(h'" ,prj kl ,' •. ,kn) 

Xf*(ql, .. ,q.; kl' .. ,kn ) (7) 
or symbolically, 

(j-f+)=iff+. (7') 

In the summation, most of the terms contribute nothing 
since energy and momentum must be conserved if the 
scattering amplitude is not to vanish. Let It and f2 be 
the scattering amplitudes for two Wightman fields 
with asymptotic particle interpretation defined by their 
Wightman functions Wl(n) and W 2(n). We shall further 
specialize than to correspond to the same "mass." If 
we now define a field in terms of the Wightman functions 

W(n)=xwl(n)+(1-X)W2(n) 

in view of the linear relation between the Wightman 
function and the scattering amplitude, it follows that 
the scattering amplitude f for this Wightman field 

9 H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo 
cimento 1, 205 (1955). 

is simply given by 

Using the unitarity condition, Eq. (7), twice it is now 
possible to derive the relation 

{XIt+(l-X)hHXIt++(l-X)h+} 
=Afdl++(l-X)hh+, (8') 

which may be written 

X8(k nO)g(pl,' .. ,prj kl ,' .. ,kn) 

Xg*(ql," 'q8; kl," ',kn)=O, (8a) 
with 

(8b) 

If we now specialize to the case of elastic scattering, the 
integrand is nonnegative and the vanishing of the 
integral implies that either g=O identically or X(1-X) 
= O. In the first case the two Wightman fields must 
have the same scattering matrix and all the Wightman 
fields in the allowed family Xl ~ X ~ X2 yield the same 
scattering matrix; the second case is trivial. We may 
now prove the following theorem. 

Theorem IV (equivalent scattering matrices). A 
Wightman field defined in terms of the Wightman 
functions 

W(n)=LX"W,,(n), LX,,=l, Xa~O, 

the functions W,,(n) admitting asymptotic particle 
interpretations with the same "mass," has an asymp­
totic particle interpretation if and only if all the Wight­
man fields have the same scattering matrix. 

This more general statement is proved essentially the 
same way as used above; one derives in place of (8') 
the equation 

L X"Xp(j,,+- h+)(j,,- h)=O, 
a>p 

from which it follows that f,,= h unless X" or Xp 
vanishes provided all the Xa are nonnegative. Note 
that, unlike the case of two fields only, here the condi­
tion X" ~ 0 cannot be simply relaxed; in general, on 
grounds of continuity, one expects the domain of 
values of X" (with sum unity) for which the theorem 
holds is somewhat larger in view of the demonstration 
above regarding only two fields. 

5. DISCUSSION 

The results of the preceding section imply that the 
axiom of asymptotic particle interpretation is independ­
ent of the other axioms of field theory and is not 
derivable from them; a conclusion already indicated 
by the existence of several distinct fields with the same 
S matrix. We have actually used only a weaker axiom 
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in this connection in the sense that we have neither 
required detailed properties of the field mass spectrum 
nor the completeness of the many-particle states. Our 
systems are correspondingly more general and the 
"unitarity conditions" are imposed only on the Fourier 
transforms of the time-ordered combinations 

of the Wightman functions for momenta on the mass 
shell; without additional restrictions this is not sufficient 
to determine the field in any sense. Yet here we see 
that the unitarity requirement on the particle scattering 
matrix excludes most Wightman fields from having an 
asymptotic particle interpretation. 

Perhaps the weakest point of the present investigation 
is that it has not provided any example of a field theory 
with asymptotic particle interpretation with a nontrivial 
scattering matrix; rather it asserts that if there exists at 
least one such theory there exists an infinity of Wight­
man fields not having an asymptotic particle interpreta­
tion belonging to the family generated by this one field 
together with the free field of the same mass. 

We have worked here within the framework of the 
conventional axiomatization of quantum field theory. 
If the purpose of the field theory is only to provide a 
quantum theory of interacting particles invariant under 
the complex Lorentz group, the conventional axiomat­
ization is too rigid in that it imposes "physical require­
ments" on the field. This is most easily seen in the case 
of the axiom of positive definiteness: in a theory where 
the physical particle states do not form a complete set 
of states in the generalized Hilbert space in which the 
field operators are defined, it is sufficient if the particle 
states constitute a subspace with positive definite 
metric. That these considerations are not devoid of 
physical interest is seen from the example of the 
quantized Maxwell field. One of the present authors has 
discussedlO examples of quantum field theories for­
mulated in terms of a generalized Hilbert space with an 
indefinite metric where again the physical particle 
states are not complete in the generalized space but 
constitute only a subspace with positive definite metric. 
In such theories the physical interpretation requires an 

JO E. C. G. Sudarshan, Phys. Rev. 123, 2183 (1961). 

interpretive postulate and the precise form of this 
postulate depends on the dynamics of the field. 

Our investigations also provide several examples of 
Wightman fields with a trivial scattering matrix. In 
addition to a trivial scale change W(n) -> knW(n), we 
also have more generally 

W(n)=LaAakanW)nl, LaAa=l, Aa~O, (9) 

which provide Wightman fields, the functions W)n) 
corresponding to known theories; say either free fields 
with arbitrary masses, or the Wick polynomials of free 
fields or terminating Haag expansions. 6 By a limiting 
procedure in forming such linear combinations one can 
produce any two-point function 

(where ~(1)(m; x-y) is the two-point Wightman 
function for a free field of mass m) by taking for the 
Wightman functions 

W(n)({x})= J dp(m2)W(n)(m; {x}), (11) 

where W(n)(m; {x}) are the Wightman functions for a 
free field of mass m, and p (m2) is a nonnegative measure. 
But all these fields have a trivial scattering matrix. 

Finally the present study illustrates the validity of 
Wightman's statement3 that the consequences of 
positive definiteness are distinct from the consequences 
of unitarity. The Wightman fields constructed above 
satisfy positive definiteness but do not yield unitary 
scattering matrices, while certain indefinite metric 
theories (including quantum electrodynamics)lO provide 
examples of theories in which the field operators are 
defined in a generalized Hilbert space but the scattering 
matrices are unitary. 
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The most general dynamical law for a quantum mechanical system is studied with particular reference to 
the necessary and sufficient conditions for such a law to represent Hamiltonian dynamics. The main results 
are stated in the form of three theorems. 

I. INTRODUCTION 

T HE most general description of the state of a 
quantum mechanical system is afforded by the 

von Neumann density operator, and may be defined 
as a "real" linear functional which maps non-negative 
Hermitian operators on a Hilbert space to non-negative 
numbers and maps the unit operator to unity. It is 
well known that, in special cases, one can specify the 
states in terms of normalized vectors of the Hilbert 
space. The dynamical law is then usually given as a 
unitary transformation on these vectors. We refer to 
this law as Hamiltonian dynamics. But the most 
general dynamical law for a quantum mechanical 
system is to be formulated in terms of the density 
operator and may be described by a linear mapping 
of the set of density operators into itself. The question 
immediately arises as to the conditions under which 
a linear mapping of the space of all operators into 
itself maps the subset of density operators into itself, 
and then as to the conditions under which such a 
mapping represents Hamiltonian dynamics. This prob­
lem has been investigatedl for the restricted case of 
a system described by a finite dimensional vector 
space. In this paper we will answer these questions for 
operators defined on any Hilbert space. 

Since the density operators form a convex set, the 
possible dynamical mappings also form a convex set. 
It may then appear that all dynamical mappings can 
be formed as "probabalistic" combinations of some 
simple set of extremal mappings in the same fashion 
as all density operators can be formed as mixtures of 
pure state operators. That this set of extremal mappings 
cannot be limited to the Hamiltonian mappings is 
evident from the existence of a mapping of all pure 
state operators to a single pure state operator. Hence, 
such a limitation would be an additional physical 
postulate. If we limit ourselves to mappings of pure 
states to pure states as described by a linear mapping 
on the Hilbert space then, such a postulate is implicitly 
assumed. 

In Sec. II we develop some properties of the convex 
set of density operators and the linear space to which 

* Supported in part by the U. S. Atomic Energy Commission. 
1 E. C. G. Sudarshan, P. M. Mathews, and J. Rau, Phys. Rev. 

121,920 (1961). We refer the reader to this paper for a discussion 
of the physical motivation for the problem considered in the 
present paper and also for physical examples which illustrate the 
basic ideas and possible applications. 

they belong and in Sec. III we prove three theorems 
which contain the main results outlined above. 

II. THE OPERATOR SPACE AND THE CONVEX 
SUBSET OF DENSITY OPERATORS 

The quantum mechanical state of a physical system 
can be specified by a density operator p which satisfies 
the conditions2 : 

(cp,p1/;) = (pcp,1/;) (Hermiticity), (1) 

(cp,pcp) "2.0 (positive-definiteness), (2) 

Tr(p) = 1 (normalization), (3) 

where cp and 1/; are any vectors of the Hilbert space JC 
on which the operator p is defined. It is well known3 

that an operator which satisfies these conditions has 
a purely discrete spectrum with real non-negative 
eigenvalues. From this it follows that Tr(p2) ~ 1, the 
equality holding if and only if p has just one nonzero 
eigenvalue, or equivalently if and only if p2= P which 
is the condition that p be a projection operator. In the 
latter case we say that p represents a pure state. Any 
density operator can then be expanded in its spectral 
representation as 

where p(i) are orthogonal projection operators and ai 
are real positive coefficients satisfying Li ai= 1. 

If we consider the linear operators on JC as themselves 
forming a vector space, we can define an inner product 
in this space by 

(Pl,P2) = Tr(Pl+p2). 

Let .c be the linear space of all operators p for which 
Ilp112= Tr(p+p) < 00. Then all density operators belong 
to .c. If p=ap(l)+(1-a)p(2l, where p(l) and p(2) are 
density operators and O~ a~ 1, then by an application 
of Schwartz's inequality we get that 

(p,p) ~a2(p(l) ,p(l»+ (1-a)2(p(2) ,p(2» 
+ 2a(1- a)[ (p(l) ,p(l) (p(2) ,p(2»]t 

~a2+ (1-a)2+2a(1-a)= 1, 

where the equality holds only if p(l)=p(2) and (p(I),p(l) 
= 1. Hence, if p represents a pure state, it cannot be 

2 J. von Neumann, Mathematical Foundations of Quantum 
Mechanics (Princeton University Press, Princeton, New Jersey, 
1955), Chap. IV. For a general discussion of density operators 
see, e.g., U. Fano, Revs. Modern Phys. 29, 74 (1957). 

3 von Neumann, reference 2, p. 189. 
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formed as a linear combination with positive coefficients 
of any two distinct density operators. For any pCl) and 
p(2) as above, p is also a density operator, so the density 
operators form a convex set. We will call the set of all 
p formed as above for all values of a, O<a<l, the line 
segment between pel) and p(2). We then define the set 
of extremal elements of the convex set as the set of all 
elements which do not belong to a line segment between 
any two distinct elements. From the above remarks, 
it is clear that the extremal elements of the set of all 
density operators is the set of operators which represent 
pure states, and that all other elements can be formed 
by positive combinations of these. 

We will denote by 1/Ie/>+ a linear operator defined on 
JC by 

where 1/1 and e/> are vectors and the e/>(r) form an ortho­
normal basis in JC. Then the operators e/> Cr)e/>C8)+ form 
an orthonormal basis in £. For 

(e/>(r)e/> ( 8)+,e/> (r')e/> (8')+) 

=Tr{ (e/>(r)e/>(8)+)+e/> Cr')e/>(8')+} 

= ~ (e/>(m) ,e/>(8») (e/>(r) ,e/>(n») (e/>(n) ,e/>(r'») (e/>(8') ,e/>(m») 
n,m 

defines a linear mapping of £ into itself, 5 

p ---7 p' = Ap. (5) 

We shall call a linear mapping on £ which maps the 
set of density operators into itself a dynamical mapping. 
The properties of such a mapping are described by the 
following. 

Theorem 1. Necessary and sufficient conditions for a 
linear operator A on £ to give a dynamical mapping are: 

For any set of basis vectors e/>(r) in JC 

(a) (e/>Cr)e/>(8)+,Ae/>(r')e/>C8')+) = (e/>(8)e/>(r)+,Ae/>(8')e/>(r')+)*, 

(b) Lr(e/>Cr)e/> Cr)+,Ae/>(r')e/> C8')+) = Or'.', 

(c) The operator w defined on JC by (e/>(8),wc/>(r'») 
= (e/>Cr)e/>(r)+,Ae/>Cr')e/> (8')+) is positive definite for each 
choice of r. In particular, this implies that 

(e/>(r)e/> cr)+,Ae/>(r')e/>(r')+):2: O. 

When these conditions are satisfied, Hermitian opera­
tors are mapped to Hermitian operators, the trace is 
preserved, and positive definite operators are mapped 
to positive definite operators. 

Proof. We write Eq. (5) as 

= Orr,08.' (e/>(r) ,p' e/>('») = L (e/>(r)e/>(')+,Ae/>(r')e/>(8'») (e/>(r') ,pcf>("»). (Sa) 

and any operator p in £ can be expanded as 

p= ~ Pr8e/>(r)e/>(8)+ 
r8 

where 

and 

Since we are interested mainly in density operators, 
it is of interest that the pure state operators e/>(r)e/>(r)+ 
for all rand 

(1/\"1) (e/>(r)+e/>(8») (1/\"1) (e/>(r)+e/>(8»)+ 
= !e/> (r)e/> (r)+ +!e/>(8)e/>(8)+ +! (e/>(r)e/>(8)+ +e/>(8)e/>(r)+) 

(1/\"1) (e/>(r)+ict>(8») (1/~) (e/>(r)+ict>(8»)+ 
(4) 

= !e/>(r)e/>(r)+ +!e/>(8)e/>(8)+ +!i (e/>(8)e/> (r)+ _e/>(r)e/>(8)+) 

for all r, s, r<s, form a linearly independent set which 
spans £.4 

III. DYNAMICAL MAPPINGS 

The most general dynamical transformation on the 
system is represented by a linear mapping of the set of 
density operators into itself. But since there are sets 
of density operators spanning £, this uniquely 

4 This space of operators with the inner product defined by the 
trace has been considered by]. Schwinger, Proc. Natl. Acad. Sci. 
U. S. 46, 257 (1960). 

r' 8' 

If A satisfies (a), we can deduce that p' is Hermitian 
when p is Hermitian. If A satisfies (b) we can deduce 
that Tr(p')=Tr(p). If A satisfies (c), then (e/>(r),p'e/>(r») 
= Lr'" (e/>(8') ,wc/>(r'») (e/>(r') ,pcf>(8'») = Tr(wp):2:0 if p is posi­
tive definite. Since this holds for each e/>(r) belonging 
to any set of basis vectors in JC, we deduce that p' is 
positive definite if p is positive definite. The sufficiency 
of these conditions as well as the final statement of the 
theorem have thus been proved. The necessity of (a) 
is obtained by noting that if p is taken to be 
He/>(n)e/>(m)+ +e/>(m)e/>(n)+) or !i(e/>(n)e/>(m)+ _e/>(m)e/>(n)+), each 
of which is, according to (4), a real combination of 
pure state operators, then p' must be Hermitian, or 
from (Sa), 

!{ (e/>(r)e/>(8)+,Ae/>(n)e/>(m)+)+ (e/>(r)I/>(8)+,Ae/>(m)e/> Cn)+)}* 
=!{ (e/>(8)e/>(r)+,Ae/> Cn)e/>(m)+)+ (e/>(')e/> (r)+,Ae/>(m)e/>(n)+) }, 

!{ (e/>(r)e/>(8)+,Ae/>(n)e/>(m)+)+ (e/>(r)I/>(8)+,Ae/>(m)e/>(n)+)}* 
= -!{ (e/>(8)e/>(r)+,Ae/>(n)e/>(m)+) - (e/>(8)e/>(r)+,Ae/>(m)l/>(n)+)}, 

from which (a) follows. Similarly, using these same 
operators for p we see from (4) that we must have 
Tr(p')=O while if p=e/>(n)e/>(n)+ we must have Tr(p')= 1. 
Using (Sa), these imply (b). To prove the necessity of 
(c) we note that for every pure state operator p=#+ 

6 To avoid confusion between the two types of operators we 
will use capital letters A for operators on .e and Greek letters 
p, w, <T for operators on X (elements of .e). Greek letters </>, !/t, x, ~ 
will denote vectors in X, while small letters a will denote scalars. 
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we must have 

r's' 

r's' 

= (if;,wif;)"2.0 

for every cp(r) belonging to any set of basic vectors in X. 
This completes the proof of Theorem 1. 

In order to characterize the Hamiltonian dynamical 
transformations we will need one more definition. If 
the dynamical mapping maps all pure state operators 
to pure state operators then for each normalized 
vector cp in X we have cf>cf>+=p-+ p'=cp'cp'+. The 
mapping act> -+ act>' of X into X will be called the 
mapping induced on X by the dynamical mapping. 
Note that this induced mapping is not necessarily 
linear._and is defined only to within a (unimodular) 
phase factor. When we can choose these phase factors 
so as to make the mapping linear, we will say that the 
dynamical mapping induces a linear mapping on X. 

Theorem. 2. Equivalent necessary and sufficient con­
ditions for a dynamical transformation to represent 
Hamiltonian dynamics are6 : 

(i) There exists a linear unitary operator w on X 
such that p -+ p' = wpw+. That is the operator A has 
the form 

(cp(r)cp(s)+ ,Acp (r')cp(s')+) = (cp(r) ,wcp(r'» (cp(s) ,wcp(s'»*. 

(ii) The dynamical mapping gives a mapping of the 
set of pure state operators into itself and induces a 
linear mapping on X. 

(iii) For each member XCi) of any set on basis vectors 
in X, there exists a normalized vector ~(i) such that 
the dynamical transformation maps 

X(i)X(il+ to ~(il~(i)+. 

(iv) The operator A of the dynamical mapping can 
be factored in the form 

(cp (r)cp (s)+ ,A cp (r')cp (s')+) = (cp (r) ,wcf> (r'» (cp (s) ,(JCP (s'»*, 

where wand (J are linear operators on X. 

Proof. (i) represents the usual form of Hamiltonian 
dynamics; we need only prove that (i) implies (ii) 
implies (iii) implies (iv) implies (i). 

That (i) implies (ii) is obvious. For cf>cf>+-+cp'q/+ 
=wcf>cp+w+=wcp(wcf»+ induces the linear mapping 

acp -+ act>' = awcp on JC. 

To prove that (ii) implies (iii) we note that for any 
XCi) belonging to a set of basis vectors in X, the pure 
state operator XCilX(i)+ is mapped to a pure state 

6 Another criteria for a Hamiltonian mapping, that the mapping 
preserve multiplication properties, has been given by J. Schwinger, 
Proc. Nat!. Acad. Sci. U. S. 46, 570 (1960). 

operator, say ~(i) ~(i)+. Also, according to (ii), all the 
~(i) must be normalized vectors in X. Since the induced 
mapping on JC must be linear it can be determined by 
~(i) = wx(i). Using Eq. (4) and the fact that (1/Y2) 
X (x(i)+x(i) and (l/v'2)(x(i)+ix Ci» are mapped to 
(1/Y2) (~(i)+~(i) and (1/Y2) (~(i)+i~Cil), respectively, 
we see that HX(ilXCil+ +xCilx(i)+) and !i(x (i)x Cil + 

-X(ilX(i)+) are mapped to H~(il~Cil+ +~(il~(i)+) and 
!i(ei)~(il+ - ~(i)~(i)+) from which it follows that X(ilX (iJ+ 

is mapped to ~(i)~(il+ which establishes (iii). 
To obtain (iv) we use Eq. (Sa) with (iii) to write 

(cp(r) ,~(i)~(iJ+ cp(s» 

= L (cp(r)cp(s)+,Acp(r')cp(s')+) (cp(r') ,x(i)x(iJ+ cp(s'». 
r' 8' 

Then, 

L (cp(r) ,~(i) (x(i) ,cp(r"» (cp(s") ,XCi)~ (~(iJ ,cp(s» 
ii 

= L (cp(r)cp(s)+,Acp(r')cp(s')+) L (cp(r') ,xU) (X(i) ,cp(r"» 
r's' 

= L (cp(r)cp(s)+,Acp(r')cp(8')+)Or'r"Os'8" 
r's' 

since both the cp(r) and the XCi) were assumed to form 
sets of basis vectors in X. Hence (cp(r)cp(s)+,Acp(r')cp(s')+) 
= Li(cp(r) ,~(i)x(i)+ cp(r'» Li(CP(s) ,~(j)x (i)+ cp(s'»* and set­
ting W=(J= Li ~(i)X(i)+ gives (iv). 

Finally to show that (iv) implies (i) we use condition 
(a) of Theorem 1 which in the factored form of (iii) is 

(cp(r) ,wcp(r'» (cp(s) ,(JCP(s'»*= (cp(s) ,wcp(s'»*(cp(r) ,(Jcp(r'». 

Then (J= cw where c is a real number. For (cp(r) ,(Jcp(r'» = 0 
if and only if (cp(r) ,wcp(r'» = 0, and for all (cp(r) ,(Jcp(r'»~O, 
(cp(8),(Jcp(S'»~0 we have 

Then, 

(cp(r)cp(s)+,Acp(r')cp(s')+) = (cp(r) ,ctwcp(r'» (cp(,) ,ctwcp(s»*. 

Now if XCi) is any set of basis vectors in X, let 
ei)=c!wx(i). Then using condition (b) of Theorem 1 
we have that 

Tr's' 

X (cp(r') ,XCil) (x(i) ,cp("» 

= L (X(i) ,cp(s'»Or'" (cp(r') ,xCi) = (x(i) ,xCi) =Oij. 
r's' 

Then all the ~(i) are non-null distinct vectors and form 
a basis in X; c!w must be a unitary operator which 
gives (i) and completes the proof of Theorem 2. 



                                                                                                                                    

DYNAMICAL MAPPINGS OF DENSITY OPERATORS 77S 

To show that the condition of the linear induced 
mapping in (ii) of the preceding theorem is actually 
needed we will include two examples (one a one-to-one 
mapping, the other not) of dynamical mappings which 
map the pure state operators to pure state operators, 
but are not Hamiltonian, in the proof of the following 
theorem which describes some of the possible mappings. 

Theorem 3. The set of possible dynamical mappings, 
or the set of operators A giving these mappings, 
forms a convex set. The set of extremal elements of 
this set contains those which map all pure state 
operators to pure state operators. These include 
Hamiltonian mappings and (one-to-one and non-one­
to-one) mappings which induce a nonlinear mapping 
onX. 

Proof. If two operators A (1) and A (2) each give a 
dynamical mapping of ee, then if O::;a::;l, A=aA(l) 
+ (l-a)A (2) also gives a dynamical mapping. For if 
p is any density operator in ee, it must be mapped to 
a density operator pIll' by A (1) and to a density operator 
p(2)' by A (2). But then A mapsp top'=ap(1)'+(1-a)p(2)' 
which is also a density operator. Hence the set of 
possible dynamical mappings or the set of operators A 
giving these mappings forms a convex set. 

H a mapping takes all pure state operators to pure 
state operators it cannot be on the line segment 
between two distinct mappings. For this would mean 
that at least one pure state operator would be on the 
line segment between two distinct density operators. 

We have seen examples of Hamiltonian mappings. 
As an example of a dynamical mapping which gives a 
mapping of the set of all pure state operators one-to-one 
onto itself but induces a nonlinear mapping on X/ we 
consider the following: Let cp(r)cp(8)+ be mapped to 
cp(o)cp(r)+ for all r, s. Consider any pure state operator 
#+, 1/;= Lr(cp(r) ,1/;)cp(r). Then 

#+= Lra(cp(r) ,1/;) (1/;,cp(8))cp(r)cp(0)+ 
----

7 Such nonlinear mappings are used for representing antilinear 
discrete operations in quantum mechanics. The most familiar 
example is time inversion; see E. P. Wigner, Gottinger Nachr., 
546, (1932); J. Math. Phys. 1, 409 (1960); R. G. Sachs, Nuclear 
Theory (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1953), Appendix; another example is charge 
conjugation in one-particle theories, see e.g., L. L. Foldy, Phys. 
Rev. 102, 568 (1956). 

is mapped to 

where 1/;' = Lr(cp(r) ,1/;)*cp(r). All pure state operators are 
clearly mapped one-to-one to pure state operators so 
we do have a dynamical mapping, but the induced 
mapping 1/; --'> 1/;' is clearly not linear. 

An example of a non-one-to-one mapping is the 
mapping of all pure state operators to a single pure 
state operator, cp(r)cp(r)+ --'> #+, cp(r)cp(8)+ --'> 0 for r;;es. 
Note that this induces a nonlinear mapping on X. For, 
according to Eq. (4), (1/V'l) (cp(r) +cp(o) --'> 1/;;;eV'l1/;. 
These examples complete the proof of Theorem 3. 

We have seen that the set of all dynamical mappings 
is larger than the convex subset having the Hamiltonian 
mappings as its boundary. To limit ourselves to this 
latter subset would require an additional physical 
postulate. The non-one-to-one mappings of pure state 
operators to pure state operators could be thought of 
as describing a kind of measurement process but this 
does not exhaust the non-Hamiltonian mappings of 
pure state operators to pure state operators. It is 
interesting to note that if one describes the mappings 
of pure states to pure states in terms of linear mappings 
of the vectors in X the postulate limiting these to 
Hamiltonian mappings is implicitly contained in the 
linearity. From the density operator point of view 
this cannot readily be interpreted as resulting from 
the kinematical structure of the theory. 

As a final note we observe that the operator A for a 
dynamical mapping can have the form 

(</>(r)cp(8)+ ,A</>(r')</>(o')+) = (</>(r) ,W</>(8) (</>(r') ,(1</>(0') 

only if (</>(r') ,(1</>(8')) = Or'8' and w is a density operator. 
For condition (b) of Theorem 1 requires that 
Lr(</> (rl,w</>(r) (</>(r') ,(1</>(8') = Or'8' which implies that 
(</>(r') ,(1</>(0') = Or'8' and Tr(w) = 1. Conditions (a) and 
(c) then require that w be Hermitian and positive 
definite. 
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Let A and B be square matrices over a field in which the minimum polynomial of A is completely 
reducible. It is shown that A is k commutative with respect to B for some non-negative integer k if and 
only if B commutes with every principal idempotent of A. The proof is brief, simplifying much of the 
previous study of k-commutative matrices. The result is also used to generalize some well-known theorems 
on finite matrix commutators that involve a complex matrix and its transposed complex conjugate. 

INTRODUCTION 

T HE study of matrix commutators of higher order 
has received attention from several authors.l In 

particular, W. E. Roth2 considered what he called 
k-commutative matrices. The main purpose of this 
note is to prove briefly a useful characterization of 
these matrices. 

Let A and B be n by n matrices over a field F in 
which the minimum polynomial ll"(x-a)8,, of A is 
completely reducible. If [A,B]=AB-BA denotes the 
commutator of A and B, then [(k)A,B] is defined 
recursively by 

[(o)A,B]=B and [(k)A,B]=[A,[(k-l)A,B]] 

for k>0.3 A is said to be k commutative with respect 
to B if and only if [(k)A,B]=O, and [(j)A,B]=O 
implies j~ k. Clearly, A is k commutative with respect 
to B for at most one non-negative integer k. 

THEOREM 

A is k commutative with respect to B jor some non­
negative integer k ij and only ij B commutes with every 
principal idempotent4 oj A. 

Preliminary to the proof of this theorem, the 
following lemma is demonstrated. 

LEMMA 

Ij E" is a principal idempotent of A and [A,B] 
commutes with E", then B commutes with Ea. 

To prove this, let Ea' = 1-E". Since E" commutes 
with A, 

[A,E"BE,,']=E,,[A,B]Ea'. 

Thus, since E"E,/ = 0, under the hypothesis of the 
lemma, A commutes with E"BE,,'. But since E" is a 
polynomial in A, E" also commutes with EaBE,,'. 

* Presented to the American Mathematical Society, April 22, 
1961. 

1 For a survey of these results see O. Taussky, Am. Math. 
Monthly 64, 229 (1957). 

2 W. E. Roth, Trans. Am. Math. Soc. 39, 483 (1936). 
3 See also, M. Marcus and N. A. Khan, J. Research Natl. Bur. 

Standards 64B, 51 (1960), and M. F. Smiley, Am. Math. Soc. 
Notices 7, 927 (1960). 

4 For the definition and properties of the principal idempotents 
of a matrix, see, for example, N. Jacobson, Lectures in Abstract 
Algebra (D. Van Nostrand Company, Inc., Princeton, New Jersey, 
1953), Vol. II, pp. 130-132. 

Hence, E"BEa'=O. By a similar argument, Ea'BE,,=O. 
Finally, E"B=E"BE,,=BEa. 

The proof of the theorem is now given. 

NECESSITY 

The result is obvious in case k=O. Thus, suppose 
that A is k commutative with respect to B for some 
k>O, and let E" be any principal idempotent of A. 
Since A commutes with [(k-l)A,B], and E" is a poly­
nomial in A, then E" commutes with [(k-l)A,B]. 
Hence, by repeated use of the lemma above, E" com­
mutes with [u)A,B],j=k-l, k-2, "',0. In particu­
lar, E" commutes with B.5 

SUFFICIENCY 

Let A,,= (A -aI)E" for a any characteristic value 
of A with associated principal idempotent E". Thus, 
if B commutes with every principal idempotent of A, 
it follows by induction on k~ 1 that 

[ck)A,B]= L i:. (-l)i(~)A"k-iBA"i, 
" i=O J 

where the first sum is taken over all of the distinct 
characteristic values of A, and where the usual notation 
for the binomial coefficient is used. Since Aa is nil­
potent, by choosing k sufficiently large,the sum on the 
right is zero, and the desired conclusion is obtained. 

Moreover, since Aa is nilpotent of order equal to the 
index Sa of a, the following result due to RothS is also 
a consequence of the preceding equation. 

COROLLARY 1 

Let m be the largest oj the indices associated with the 
distinct characteristic values oj A. I j A is k commutative 
with respect to B, then k < 2m. 

Furthermore, for any scalar polynomial cp(x), since 
the index of the characteristic value cp(a) of cp(A) is at 
most m, and the principal idempotent of cp(A) associated 
with cp(a) is the sum L Ep over all of the distinct 
characteristic values (3 of A such that cp«(3)=cp(a), the 
following result is also immediate. 

• See also, W. E. Roth, Trans. Am. Math. Soc. 39, 483 (1936), 
Theorem 9. 

6 Reference 5, Theorem 5. 
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COROLLARY 2 

Let m be defined as in Corollary 1, and let cp(x) and 
O(x) be polynomials over F. If A is k commutative with 
respect to B for some k, then cp(A) is j commutative with 
respect to O(B) for some j <2m. 

Roth7 considered only the -case O(x)=x, and showed 
under this condition that j~k. However, this stronger 
inequality is not in general valid for every polynomial 
O(x). 

As an application of the preceding results, some 
remarks are now given concerning commutators that 
involve a complex matrix A and its transposed complex 
conjugate A *. 

First, as is well known, the principal idempotents of 
a normal matrix are Hermitian. More generally, the 
following is now demonstrated. 

COROLLARY 3 

A ny complex matrix A is k commutative with respect 
to A * for some non-negative integer k if and only if the 
principal idempotents of A are Hermitian. 

To prove this, it is first observed that the principal 
7 Reference 5, Theorem 3. 

idempotents of A * are the transposed complex 
conjugates of the principal idempotents Ea of A. 
Thus, since Ea* commutes with A*, if Ea=Ea*, then 
by the theorem above A is k commutative with respect 
to A * for some non-negative integer k. Conversely, if 
Ea commutes with A*, then it also commutes with Ea*. 
But any normal idempotent matrix is Hermitian. 

Finally, as an application of Corollary 1 above, a 
well-known theorem is generalized. 

COROLLARY 48 

The commutator [A,A*] is k commutative with respect 
to .4 for some non-negative integer k if and only if A is 
normal. 

It is only necessary to prove that C=[A,A*] and 
[(k)C,A]=O, for some positive integer k, implies C=O. 
But, since C is diagonable, applying Corollary 1 with 
m= 1, [C,A]=O. Thus, by a theorem of Jacobson,9 
C is nilpotent. But any diagonable nilpotent matrix is 
necessarily zero. 

8 For a proof of this corollary, in case either k=1 or k=2, see 
also T. Kato and O. Taussky, J. Wash. Acad. Sci. 46, 38 (1956). 

9 N. Jacobson, Ann. Math. 36, 877 (1935). 
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The introduction of nonsymmetric g'k in unified field theories of the Einstein-Schrodinger type is open 
to the objection, on group-theoretical grounds, that the symmetric and anti symmetric parts transform 
independently. This objection does not apply to the use of nonsymmetric ra.!', since these quantities are 
irreducible under the "extended group," consisting of the point transformations and the Einstein A trans­
formations. 
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COROLLARY 2 

Let m be defined as in Corollary 1, and let cp(x) and 
O(x) be polynomials over F. If A is k commutative with 
respect to B for some k, then cp(A) is j commutative with 
respect to O(B) for some j <2m. 

Roth7 considered only the -case O(x)=x, and showed 
under this condition that j~k. However, this stronger 
inequality is not in general valid for every polynomial 
O(x). 

As an application of the preceding results, some 
remarks are now given concerning commutators that 
involve a complex matrix A and its transposed complex 
conjugate A *. 

First, as is well known, the principal idempotents of 
a normal matrix are Hermitian. More generally, the 
following is now demonstrated. 

COROLLARY 3 

A ny complex matrix A is k commutative with respect 
to A * for some non-negative integer k if and only if the 
principal idempotents of A are Hermitian. 

To prove this, it is first observed that the principal 
7 Reference 5, Theorem 3. 

idempotents of A * are the transposed complex 
conjugates of the principal idempotents Ea of A. 
Thus, since Ea* commutes with A*, if Ea=Ea*, then 
by the theorem above A is k commutative with respect 
to A * for some non-negative integer k. Conversely, if 
Ea commutes with A*, then it also commutes with Ea*. 
But any normal idempotent matrix is Hermitian. 

Finally, as an application of Corollary 1 above, a 
well-known theorem is generalized. 

COROLLARY 48 

The commutator [A,A*] is k commutative with respect 
to .4 for some non-negative integer k if and only if A is 
normal. 

It is only necessary to prove that C=[A,A*] and 
[(k)C,A]=O, for some positive integer k, implies C=O. 
But, since C is diagonable, applying Corollary 1 with 
m= 1, [C,A]=O. Thus, by a theorem of Jacobson,9 
C is nilpotent. But any diagonable nilpotent matrix is 
necessarily zero. 

8 For a proof of this corollary, in case either k=1 or k=2, see 
also T. Kato and O. Taussky, J. Wash. Acad. Sci. 46, 38 (1956). 

9 N. Jacobson, Ann. Math. 36, 877 (1935). 
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method of variation). It is then evident that all theories 
whose Lagrangian densities £ are built up solely from 
gik and R.ijkh will be characterized by the property of A 
invariance. Physically, it seems plausible that A in­
variance is in some way related to the gauge invariance 
of electrodynamics. 

The basic assumption in the formulation of Einstein's 
theory is that the symmetric gik and r ikl' of general 
relativity are to be replaced by nonsymmetric quan­
tities. What a priori justification can be given for this 
assumption? To deal first with the affinity, a convincing 
argument in favor of a nonsymmetric extension of rikl' 
is the fact that this extension is accompanied, for a 
theory of the type mentioned above, by an enlargement 
of the invariance group through the inclusion of the 
A transformations (1.1). (This situation has an analog 
in the transition from special to general relativity, 
where the replacement of the scalar gravitational 
potential cJ> by the ten potentials gik is motivated by 
the general covariance of the new theory, a scalar 
theory being essentially only Lorentz-covariant in the 
sense that Lorentz frames have a privileged status.) 

On the other hand, no enlargement of the invariance 
group results when we subjoin an antisymmetric part 
to gik. In particular, the field equations admit no trans­
formations which "mix" the symmetric and antisym­
metric parts gik and gik [as the transformations (1.1) 
do with r.!!:" ~d ritJ. The two parts transform as 
separate and independent entities, and no real uni­
fication is achieved by combining them. If, then, group­
theoretical considerations are accepted as a basic guiding 
principle in the construction of a unified theory, it will be 
logically most economical and satisfactory to retain the 
symmetry of the fundamental tensor gik, while admitting 
nonsymmetric r ik". 

A further disadvantage of introducing a nonsym­
metric gik into the Lagrangian lies in the excessive 
freedom (from the physical point of view) which is 
thereby afforded to the solutions of the resulting field 
equations. Thus, Einstein's theory admits nontrivial 
solutions even for "flat" space-time (R.ijkh=O), as has 
been shown in detail by Wyman and Zassenhaus.1 This 
must be regarded as an unsatisfactory trait of a theory 
which purports to give a geometrical description of 
physical fields. It is probable that almost any field 
theory which operates with a non-symmetric gik would 
be open to this objection. The difficulty is connected 
with the fact that the flatness condition does not 
necessarily imply gik=O. We shall revert to this point 
later on (Sec. 7). -

In the present paper we shall investigate the possi­
bility of constructing a unified field theory of gravi­
tation and electromagnetism based on the following 
postulates: 

(1) The fundamental quantities are a symmetric tensor 
gik and a nonsymmetric affine connection r ik". 

I M. Wyman and H. Zazzenhaus, Phys. Rev. 110, 228 (1958). 

(2) The field equations are derivable from a variational 
principle 

of y-g Ld4x=0, (1.2) 

where (to insure A invariance) L is assumed to depend 
only on gik and R.ijk h. 

The analysis is simplified if we assume further that 
R.ijkh enters rationally and at most quadratically into L, 
and only in the form of its contraction Rij=R.ijaa. The 
most general form for L is then 

Here, a, b, 0:, 13 are constants, 

R=ga{JRa{J, 

and gik and its inverse gik are used to lower and raise 
indices in the familiar way, e.g., 

Rik= giagk{JRa{J. 

In writing down (1.3), we have been greatly assisted 
by the postulated symmetry of gik, which restricts 
enormously the number of invariants which can be 
formed out of gik and R ik. 

It will be shown in the following sections that the 
present theory is able to give a satisfactory account of 
Maxwell-Einstein fields. In Sec. 2 we derive the field 
equations and Bianchi identities from the variational 
principle (1.2). The weak-field solutions of the theory 
are then compared (Sec. 4) with the equations of 
Maxwell and the Einstein gravitational equations. 
(Concerning the physical interpretation of the theory, 
we may mention here in anticipation that the electro­
magnetic tensor is taken to be proportional to R~!;: The 
tensor r ~a then corresponds roughly to the 4-potential, 
and the A transformations to the gauge transformations.) 

Section 5 is devoted to a brief discussion of the equa­
tions of motion of test particles. Finally, in Sec. 6 we 
obtain rigorous, spherically symmetric solutions for two 
particular cases (b=f3=O and a=f3=O, respectively). 
These solutions recall in some respects the nonlinear 
electrodynamics of Born and Infeld.2 Some concluding 
remarks of a general nature will be found in Sec. 8. 

We close this introduction with a comment on the 
principle of transposition invariance, which has played 
an important role in the development of Einstein's 
unified field theory. In his later presentations of the 
theory, Einstein3 formulated this principle as follows. 
Introduce the quantities Uikl', defined by 

2 M. Born, Proc. Roy. Soc. (London) A143, 410 (1934); 
M. Born and L. Infeld, ibid. A144, 425 (1934). 

3 A. Einstein and B. Kaufman, Ann. Math. Princeton, 62, 128 
(1955). See also B. Kaufman in Fiinjzig Jahre Relativitatstheorie 
(Birkhauser Verlag, Basle, 1956), p. 227. 
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A tensor Aik(U) is called "transposition symmetric" 
if it goes over into its transpose under the transformation 

(1.4) 

The principle of transposition invariance requires that 
the field equations stay valid under the transformation 
0.4). The field equations of the present theory are 
transposition invariant in this sense, since the Lagran­
gian (1.3) is built entirely out of transposition sym­
metric quantities. One sees this immediately on exam­
ining the expression for Rik in terms of U: 

Rik= U ik ,aa-Ui{3aU ak{3+iUiaaU{3k{3. 

If we had permitted our Lagrangian to contain the 
curvature tensor in forms other than its contraction 
Rik, the transposition invariance of the theory would 
have been forfeited. For instance, 

is not transposition symmetric. 

2. THE FIELD EQUATIONS AND 
BIANCHI IDENTITIES 

Our notation will, in general, follow that of Einstein,4 
but with one simplification, affecting the notation for 
covariant derivatives. In this paper, we shall be con­
cerned almost entirely with covariant derivatives of 
tensors and tensor-densities of rank two, and in all these 
cases it will be only the "mixed, + -" covariant 
derivative which turns up. Hence, no confusion should 
result if we suppress the +,- subscripts. If Aik is a 
covariant tensor, ~ ik a contravariant tensor-density, 
we shall write 

the comma denoting partial differentiation. It will also 
be convenient to define Mik(A), the "Maxwellian" of 
the tensor AI'" by 

Mik(A) = tgikA a{3A a{3-ha{3(AiaAk~+A"iA{3k)' (2.1) 

Observe that Mik is a symmetric tensor with vanishing 
trace. 

Our variational principle is 

where 
ik ik 

~ik=y - g {(a+bR)gik+aR~ +i1R-}, (2.4) 

Wik=a(R~-!Rgik)+bR(R~-tRgik) 

-aMik(R~)-i1Mik(R_), (2.5) 

and Mik(R~), Mik(R_) denote the Maxwellians of Re, 
R'!!., respectively. The tensor W ik has been symmetrized, 
since ogik is symmetric. 

Noting the Palatini relation 

we find, after some manipulation, that the first term 
of (2.3) can be written 

~ikoRik=91/,ikorikl'+ (~al'or al-~a{3or a{3/') ,/" (2.6) 

where 

(2.7) 

The term in parentheses on the right of (2.6) is a di­
vergence, whose integral will vanish if or ikl'= 0 on the 
boundary. Thus, (2.2), (2.3), and (2.6) lead to the field 
equations 

(2.8) 

(2.9) 

The customary way of obtaining the Bianchi identities 
is to make use of the invariance of the action integral 
with respect to infinitesimal coordinate transformations. 
We shall find it slightly more convenient to consider 
the invariance of 

Under the infinitesimal transformation 

XiI =Xi+E~i(X), 

the "substantial variation" O~ik=0ikl(X)-0ik(X) IS 

given by 

of y-g Ld4x=O 
For the variation of I, we obtain, assuming ~i= 0 on 

(2.2) the boundary of integration, 

for arbitrary, independent variations ogik, or ikl' which 
vanish on the boundary of integration. From the ex­
pression (1.3) for L, it is readily verified that 

o(y-g L)=~ikORik+y-g WikOgik, (2.3) (2.11) 

• A. Einstein, The Meaning oj Relativity (Princeton University 
Press, Princeton, New Jersey, 1953), Appendix II, 4th ed. by (2.6). Let us now assume that one half of the field 
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equations, viz. (2.8), is satisfied. Then the first term on 
the right of (2.11) disappears, and the second term 
yields, using (2.10) and after integration by parts, 

0= f {- (6aPR ak),p- (6aPRkP).a 

+ (6aPRafJ) ,k- 6,kaPR"fJ} ~kd4x. (2.12) 

It can be verified from (2.7) that 

so that 

(2.13) 

is a consequence of (2.8). Using this result, we find, 
after some rearrangement, that (2.12) leads to 

(2.14) 

These are the Bianchi identities of our theory modulo 
the field equations (2.8). The square brackets indicate 
the cyclic divergence 

F[~,ll=F~,!+F~k+F!:.!,i' 

Note that (2.13) can be written in the equivalent 
form 

(2.15) 

which we shall later identify with one half of Maxwell's 
equations (Sec. 4). 

3. DISCUSSION OF THE FIELD EQUATIONS 

The field equations (2.8) may be formally simplified, 
following Schrodinger, by the introduction of a new 
affine connection *r d', defined by 

we then have 
(3.1) 

(3.2) 

6;I'*ik= 6;l'ik-6 ikr l'+i6 iO'.r 0'.0/, (3.3) 

where ;'" * indicates covariant differentiation with 
respect to *Lkl'. With the aid of (3.2), (3.3) and (2.7), 
it is easy to show that 

ml',k_!mO'. iO'.0l'k=6;I'.ik. 

Therefore the equations 

6;I'.ik=0, *ri=O (3.4) 

are equivalent to (2.8). We shall make use of this 
equivalence in the following sections. 

Turning now to Eqs. (2.9), we shall consider two 
cases, corresponding to a~O and a=O. 

Case I: a~O. From (2.5) we obtain gikW'k= -aR. 
Hence (2.9) yields 

R=O (a~O). (3.5) 

There is no loss of generality in taking a= 1. Equation 
(2.9) now simplifies to 

R'k=aMik(R~)+(3Mik(R_). (3.6) 

If we regard Re as proportional to the electromagnetic 
field, then the first term on the right-hand side repre­
sents the electromagnetic energy tensor.5 At first sight, 
it is disconcerting to find also the Maxwellian of a 
symmetric tensor on the right-hand side. However, as 
we shall now see, there is always one solution of (3.6) 
for which this additional term vanishes identically. 

According to a remarkable algebraic theorem due to 
Rainich,6 a set of necessary and sufficient conditions that 
a symmetric tensor Tik be expressible as the M axwellion 
of an anti-symmetric tensor is 

gafJTafJ=O, Mik(T)=O. 

It follows that all solutions of the equation 

Rik=aMik(R~) 

satisfy (3.6). The condition 

Mik(R_)=O 

(3.7) 

(3.8) 

which makes (3.6) deducible from (3.8), is satisfied 
as a consequence of (3.5) and (3.8). 

Equations (3.6) may be thought of as a set of ten 
quadratic equations for the ten quantities R~: There 
are twenty solutions for R~ one of which is (3.8). Of 
the remaining solutions, some may be complex, and 
others will lead to physically unacceptable results, such 
as negative energy densities, improper behavior at 
spatial infinity, etc. Pending a detailed examination of 
the additional solutions, it appears best to exclude them 
from the present considerations by setting (3=0 in the 
field equations. 

Collecting our results, we have, as our field equations 
for the case a~O, (3=0: 

6;I'.ik=0, *r,=o, (3.9) 

ik 
~,k~=O, (3.10) I 

R!l:=aMik(R~), (3.11) 

R=O. (3.12) 
Here, 

ik 
6ik =yI_g (gik+aR~), (3.13) 

and *rikl' is defined by (3.1). 
Case II: a=O. In this case we can no longer deduce 

R=O from (2.9). In fact the field equations leave R 

6 In order that the interaction between gravitation and electro­
magnetism should have the correct sign, it is necessary that the 
constant a in (3.8) be negative. 

S G. Y. Rainich: Trans. Am. Math. Soc. 27, 106 (1925). See 
also C. Misner and J. A. Wheeler: Ann. Phys. 2, 525 (1957). 



                                                                                                                                    

NEW POSSIBILITIES FOR A UNIFIED FIELD THEORY 781 

completely undetermined. By inspection of (2.4), (2.S) 
it is seen immediately that if a=O, the field equations 
(2.8), (2.9) are invariant under the transformation 

implying 

with JI. an arbitrary function. Hence the field equations 
fix only the combination Rgik, not Rand gik separately. 

The equations (2.9) may be written 

Let 

Then 

and 

All solutions of 

(3.1S) 

(3.16) 

(3.17) 

(3.18) 

are solutions of (3.14). For from (3.16) and (3.18), we 
have, according to Rainich's theorem, 

Using (3.17), we then find that (3.14) is a consequence 
of (3.18). This proves our statement. 

As before, (3.14) admits other solutions besides 
(3.18), which we can exclude by setting (3=0. Doing 
this, we obtain as our field equations for a=O, 

ik 
~,k~=O, 

bR(R!!:-lRgik) =aMik(R~), 

(3.19) 

(3.20) 

(3.21) 
II 

This system of equations has to be supplemented by 
an additional equation determining R. The simplest 
condition to impose is that R is a (nonvanishing) 
constant, and we may as well write, with no further 
loss of generality, 

bR=1. 

Then (3.21) and (3.22) may be written 

R!!:- (1/4b)gik=aMik(R~) 

(3.23) 

(3.21a) 

4. APPROXIMATE SOLUTIONS FOR WEAK FIELDS 
AND PHYSICAL INTERPRETATION 

OF THE THEORY 

It is convenient to define tSik as the covariant tensor 
"inverse" to the contravariant tensor density ~i\ so 
that we have the relations 

tSi",~k"'= Dik( -det~"')', det tSik= det~ik. (4.1) 

The equations ~;".ik=O are then equivalent to tSik;,,*=O. 
Let us consider the field equations I [Eqs. (3.9) to 

(3.12)]' We shall examine the linearized form of these 
equations for weak gravitational and electromagnetic 
fields. Specifically, we shall assume 

where 'Y/ik is the Minkowski tensor: 

'Y/1l='Y/22='Y/ss=-1, 'Y/44=1, 'Y/ik=O (i~k), 

(4.2) 

and the 'Yik are small quantities whose squares and 
products will be neglected. 

By (4.1), we then obtain 

Equation (3.13) yields 

or 
aR~='YPJ. (4.3) 

to the first order in "1",(3' Also, 

gik='Y/ik+'Y!!:. (4.4) 

Equations I are, in the present approximation, 

ik 
'Y.k~=O, 

Rik=O. 

From (4.5), which reads in expanded form 

(4.5) 

(4.6) 

(4.7) 

we obtain by the usual cyclic permutation and addition, 

Hence by virtue of (3.1), 

The vector rk is assumed to be of the same order as 'Yik. 
Computing the Ricci tensor from the linearized formula 

(3.22a) we find 

These differ from the corresponding equations I only 
by the presence of the "cosmological term" (1/4b)gik. 

Rik= Hrk.i-r i,k)+ha(3('Yki,Q(3+'Ya(3,ik 
-"I ai,(3k-'Y(3k,ia)' (4.8) 



                                                                                                                                    

782 W. ISRAEL AND R. TROLLOPE 

We are still at liberty to impose four coordinate con­
ditions which will not affect the quasi-Minkowskian 
character of our coordinates. Let us choose these (as in 
general relativity) to be 

l1"f3(-Yai,f3-hafJ,i) =0. 

From (4.9) we obtain by differentiation, 

11 af3 (Y "i,fJk+'Yak,ifJ-'YafJ,ik) = O. 

(4.9) 

This enables us to simplify (4.8) down to 

Rik=Hfk,i-fi,k)+tD'Yki, D=l1af3BaBfJ. (4.10) 

The Eqs. (4.7) now lead to 

O'Y~=O 

which are the linearized field equations of gravitation, 
if we interpret ts~ (or perhaps gik) as the metric tensor. 
(In the following section it will be shown that the choice 
of ts~ for the metric tensor leads to the correct equations 
of motion.) 

If Rik is assumed proportional to the electromagnetic 
field, then (4.6) [or, in its rigorous form (2.15)J is most 
naturally interpreted as the first Maxwell tetrad (the 
one which asserts the vanishing of the magnetic current). 

Further, we have from (4.3) and (4.10), 

This equation shows that f i, is, in a very rough sense, 
the vector potential of electromagnetism. Taking the 
cyclic divergence, we get 

1 
O'Y [~,l] = - --'Y [~,IJ' 

a 
(4.11) 

This is compatible with, although not equivalent to, 
the second tetrad of Maxwell's theory. 7 

Define (rigorously) 

so that Ji" is proportional to the 4-current. The equation 
of conservation of charge is then (rigorously) satisfied: 

VI'Ji"=O. 

Here, V" indicates the covariant derivative with respect 
to the Christoffel symbols of ts~. 

We have already pointed out that the constant a 
must be negative.5 Accordingly, (4.11) may be written 

(4.12) 

7 Equations similar in structure to (4.11) appear in many 
theories based on modifications of Einstein's unified field theory. 
See for instance, E. Schrodinger, S pace-Time Structure (Cambridge 
University Press, New York, 1950); B. Kursun0!l:lu, Phys. Rev. 
88, 1369 (1952); W. B. Bonnor, Proc. Roy. Soc. (London) A226, 
366 (1954). 

where A= v' -a is a fundamental length, which we shall 
assume to be of subatomic order. For a static spherically 
symmetric charge distribution with J4= per), (4.12) 
reduces to 

with the solution 

p=Ae-r/x/r. (4.13) 

This form of solution is of course only valid for weak 
fields (i.e., large 1'). In particular, the singularity which 
(4.13) displays for 1'=0 may be illusory. According to 
(4.13), the charge density falls off very rapidly with 
distance. We have in effect, a particle with a radius of 
order A. In general, at distances from "sources" large 
compared with A, the 4-current vanishes to a high 
approximation, i.e., the second Maxwell tetrad 

'Y[~,l] =0 

is satisfied. 
So far, we have considered only the field equations I 

which constitute a particular case a:;z!"O, {l=0 of our 
general field equations (2.8), (2.9). If a=O, we obtain 
in place of I, the "cosmological" field equations II. In 
this case, the general character of our solutions may be 
expected to be the same as before, but silhouetted now 
against the background of a de Sitter universe, instead 
of flat space-time. 

5. THE EQUATIONS OF MOTION 

Our discussion up to this point already indicates 
with fair certainty that the present theory correctly 
describes the interaction between gravitation and elec­
tricity. Indeed, we found in the previous section that 
the linearized equations for R~ are in agreement with 
Maxwell's equations. And in the next higher approxi­
mation the quantity M".(R~), proportional to the elec­
tromagnetic stress tensor, appears on the right-hand 
side of the equations for R~. It seems plausible to 
infer that the predictions of the theory regarding the 
gravitational effects of weak electromagnetic fields will 
agree with the results of general relativity, and also that 
the present field equations will lead to the correct 
equations of motion for charged masses. 

We shall now examine this latter point more closely 
by giving a brief sketch, following Infeld and Callaway,8 
of how the equations of motion can be derived by the 
EIH method. Our discussion will be restricted to the 
field equations I. 

We assume that the field is "quasi-static," i.e., that 
the derivatives of the field quantities with respect to X4 

are of order ~ times the space derivatives, where ~ is 
small. The tensor tSafJ is then expanded in powers of ~ 

8 L. Infeld, Acta Phys. Polon. 10, 284 (1950); J. Callaway, 
Phys. Rev. 92, 1567 (1953). 



                                                                                                                                    

NEW POSSIBILITIES FOR A UNIFIED FIELD THEORY 783 

as follows: 

tS44 = 1+ e2h44+e4h44+ .... 
2 4 

We assume that the field is "quasistatic" i.e., that 
the derivatives of the field quantities with respect to x4 

To the second and third order in e, it is found, as in 
Sec. 4, that haP satisfies Maxwell's equations at distances 
from the particles large compared with the subatomic 
length A: 

(5.1) 

Note also 
(5.3) 

A solution of (5.1) appropriate for N slowly moving 
point charges is 

(5.4) 

where 
N 

cp= L: cp(i), cp(k) = e(k)/r(k), 
i=l 

and r(k) is the distance from the kth charge to the 
field point. The third-order field equations are satisfied 
if we write 

N 

h4k = -e4krs{ L: CP(i)~r(i)} .• , 
3~ i=1 

where ~m(i), the coordinates of the ith particle, are 
slowly varying functions of time, and the dot indicates 
the time-derivative. 

Let PI'" be the Ricci tensor formed from the 
Christoffel symbols of ts~, which we shall identify with 
the metric tensor. Write 

PI'V= PI'V-!'I)l'v'l)aPPap, 

Rl'v = Rl'v- !'I)l'v'l)aP RaP, 

Al'v=Rl'v-I'P" 

To the second and third orders, Rl'v coincides with 
PI'V' i.e., Al'v=Al'v=O. Hence the field equations 

2 3 

can be solved exactly as in the theory of gravitational 
motion.9 We need not enter into details here. 

9 A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949). 

Consider now the fourth-order field equations 

which may be put into the form 

(5.5) 

with 

Since hik is given by (5.4), it is clear that Tik is propor-
2~ 4 

tional to the electromagnetic stress tensor for purely 
Coulomb forces. 

The quantities Aik can be expressed in terms of haP, 
4 2 

hafj by solving the equations 
3 

(5.6) 

for the affinity to the fourth order, from which Rik and 
4-

hence Aik can be computed. Now, the relations (5.6) 
4 

are the same as those which hold in Einstein's theory. 
Hence, noting (6.8) below, we may take over the 
results of Infeld and Callaway,8 who found that 

We now integrate equations (5.5) over a closed 
surface surrounding (only) the lth particle: 

The integral of each of the three terms in (5.7) is 
independent of the size and shape of the surface, since 
to the fourth order, 

The integral of Pik yields, as is well known9 a term 
4 

proportional to the inertial resistance -m(lH(l) of the 
lth particle, plus the gravitational force acting on it. 
The integral of A ik may be shown to vanish.8 Hence the 

4 

last term of (5.7) must account for the contribution of 
the electrical forces; and, indeed, it is clear from the 
physical meaning of the Maxwell stress tensor, that 
the integral of Tik will yield the Coulomb force acting 

4 

on the lth particle. The influence of the magnetic field 
does not appear in this approximation, since we have 
assumed the particles to be moving slowly. 
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6. STATIC SPHERICALLY SYMMETRIC SOLUTIONS 

It can be shown10 that the most general spherically 
symmetric, static tensor field tSik is expressible in terms 
of polar coordinates in the form 

,-el' ° ° ~1, tSik= : ° -r2 r2v sinO (6.1) 

° -r2v sinO -r2 sin20 , 
L-w ° ° eV

) 

where fJ., v, v, and ware functions of r only. 
Our object is to obtain solutions to field equations I 

and II for the special case v=O, W7"'O. The more inter­
esting case of w=O, v 7"'0 leads to serious mathematical 
difficulties, (d. the treatment by Wymanll of the cor­
responding case in Einstein's theory). In view of the 
arguments of Sec. 4 it would seem that the solution 
considered here corresponds to the field of a magnetic 
pole rather than that of an electric charge. 

We first consider solutions to the set of field equations 
I. With v=O in (6.1) we use Eqs. (4.1) to obtain l3 ik • 

S~bstitution of l3 ik in (3.13) enables us to find V-g, 
g'k, and R. f!; The results are: 

[ 

-r2 -r2 sin?O ] 
gik=diag -el'(l-A)', , ev(l-A)! 

(i-A)! (1-A)!' , 

14 41 
13~ = -13~ = - [AI (1- A) J!r2 sinO, 

w 
R~=-R~=-(1-A)t, 

a 

where 

The remaining 13~ and Rik are identically zero. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

Considering (3.10), we ~note that it is satisfied iden-
tically except for the case i=4, which yields 

a 
-{[AI(1-A)J'r2 sinO} =0. (6.6) 
ar 

Integration of (6.6) leads to 

(6.7) 

where the length 1 is a constant of integration. If we 
denote by * Rik the Ricci tensor formed from the *r ikl', 
then it follows from (3.1) that 

2(ar; ark) 
*Rik=Rik+- --- , 

3 aXk aXi 
Hence (3.11) may be replaced by 

*Rg;=aMik(R~). 

(6.8) 

(6.9) 

Using (6.2) and (6.3) we find that (6.9) reduces to the 

10 A. Papapetrou, Proc. Roy. Irish Acad. A52, 69 (1948) 
11 M. Wyman, Can. J. Math. 2,427 (1950). For the gener~l case, 

see W. B. Bonnor, Proc. Roy. Soc. (London) A210, 427 (1952). 

following set of equations: 

*Rg;=O, i7"'k, 

*Rll+tag44 (Ry)2 = 0, 

* R 22 - tag22g11g44(R~)2= 0, 

* R 33 - tag33g11g44(Ry)2= 0, 

*R44+tagll (Ry)2=0. 

(6.10) 

In order to deal with (6.10) we need expressions for the 
*r ikl' which can be obtained by solving the algebraic 
equations (3.9) for the 64 *rikl', from which *Rik may 
be computed. PapapetroulO has solved a set of equations 
of the type (3.9), with a fundamental tensor of the form 
(6.1), and has computed a Ricci tensor which is identical 
with our * Rik. He has shown that the nonvanishing 
components of * Rik are the following: 

1! ' A' 
* Rll = -v" +-(v' - fJ.') - ~+ 2 (-) 

2 4 r r 

+ 2A(v'_~fJ.'+ 2A), 
r 2 r 

*R33 
* R 22=--= tre-I'(! - fJ.') +e-l'-l + 2Ae-1' 

sin20 ' 
v' eV--1' 

*R,,= -Hv'ev-I')'+--(v'-fJ.'-4Ir) 
4 

( A)' A ( 14 8A) 
- ~ev--I' +-;-el'-I' 3v'- 2fJ.'--;+--;- , 

It follows from (6.10) that 

(6.11) 

gll *Rll -g44 *R44 = ° (6.12) 

and when the explicit expressions for the gik and * Rik 
are substituted in (6.12) we obtain [noting (6.3)J 

(
V'+fJ.' 4A) --+- (l-A)=O. 

r r2 

But according to (6.7) 

so it follows that 

r4 
1-A=-->0 

r4+1' ' 

v'+fJ.' 4A 
--+-=0. 

r r2 

Since (6.13) may be written 

~[fJ.+V+lOg(~)]=O, 
dr r4+1' 

(6.13) 
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we conclude that 

(6.14) 

r being a constant of integration. 
It is reasonable to assume that for large r the tSik 

should approach the metric of flat space-time, which 
implies that we must have r2 = 1. Hence, using (6.5), 

(6.15) 

Returning now to Eqs. (6.10) we find, using (6.2), 
(6.4), and (6.15), that the explicit expression of the 
third equation is 

2 4A /4ei' 
v'-J./+-(1-el')+-= . 

r r ar(14+r4)t 
(6.16) 

Equation (6.13) enables us to eliminate 1" from (6.16) 
whereupon p. is determined by 

1 14 ei' 
p.'--(1-eP)+-. O. 

r 2ar (14+ r4)i 

Let e-i'= 1-2m(r)/r, then (6.17) becomes 

[4 

so that 

m'= -- (14+ r4)-t, 
4a 

( 6.17) 

(6.18) 

given by a somewhat complicated expression, whose 
asymptotic form for large r is 

r 4"'const±! (N a) (l/r). 

Our expression (6.20) for e-P will be everywhere 
nonsingular if the magnetic pole-strength and mass are 
related by 

However, eV still becomes infinite when r ~ O. It is 
not possible in the present theory to obtain a com­
pletely nonsingular metric tensor tSik representing a 
magnetic monopole. -

So much for the field equations L We tum now to 
the alternative field equations II, Eqs. (3.19) to (3.22). 
As the method of solution is much the same as before, 
it will be sufficient to record the main results. If tSik 

is assumed to be given by (6.1) with v=O, it is found 
that 

1 
gik=-diag[ -eP(1-A)! -r2/(1-A)! 

bR ' , 
-r2 sin20j (1-A)\ eV(1- A)!], 

2mo e2 foo d~ 1 fr 
e-i'= 1--+- - (14+~4)!d~, 

r r r (~4+14)l 4br 0 

w=±l2/r2
• 

(6.19) A is given by (6.7) and e by (6.21). The asymptotic 
form of this solution is 

wheremoisaconstant of integration. Hence the equation 

(6.20) 

together with (6.15), determines all the components of 
tS ik . In (6.20), we have defined the constant e by 

(6.21) 

recalling that a is negative.5 It may be verified that 
the full set of Eqs. (6.10) is satisfied by our solution. 

The asymptotic form of (6.15), (6.20) for large r 
(r»l) , 

is in agreement with the general relativistic line-element 
for the field of a particle with mass proportional to mo 
and (magnetic) charge proportional to e. 

Equations (6.4), (6.8), and the last of (6.11) give a 
partial determination of the vector r i. (This vector is 
of course arbitrary to a certain extent because of the 
A invariance of our theory.) It is found that r 1 is 
arbitrary, r 2=ra=0 (spherical symmetry), and r 4 is 

2mo e2 1 
eV = e-P= 1--+-----1'2, (r»l) 

r r2 12b 

and represents, according to general relativity, the field 
of a magnetic particle in a de Sitter universe. 

7. SOLUTIONS FOR FLAT SPACE-TIME 

The existence of non-trivial solutions of Einstein's 
unified field equations for "flat" space-time (R.i;kh= 0) 
has already been alluded to as being a defect of the 
Einstein theory (Sec. 1). In the case of the field equa­
tions I of the present theory, it will now be shown that 
the assumption 

(7.1) 

necessarily implies that the electromagnetic field Rik 

vanishes (this is obvious) and that the line-element ~ 
reducible to the Minkowskian form. 

If (7.1) holds, the field equations I simplify to 



                                                                                                                                    

786 W. ISRAEL AND R. TROLLOPE 

From (7.3) and (4.1) it follows that tSik=gik, a sym­
metric tensor. Then (7.2) may be solved in the con­
ventional way for the *rikl', which turn out to be the 

Christoffel symbols {~k} of gik. Hence, by (3.1) we have 

r ikl'= {~k} - fOil'rk. (7.4) 

Substituting (7.4) into (7.1), we find 

Rijkh= Pijkh+fo8r i.k- rk,j), =0, (7.5) 

where P .ijkh is the curvature tensor formed from {~k}' 
Contracting with respect to h,i and observing that 
p.ajka=O, we obtain from (7.5), 

so that 
(7.6) 

(7.7) 

Equation (7.7) expresses the flatness of the Riemannian 
space having the metric tensor gik. Consequently, gik 
can be reduced to Minkowskian form. According to 
(7.6), rk is equal to an arbitrary gradient: this is merely 
a reflection of the A invariance of the theory. 

The question of flatness does not arise in connection 
with our second set of field equations II, since here the 
existence of a nonvanishing curvature invariant R is 
presupposed. 

8. CONCLUDING REMARKS 

As Einstein12 has pointed out, there are two distinct 
points of view from which a field theory may be 
regarded as "unified." 

(1) The field quantities should appear as unified, 
covariant entities which are irreducible under the 
invariance group of the theory. (For instance, the 
electric and magnetic fields experience a unification in 
this sense under the Lorentz group of special relativity.) 

(2) The Lagrangian of the theory should not be 
expressible as the sum of several invariant parts, but 
should be a formally unified entity. 

Einstein's theory, whose field equations are derived 
from the variational principle 

(8.1) 

and which operates with nonsymmetric gik, r ikl' appears 
to be satisfactorily unified from the second point of 
view, but fails to satisfy (1), since the gik are not 
irreducible. 

Precisely the reverse appears true of the theory de­
veloped in this paper. Our field quantities are irreducible 
under the "extended group," comprising the group of co­
<>rdinate transformation and the A transformations (1.1) 
but our Lagrangian (1.3) is not unified according to 

12 A. Einstein, Ann. Math. Princeton 46,578 (1945). 

criterion (2). However, the latter is a somewhat loose 
requirement which can be met by a variety of formal 
devices. Let us write g, R for the matrices gaP, RaP, and 
regard their matrix product as expressed dimension­
lessly in terms of some suitable microscopic standard 
of length (e.g., the length A of Sec. 4). Then we may, for 
instance, consider the action principle 

L=Trl(gR), (8.2) 

where 1 is an arbitrary analytic function such that 
1(0) = O. Expanding 1 in powers of the matrix gR, we 
obtain 

L= I' (O)gl'vRl'v+!f" (O)Rl'vRvl'+ . . " (8.3) 

which agrees with (1.3) up to the quadratic terms, if 
b=O, {3= -0:. From this point of view, the present 
paper may be regarded as a preliminary exploration of 
the consequences of (8.2) in the case of weak fields, for 
which the higher terms in (8.3) can presumably be 
neglected. 

More generally, a Lagrangian of the form 

L=Trl(gR, gRT) 

might be considered, where RT denotes the transposed 
matrix. This Lagrangian is A invariant, transposition 
symmetric, formally unified, and reduces to (1.3) 
(with b=O) in the quadratic approximation. The diffi­
culty is to find some way of discriminating among the 
innumerable possibilities which present themselves once 
Einstein's simple choice L= Tr (gR) is abandoned as 
inadequate. 

We remark finally that an approach to the problem 
of unification resembling ours in one or two respects 
has been given in a series of profound studies by 
Lanczos.13 Postulating a Lagrangian which is homo­
geneous quadratic in the curvature, Lanczos is led to 
field equations of cosmological type, the "cosmological 
constant" being now interpreted as a microscopic 
constant. Lanczos' treatment differs basically from ours 
in not straying outside the framework of Riemannian 
geometry, and in not making use of the Palatini method 
of variation.14 
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An invariant formulation in Minkowski space-time of an approximation to the Einstein theory of 
gravitation is given. In this formulation a tensor is introduced which may be interpreted as the approximate 
stress energy tensor of the gravitational field. Conservation laws involving this tensor and the material stress 
energy tensor are formulated. The behavior of these tensors under "gauge transformations" of the weak 
gravitational fields is discussed. The classical limit of the conservation of energy equation is studied and 
the results are compared to some observations of Bondi on a possible analog of the Poynting vector for 
a gravitational field. 

1. INTRODUCTION 

I T is the main purpose of this paper to formulate 
and discuss conservation laws in invariant form in 

Minkowski space-time for an approximate version of 
the Einstein theory of gravitation. These laws will 
involve the approximate energy and momentum of the 
material and gravitational fields. The discussion will 
be mainly concerned with a first approximation to the 
Einstein theory but may be extended to higher approxi­
mations. We shall relate the results obtained to some 
observations of Bondi! concerning an analog to the 
Poynting vector for classical time-dependent gravita­
tional fields. 

The Minkowski space-time will be used as the 
underlying space in which the discussion will take 
place. In principle, any fixed Riemannian space-time 
may be used. There are, however, two reasons for 
choosing the Minkowski one: (a) with this choice the 
Newtonian approximation is readily obtained from the 
first approximation given below by neglecting terms 
of the order of 1/ c2 and (b) the underlying space-time 
admits a ten parameter group of motions, the in­
homogeneous Lorentz group. Use is made of the latter 
fact in formulating conserved quantities. 

The approximate theory mentioned above is obtained 
by considering the metric tensor gpv of space-time as 
defined over the Minkowski space as a convergent 
power series expansion in 

(Ll) 

where G is Newton's constant of gravitation and c is 
the velocity of light of the special theory of relativity. 

We assume that 

where 'f/pv is the metric tensor of the Minkowski space­
time. The coordinate system in which Eq. (1.2) holds 
may be an arbitrary one. The equations satisfied by 
the gpv, that is hpv, h(2)pv' .. will be derived from the 

* This work was supported in part by the National Science 
Foundation. 

1 H. Bondi, "Les proprietes physiques des ondes gravita­
tionelles," Colloque International Sur Les Theories Relativistes 
de la Gravitation, Royaumont, 21-27 June 1959 (to be published). 

Einstein field equations 

Gpv= -kc2Tpv, 
where 

(1.3) 

(1.4) 

Rp.v is the Ricci tensor and R the scalar curvature 
tensor formed from the gpv' The tensor Tpv is the 
stress energy tensor of the matter "creating" the 
gravitational field. 

Both the tensors Gpv and T pv may be considered as 
functions of k and written as 

Gpv = G(o)pv+kG(1)pv+tk2G(2)pv+ .. " (1.5) 

Tpv= T(o)pv+kT(!)pv+tk2T(2)p.v+···. (1.6) 

It is evident from Eq. (1.2) that 

(1.7) 

The following discussion will center about the 
discussion of the equations 

(1.8) 

which are consequences of Eqs. (1.3). In Eq. (1.8), 
the semicolon denotes the covariant derivative with 
respect to the metric tensor gpv. Because of the Bianchi 
identities, we have 

(1.9) 

If Eqs. (1.5) and (1.6) are substituted into Eqs. (1.3), 
and the resulting equations are regarded as identities 
in k, we obtain 

(LlO) 

These equations may be regarded as differential 
equations for the determination of the h(n)pv in terms 
of h(m)pv and T(m)pv(m= 1,2,.· ·n-l). The T(m)p.v must 
be such that 

(1.11) 

where T pv is given by Eq. (1.6), and the gVP are functions 
of k which satisfy 

dg Pp dgUT __ = _ gPU __ gTp. 
dk dk 

(Ll2) 

787 
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We also require that 

(T (O)!'.TJ"p) ,p= 0, (1.13) 

where the comma denotes the covariant derivative 
with respect to the tensor TJ!' •. 

Equations (1.12) and (1.13) are equations for the 
determination of the T (n)!'. in terms of h(r)!'v and T (8)"V 

with r=l, 2, "'n and s=O, 2, " ·n-l. 

2. CALCULATION OF G([)," 

We begin our discussion by considering the expansion 
of the Christoffel symbols as power series in k. Thus, 

(2.1) 

where we have used the notation 

Hence, 

and 

{ 
cr } { cr } R(l)"v=- + . 

Jl.V (1),u Jl.cr (1)" 

(2.10) 

On substituting from Eqs. (2.6) and (2.7) into Eq. 
(2.10), we obtain 

R(l)"v= - !TJpu(hpv,,,+hp,,,.- h,.v,p-TJp.h.!,) ,u. (2.11) 

Since R(o)"v= 0, we have 

R(l) = TJ'''R (1) !'.= -TJPu(hpa,/lTJafJ- h,p) ,u' (2,12) 

Thus we may write 

C(I)!,v=R(I)!,v-1TJ".R(l) 

= -hup(kp.,!,+k!,p,.- k".,p-TJ!,.kpa,fJrJ"fl)" 

= - !TJPu(k p.,!,- k!,.,p-TJ!,.kpa,fJTJafJ+TJp.k!'a,/lTJafJ ) ,u, 

We may write 
(2,2) (2.13) 

{ JI.} {JI.} { JI. } k
2

{ JI. } - +k +- + ... 
vcr - vcr (0) vcr (1) 2! vcr (2) , 

where 

(2.3) 

Thus 

(2.4) 

the Christoffel symbol calculated from the TJ's. In a 
Galilean coordinate system, 

{ 
JI. } =0 
vcr (0) 

(2.5) 

It may be verified that 

(2.6) 

where, as above the comma denotes, the covariant 
derivative with respect to the tensor 1/"v. It follows 
from Eq, (2,6) that 

(2.7) 

where 
(2.8) 

The Ricci tensor is defined by the equation 

where 
(2.14) 

Because the Minkowski space is a flat space it 
follows that 

(2.15) 

and the order of covariant differentiation is immaterial 
that is, 

f· .. ,«fJ= t··· ,fJa' 

It may be verified by using Eqs, (2.14) and (2.15) that 

(2.16) 

3. CALCULATION OF G(2)"' 

In this section we shall evaluate the above tensor 
in terms of h!'., h(2)". and their first and second deriva­
tives, We shall show that it may be written as a sum 
of two tensors. One of these contains the second 
derivatives of h". and h(2)". and has a vanishing 
divergence. The other is a function of the h!'., its first 
derivatives, and C(l)"., 

It follows from Eqs, (2,1) that 

(3.1) 

where 

and A .up is defined by Eqs. (2.6). 
By differentiating Eq. (2.9) twice with respect to k 

and setting k = 0 we obtain 

{ 
P } { P } R(2)UT= - + 

crT (2),p crp (2),r 
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Since 

it follows that 

G(2/'= (T/p."T/VT-tT/p.'T/"')R(2)", 
- 2 (h""T/VT+h"T/"" - th"'T/'" -th"'T/p.')R(l)",. (3.4) 

In view of Eqs. (2.10) and (3.3), we may write the 
above equation as 

G(2)"'=[(T/p."T/VT_tT/"'T/"')(- J O:} +1 P} B,,,) 
1 UT (2) up (2) 

+ 2 (h""T/VT +hVT'7"" - thp.,'7'" - th"''7''') 

X (A","- A "pPB,") ] +2 ('7""'7 VT -t'l"''7''') 
.<> 

It may be verified that 

(3.5) 

where 

In view of the field equations, that is Eqs. (LlO) and 
Eq. (2.16), this equation may be written as 

(3.12) 

Equation (3.11) holds for arbitrary hI" and h(2)p." that 
is, it is an identity in these quantities. 

Equations (3.12) are the approximate equations of 
motion of the matter represented by the tensor T'" 
[d. Eq. (1.6)J, correct to terms involving k2 • They 
are written in invariant form in the Minkowski space. 
H hI" is interpreted as a tensor in this space 
(approximately) representing the gravitational field 
created by the matter, then we may regard the last 
term in Eqs. (3.12) as the "stress-energy" tensor of 
the gravitational field. 

In a later section, we shall evaluate the right-hand 
side of Eqs. (3.9) for a particular choice of the tensor 
T (0)1'" that is, for a particular choice of h",. We first 
make some remarks concerning some consequences of 
these equations. 

4. CONSERVATION EQUATIONS 

We may write Eqs. (3.12) as 

(Mp.'+EI"),,,=O, (4.1) 
(3.6) where 

and 

H"'= [('t)""T/VT -t'l"''7''') (- B","+B,"B"pp) 
+ (ll'<>-tl'7l'<» ,,'7"+ (l',,-tz'7'<» ,,'7'" 
- (l"'-tl't)"') ,,'7'''-T/p., (l'" -tlT/"') ,T+ h,r'<>hTp. 
-h"'h "'+h I'<>h"-h "'h"TJ -h p.Th '''' or ,'1 .T ,a ,a .r 

+h,o.l'<>h,r'T -[h(hP"'l"'+h"'T/p,,- h"''t)''p-T/'''hp,,) ].p" 
+ [hh,p(T/p"'t)"'-'t)p.'T/P")J.", (3.7) 

with 

2c2k-1E"'= 2 ('7""'7 VT -tT/"'T/ tTT
) (A ,,),P A PT'- A "T P AT") 

- 2 (hp.,,'7 VT + hVT'7p." - thp.''7''T - th"T't)"') ,,, 

X (A","- A ,,/BT") 

(3.8) 

+ [h(kpp.T/"'+k'''T/pp.- kp.''t)''p-T/p.'kpa) ,p]." 
+h,,,p.Th,T<>'-h,,,l'<>h/T, (3.9) 

where, as before, 

Equation (3.9) may be shown to be equivalent to 

2c2k-1EI."= - kT,p"k,,,TP'7"'- kT,;k,,,TP't)""+ kp,Tp.k,,'PT/T' 
+ k ,/'k"p.,- k,p"pk""+tk,,,,pk TP ,''t)''p.'7'' 
-th,ph,,,'t)P""l"'-2hG(1) 1" 

+ 1.,p.'[k k ",.,p,,-1k k "".,p' 2', all,T ,p " 2 a(f,T .p " 

+th,ph,,,T/P"]. (3.10) 

(4.2) 

Multiplying Eq. (4.1) by an arbitrary vector field of 
Minkowski space-time A, and summing, we obtain 

(A,(Mp.,+ Ep.,)) ,,,-t (M"'+ EI") (Ap."+A,,,,) = 0, 

since both M'" and E'" are symmetric. 
When A" is a Killing vector of Minkowski space-time, 

that is when 
A""+A,,,,=O, 

we obtain the conservation equation 

(4.3) 

(4.4) 

As is well known, the general solution of Eqs. (4.3) is 
given by 

(4.5) 

in a Galilean coordinate system in Minkowski space­
time where 

and are independent of xP and the all. are constants. 
There are thus ten linearly independent A" and associ­
ated with each of these there is a conservation theorem 
of the form of Eq. (4.4). 

The four-vectors which in a galilean coordinate 
system have the coordinate 

(4.6) 
It follows from Eqs. (3.5) and (3.6) that 

will be said to be associated with the conservation of 
(3.11) energy and momentum. 
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Equation (4.4) implies that 

(4.7) 

where the integral is taken over a closed three­
dimensional hypersurface in Minkowski space-time 
and 

axV axU ax' 
n~d3v= (-'t/)!e~VUT- - -dudvdw, (4.8) 

au av aw 

if u, v, and ware variables giving a parameterization of 
the hypersurface. 

For use in later sections, we derive an equation based 
on the Bianchi identity 

If this equation is differentiated twice with respect to 
k and k is set equal to zero, we obtain 

G(2).v~v= -2G(l)P~{ V} -2G(l)vP! J.I.} , 
pv (1) 1 vp (1) 

that is, 

is not the tensor transform in the Minkowski space­
time of h(n)~v. In this case, Eqs. (5.2), which may be 
written as 

(5.4) 

may be interpreted either as a transformation of 
coordinates for fixed k or as a congruence of curves for 
variable k. 

It is sufficient to discuss the case where Eqs. (5.4) 
are such that 

That is, 
(5.5) 

(5.6) 

For a general transformation of the form of (5.4) is 
obtained from (5.6) by following it by a transformation 
independent of k. Let us write 

(dny~/ dknh~o= a(n)/Jo (5.7) 
and set 

(5.8) 

The functions a~ are the components of a contra­
variant vector field, the vector field tangent to the 
congruence of curves (5.4) at the point x". In fact, 
under the transformation of coordinates 

x'u=gu(x), 

G(2)/,v= G(1) vphvp ,,,- h,vG(1)/Jov- 2G(1) vphv/Jo,p' with the definition 

In view of Eqs. (LlO), (2.16), and (4.2), this we have 
equation may be written as 

5. GAUGE INVARIANCE 

In this section we shall discuss the effects of a 
transformation of coordinates in the Reimannian 
space-time on the tensors h"v and h(2)/JoV in the 
Minkowski space-time. We recall that, III any co­
ordinate system, 

However, the functions a(2)"(x) do not have a vector 
transformation law. Indeed we have 

(5.1) Note that the quantity 

Under the transformation of coordinates in the 
Reimannian space-time defined by the equations 

y~=y/Jo(x), 

the tensor g/JoV transforms as 

(5.2) 

(5.3) 

It then follows that, if the functions y" are independent 
of k, the quantities h(n)/Jov transform as tensors in the 
Minkowski space-time under the transformation given 
by Eqs. (5.2) where these are now interpreted as a 
transformation of coordinates in the Minkowski 
space-time. 

If the functions y" depend on k, it follows from Eqs. 
(5.2) and (5.3) that 

h(n)/Jo.*= (dng/Jov*/dkn)k~O 

(5.9) 

does obey the transformation law of a vector. 
It follows from Eqs. (5.3) and the definition (5.1) 

that under the transformation (5.4) subject to Eq. (5.5) 

hp.v*= h/Jov-ap.,v-av,,,, 

h(2)"v *= h(2)"v-bp.,v-bv,/Jo- 2't/u,a,p.ua,v' 
- 2 (h/Jov,p *ap+hp./a,vu+hvu*a,p.u) 

= h(2)/Jov- 2 (h/Jov,paP+h/Joua/+hvua,p.u) 

(5.10) 

- (bp.- 2a/Jo,uau) ,v- (b v- 2av,uau) .1" (5.11) 

where the vector b/Jo is given by Eqs. (5.9) and we 
have made use of the fact that 't/UT is the metric tensor 
of a flat space. 
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In case 

h~v= h(2)~v=0, 

h~v*= - (a~,v+aV'I')' 

h(2)~v*= - (b~- 2a~,~a~) ,v- (bv- 2av,~au) ,~. 

(5.12) 

(5.13) 

That is, even when the Reimannian space-time is fiat 
but a non-Galilean coordinate system is used which 
arises from a Galilean one by a transformation of the 
type given by Eqs. (5.4), the quantities h~v and h(2)l'v 
need not vanish. However, they are of the form given 
by Eqs. (5.12) and (5.13). 

We shall call the transformation 

hl'v -'> hl'v*' 

h(2)l'v -'> h(2)1'v*' 

where the hp.v* and h(2)1'v* are given by Eqs. (5.10) and 
(5.11) a gauge transformation. It is the transformation 
induced on these tensors by the coordinate trans­
formation (5.4). When hp.v* and h(2)~v* are substituted 
into Eqs. (2.13) and (3.4), we will obtain quantities 
we shall denote as G(1/v* and G(2/v*. These are the 
coefficients of the first and second powers of k in the 
expansion of the tensor 

R*I'V-tg~'*R*=G*I'V, 

which may be obtained from the tensor Gl'v by using 
the fact that G*~v arises from G~v by means of the 
transformation (5.4) and the transformation law 

(5.14) 

It follows from this equation by setting k = 0, by 
differentiating with respect to k and setting k=O, and 
by differentiating twice with respect to k and setting 
k=O that 

and 

G(2) *I'V= G(2/' 

G (0) *~v = G (0) I'V = 0, 

G(l)*I"=G(l)I'V, 
(5.15) 

- 2[G(l) ,pl'vap-G(1)I'Ta"v-G(1) TVa,TI']. (5.16) 

These equations may also be derived by substituting 
hl'v* and h(2)".* into the equations defining G(1)*I'V and 
G(2) *I'V as functions of these quantities. Since Eqs. 
(3.10) hold identically in h~v and h(2)~v, we have 

G(2) ,T *UT= 2c2k-lE, , *UT= 2c2k-lE"UT 
+ 2G(l) ~Pa,Tp T + 2G(l)p'a,Tp ~ 

= 2 (c2k-lEUT +GUTa,/+GTpa,p u) ,T (5.17) 

as follows from Eqs. (5.16) and (2.16). 
It is a consequence of Eqs. (5.15), (5.16), and (LlO) 

that 

T(o)*l'v+kT(1) *1" 
= T(o)"v+kT(l)~v- k[T(o) ,pl'vaP- T(O)~Ta,Tv 

-T(o)TVa,,~]. (5.18) 

We now define the vector 

A~ *= A~-k(aPA~,p+Apa,~p), (5.19) 

where A~ is one of the Killing vectors of Minkowski 
space-time, that is, A~ satisfies Eqs. (4.3). It may be 
verified as a consequence of Eqs. (5.18) and (5.19) that 

A~*M*"v 
= AI'MJ.lV- k(ap(AI'T(o)~v) ,p-AI'T (O)l' pa,:), (5.20) 

where terms in k2 have been neglected, and MI'V and 
M*l'v are defined by means of Eqs. (4.2) and the 
corresponding equations for the starred quantities. 

If we multiply Eqs. (5.20) by (1- ka,~~) we then 
obtain to the same accuracy 

(1- ka/)AI' * M I'V* 
= AI'Ml'v- k[ (aPAI'T(o/') ,p-AI'T(o/Pa,:], 

and hence 

[(l-ka,~u)AI' *MI"*lv 
= (AI'MI'v) ,v- k[a'(AI'T(o)I'P) ,plv 
= (A~M~') ,v' (5.21) 

The first form of Eq. (5.21) holds for an arbitrary 
vector AJl. The second form of this equation follows 
from the first form by virtue of the fact that AI' is a 
Killing vector and T(o)Jlv has a vanishing divergence. 

It follows from Eq. (5.21), by integration over a 
region of Minkowski space-time bounded by a closed 
three-dimensional hypersurface, that 

It is of course a consequence of the first of Eqs. (5.17) 
that 

(5.23) 

The difference between the surface integral of EJl'* 
and that of EJlV is due to the fact that the hypersurface 
in Minkowski space-time into which the hypersurface 
defined by the equations 

xl'=xl'(u,v,w) 

transforms under the transformation defined by Eqs. 
(5.4) differs from the former one. Thus we see that, 
although the gravitational energy tensor EJlV is not 
gauge invariant, the conserved quantities computed 
from it are related by Eqs. (5.22) which take into 
account the fact that the gauge transformations arise 
from coordinate transformations in the Riemannian 
space-time. 
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6. BONDI'S RELATION 

In this section we shall compare Eq. (4.4) with 

Av=1/4v, 

where the 1/I'V are evaluated in a Galilean coordinate 
system, to a set of equations first derived by Bondil 

from classical arguements. We shall derive his relations 
by studying the classical limit of the Einstein field 
equations for weak fields for the case where T (o/v is 
the stress energy tensor of a perfect fluid. In forming 
the classical limit we shall neglect terms involving 1/ c2• 

The tensor Ep.v will also be evaluated for this special 
case in the classical limit. 

McVittie2 has given the hp.v associated via Eqs. (1.10) 
with such a T(o/'. In the notation used above, 
McVittie's results may be written as follows: 

In a Galilean coordinate system, let 

hl'v= -2\001'40,4+ (\O+2g(I')/c2hl'v, (6.1) 
then 

where 

and 

with 

hence 

It may be verified from Eqs. (2.13) that 

G(l)44 = C20iicp,ij+!f(4) .ijOii+ L. !f(l).ll, 
(I) 

G(1)4i= -C2cp,i4-!f(4),i4-!f(i),i4, 

G(l) ii= c2\O,44+!f (4),44 - c2.if; (i) ,pa1/PIT 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

+2!f(i).ii- c2(I: !fm,ll), 
I 

G(l)ii=C2(!f(i)+!f(i))';j i~j. 

The tensor T(o/'v may now be calculated from Eq. 
(1.10) where the above quantities are used for G(1l''". 
If in the resulting equations we neglect the terms in 
1/ c2, we obtain for the classical limit 

T (0)44= - oii \O,ij= p, 

T (0)4i= CP,i4= pUi, 

T(o)ii= - cp,44- 2!f(i) ,ii+!f(i) ,klOkl 

+ L: !f(I),II=pUl+P, 
(I) 

T(O)ii= - (!f(i)+!f(f),ij=pUiUj. 

(6.7) 

2 G. C. MeVittie, General Relativity and Cosmology (Chapman 
and Hall, Ltd., London, England, 1956), Sees. 6.1 and 6.2. 

The extreme right-hand sides of Eqs. (6.7) are obtained 
from the classical limit of the relativistic stress energy 
tensor of a fluid 

with 
1 

The quantities !f(i) are not arbitrary but must be 
chosen so that a set of equations called consistency 
equations by McVittie must be satisfied. These 
equations are determined from the requirement that 
the ten equations (5.7) determine the five quantities 
p, p, and Ui. When these are satisfied we find 

p= - cp,ijOii, 

pUi = + CP,i4, i, j= 1, 2, 3, (6.8) 

P= - CP,44+X, 

where X is determined by the integrable equations 

x. I = L. --- , 1= 1, 2, 3. 
3 (CP.4/CP,4i ) 

i=l cp,klOkl ,j 

(6.9) 

We next evaluate the right-hand side of Eq. (4.9) in 
the classical limit, that is, by substituting from Eq. 
(6.7) for T(o)I'V and from Eqs. (6.1) and (6.2) with the 
terms in 1/c2 omitted for hp.v and h. 

Equation (4.9) then becomes 

MOl ,1'1' = ik[ cp,aT (o/p( - 20p.40p4+1/l'p) 

-4cp,I'(T (0)011'- T (0)4p.O",4)J. (6.10) 

If we set a=4 in this equation we obtain, on neglecting 
terms in 1/ c2 inside the parentheses, 

M 4,1'1'= -ik\O,4T(0)44=ikcp,40iicp,ij' (6.11) 

The first of these equations may be written as 

M4,/'= -ik[(cpT (0)44),4- cpT(0),444J 

= -ike (cpT (0)44) ,4+ cpT (O)}iJ 

= -ike (cpT (0)44) ,4+ (\OT (0)4i) ,i- \O,iT (0)4'J, (6.12) 

since 
T(G).v4V = T(0),444+T(0)}i=0. 

The second of Eqs. (6.11) may be written as 

M 4,1'1'= ik[ (cp ,4CP,j- CP\O ,4j),;0;;- cp ,4iCP ,jOii 

+ (cp\O ,4j) ,iOiiJ 

= ik[ (\0 ,4CP ,j- cpcp ,4j) ,iOil" - cp ,iT (0)4i 

+ (cpT(0)4i),iJ, (6.13) 

where we have used Eqs. (6.7). Subtracting Eq. (6.13) 
from (6.12), we then obtain 

cp.iT (0)4i 

= H cp,4CP,j- cpcp ,4;) ,ioii+ (cpT (0)4i) ,i+H cpT (0)44) ,4. 
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The scalar cp is related to the Newtonian potential V 
by the equation 

V=47rGcp, 

as is evident from the first of Eqs. (6.7). Hence, the 
above equation may be written as 

pUiV.;8 ii= (87rG)-1(V.4V. i - VV. 4i ).;8 ii 

+ (pVUi),i8ii+!(pV) ,4. (6.14) 

Equation (6.14) has been derived by Bondi from 
purely classical arguments and has led him to suggest 
that the vector 

Pi= (87r)-1(V,4V,i- VV,4i) 

is the gravitational analogue of the Poynting vector. 
That is, it represents the momentum of the gravitational 
radiation through unit area of a surface exterior to the 
moving matter. 

When Eqs. (6.12) and (6.13) are added we obtain 

M4.!''' = ik[ (cpcp,;;8 ii) ,4 + (cp ,4CP ,i- CPCP ,4;) ,i8ii] 
or 

M 4,1/= c 2[ - (!p V) ,4 

+ (87rG)-1(V,4 V.;- VV,4i),;8 iiJ (6.15) 

This equation relates the four-dimensional divergence 
of the energy-momentum of the material field with the 
time rate of change of the potential energy of the mass 
distribution and the divergence of the vector Pi. 

We shall compare Eq. (6.15) to the equation resulting 
from Eq. (4.4) for the case of a perfect fluid by choosing 
i\. as mentioned above. To do this we substitute for 
k!,v from Eqs. (6.4), with the 1/ c2 terms omitted, into 

Eqs. (3.10). We then obtain, on neglecting 1/c2 terms 

or 

or 

E44= -c2[ -4Vp+H7rG)-lV,iV,j8i1] 
= -c-2

[ -!pV+H7rG)-1(VV,i),i8ii], (6.16) 

E4i= !k[3cp,4CP.i+4cpcp .• 4], 

E4i=C2(4'7rG)-1[3V,4V. i+4VV,i4] 
= -c-2[(87rG)-1(V,4V,i- VV,4.) 

-H7rG)-l(VV,i),a (6.17) 

On substituting Eqs. (6.16) and (6.17) into Eq. (4.4), 
we obtain Eq. (6.15), since the time derivative of the 
second term in Eq. (6.16) cancels the space divergence 
of the second term of Eq. (6.17). 

Thus we see that, in the classical limit, the 
gravitational stress energy tensor introduced above 
leads to a conservation of energy equation identical to 
that proposed by Bondi. However, the energy density 
and the analogue of the Poynting vector, the quantities 
E44 and E4i differ somewhat from those he proposed. 
The differences are: The former quantity contains a 
term proportional to a three dimensional divergence 
(the three dimensional Laplacean operating on V2) and 
the latter contains a term proportional to the time 
derivative of a gradient, (the gradient of V2). 

The derivation given above enables one to obtain 
the stresses Eii as well as the quantities E44 and E4i. 
These may be calculated by substituting from Eq. (6.4) 
into Eqs. (3.10) and neglecting terms involving 1/c2• 
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Principles of Limiting Absorption and Limiting Amplitude in Scattering Theory. 
1. Schrodinger's Equation* 
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International Business Machines Corporation, Research Center, Yorktown Heights, New York 
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The outgoing solution of the time-independent Schrodinger equation, with a suitably restricted real 
potential, is shown to be the uniform limit of the square-integrable solutions of the same equation with 
complex energy as the imaginary part of the energy tends to zero. Under further restrictions on the potential, 
it is also shown that the solution to the initial-value problem for the time-dependent Schrodinger equation 
tends to the outgoing solution as time increases indefinitely. 

1. INTRODUCTION 

T HE scattering problems which arise in classical 
quantum mechanics may be described in terms 

of an unperturbed wave incident upon a potential which 
is switched on at a certain instant of time t= O. There­
fore, the scattered wave, which exists for t2::0, satisfies 
an initial value problem for the time-dependent Schro­
dinger equation. If the incident wave is time-harmonic, 
it is natural to assume that the scattered wave becomes 
time-harmonic with the same frequency as time be­
comes infinite. Then the steady-state solution, which 
is the limiting form of the scattered wave, will satisfy 
the time-independent Schrodinger equation. The ques­
tion then arises as to what conditions should be im­
posed at infinity to ensure the uniqueness of the solution 
of this equation. 

Three principles seem to be available for determining 
a unique solution of a scattering problem. These are: 

(1) The radiation principle, which is that the solution 
should satisfy Sommerfeld's radiation condition. 

(2) The principle of "limiting absorption" (Igna­
towskyl) which states, in the case of Schrodinger's equa­
tion with energy E>O, that the solution is to be obtained 
as the limit of the bounded solutions of the same equa­
tion with energy E+ie as the parameter e tends to zero 
through positive values (assuming the time dependence 
is of the form e-iwt). The principle has its roots in the 
theory of scattering of electromagnetic waves where 
it is k,nown that the media through which such waves 
propagate are usually "absorptive." This means that 
in actual scattering phenomena, which are characterized 
by the fact that the wave number k does have a small 
positive imaginary part, energy is always dissipated. 
C onsequen tly, it is expected that boundedness or vanish­
ing conditions at infinity would insure the uniqueness 
of the solutions to such problems. The principle of 
limiting absorption states, roughly, that in order to 
solve the idealized scattering problem where no absorp­
tion occurs we must take the limit of the "physically 
attainable" solutions as the absorption approaches zero. 

* This work is based on a part of the writer's dissertation, sub­
mitted to the Mathematics Department, University of California, 
Berkeley, and was supported in part by the Office of Naval 
Research. 

1 W. Ignatowsky, Ann. Phys. 18,495 (1905). 

(3) The principle of "limiting amplitude." This con­
sists of solving the initial value problem and then 
studying the limit of such a solution as time increases 
indefinitely. It is supposed that any part of the solution 
whose time dependence is different from that of the 
incident time-harmonic wave has a transient char­
acter, i.e., it will die out as time increases. Consequently, 
a stationary state with the same time dependence as the 
incident wave will emerge as the desired correct solu­
tion. This is physically the most reasonable of all three 
principles, though its applicability is rather limited. 

In a previous paperz we considered the Dirichlet­
Neumann problem associated with the three-dimen­
sional Schrodinger wave equation with a suitably re­
stricted real potential V (r) 

L1/'=[~+k2- V (r)J1/' (r) =0, k>O, (1.1) 

and proved that Sommerfeld's radiation condition does 
specify the solution uniquely. The primary aim of this 
paper is to apply the latter two principles to the same 
equation. Our main results are: 

(i) The radiating solution of L1/'= j, where 1/' is 
defined in the whole space or in the exterior of a regular 
closed bounded surface ~ and j is a suitably restricted 
function, exists and is the uniform limit of the L2 solu­
tions of the Schrodinger equation with complex energy 
k2 as Im(k2) ---t 0 through positive values. 

(ii) Under rather severe restrictions on the operator 
(-~+ V), we show that the radiating solution is the 
limit, as t ---t <Xl, of the solution to the time-dependent 
problem. Thus, we have shown the equivalence of the 
three methods described above for characterizing the 
solution. 

The above results extend some of the results of 
Povzner and Ladyzhenskaia4 although the methods 
used are similar. Ladyzhenskaia proved that the time­
dependent problem (for a wave-like equation) leads as 
time increases to the radiating solution under the as­
sumptions that (-~+ V) has no eigenvalues and that 
V is continuously differentiable (C(l) and is of com-

2 C. Zemach and F. Odeh, Arch. Rational Mech. and Analysis 
5,226 (1960). 

3 A. Y. Povzner, Mat. Sbornik 32 (74), 109 (1953). 
4 O. A. Ladyzhenskaia, Uspekhi Mat. Nauk 12 (3), 161 (1957). 
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pact support. 5 Povzner assumed that VEer!) and is 
O(r-I'), tL>3.5 and proved the existence of the solution 
to the integral equation derived from LG(r,s) ='o(r- s) 
(the so-called second resolvent equation) and its con­
tinuous dependence on k if k2 does not belong to the 
point spectrum of (-~+ V).6 Assuming V to be also 
radial, Povzner proved that the point spectrum is con­
tained in the nonpositive real axis. Recently Ikebe6 

proved, independently, the existence of G for all k2>O 
assuming V to be square integrable, Hoelder continuous 
(except for a finite number of singularities), and 
o (r-I'), tL> 2 at infinity. The conditions we impose on V 
are stated in Sec. 2 below and are less restrictive than 
any of the above mentioned. 

The main restriction referred to in (ii) is that the 
operator (-~+ V) have no point eigenvalues (i.e., 
bound states). If the potential were switched on at 
t= - 00, as is usually done in scattering theory, one 
would expect that the exclusion of bound states would 
be unnecessary. A similar remark applies to the prob­
lem treated by Ladyzhenskaia.4 

We outline the plan of the paper. In ~ec. 2 it is shown, 
following Povzner,3 that the question of the existence 
of G reduces to studying an inhomogeneous integral 
equation with a Fredholm alternative property and we 
study the homogeneous equation. In Sec. 3 the existence 
of the solution to L1/!= j and its continuous dependence 
on k are proved. In Sec. 4, the time-dependent problem 
is reduced to a time-independent one by means of a 
Laplace transform, and the validity of the principle of 
limiting amplitude is shown. In Part II we prove that 
similar results to (i) and (ii) above hold also for the 
wave equation in an inhomogeneous medium.Sa 

2. THE RESOLVENT OPERATOR [-4.+ V-k2J-I 

Assumptions and Preliminaries 

We shall use the same notatipn which was employed 
in Zemach and Odeh,2 hence we define 

i I V(s)1 
I(r)= --ds, 

D lr-sl 

where D is the whole space E3 (or the exterior of a 
bounded closed regular surface ~) and assume: 

(i) I(r)~O as r~ 00. (2.1a) 

(ii) V(r) is locally Hoelder-continuous7 

and is bounded near infinity. (2.1b) 

6 Additional hypotheses should have been assumed in Lady­
zhenskaia's paper, since Povzner's proof fails in the case k=O. 
A counter example is given in Sec. 2, and the correct hypotheses 
are stated in Lemma 4.1. 

• T. Ikebe, Arch. Rational Mech. and Analysis 5, 1-34 (1960). 
68 F. M. Odeh, J. Math. Phys. 2, 800 (1961). 
7 This may be ~asily exte~ded t~ !l potential having a finite 

number of square-llltegrable slllgulantIes. We then need to modify 
slightly the proofs of Lemma 2.1 and Lemma 2 in reference 2. 

It is clear that (i), (ii) imply 

(iii) max I(r) < 00. (2.1c) 
rED 

Under these conditions the operator H= -~+ V has 
a unique self-adjoint extension defined on L2 (KatoS) 

which we denote again by H. In scattering problems we 
usually ask for the solution 1/! of (H - E)1/!= j, where E 
is the energy, which may be real or complex, and j is a 
known smooth function. If E is not real, then the inverse 
(H - E)-I exists in L2 and depends analytically on E. 
In fact, if ImE>O and k=yEis so defined that Imk>O 
then it is known (Povzner3) that (H - E)-I is an integral 
operator with a kernel her,s; E)=G(r,s; k) which is 
symmetric and, for a.e. S,9 belongs to L2(r) and satisfies 

G(r,s,k)=Go(r,s,k)- J Go(r,t) V(t)G(t,s)dt, 

where 

1 eiklr-sl 

Go(r,s)=---. 
47r I r-sl 

(2.2) 

Noticing that (2.2) is the same equation which G 
would satisfy if k2>O and G is outgoing at infinity, we 
see that the problem of the existence of radiating solu­
tions reduces to investigating the solvability of (2.2) 
when k2 is real. Moreover, since both L2 and radiating 
solutions are o (,-!) at infinity by Theorem 1 in reference 
210 we may restrict our solutions to the Banach space 
B of all functions 1/!, which are continuous on D and 
which tend to zero uniformly at infinity. A natural 
norm on B is 

111/!IIB=max 11/!(r) I· (2.3) 
rED 

Let the operator T k be defined on B by 

1 J eiklr-sl 
T k1/!(r)=-- --V(s)1/!Cs)ds. 

47r I r-sl 
(2.4) 

Since we have assumed that ImE~O we see that k lies 
in the first quadrant Q of the complex k plane. Equation 
(2.2) may now be written, for a.e. s, in the form 

(2.2a) 

where cf>(r) is a known function. 
The following lemmas demonstrate that if kEQ and 

k2~O is not a negative eigenvalue of H then the inverse 
(1-Tk)-1 exists as a bounded operator on B. 

8 T. Kato, Trans. Am. Math. Soc. 70, 195 (1951). 
, a.e. means almost every or almost everywhere. 
10 Theorems 1 and 2 in reference 2 have been proved for radiating 

wave functions only but they are valid for L2 eigenfunctions also; 
see Odeh (reference 12). 
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Lemma 2.1: The operator T k is a bounded linear operator 
on B to B. 

Proof: Since 

I Tk1/;(r) I ~ (4?r)-lll1/; llf I V(s) I ds~c[I1/;II, 
Ir-sl 

it follows that liT kll is bounded. It is clear that 
T k1/;(r) -> 0 uniformly as r-> 00 by (2.1a). To prove the 
continuity in r of T k1/;, consider 

f[

eik,r-s, eiklr'-SI] 
----- V(s)1/;(s)ds 
Ir-sl Ir'-sl 

= f eiklr-sl_eiklr'-sl V (s)1/; (s)ds 

Ir-s[ 

+feiklr'-SI[_1_-_1_]V1/;dS=Il+h 
Ir-sl Ir'-sl 

Now 

f 
I V(s) I 

1111 ~klr-r'l' [[1/;[[ --ds=O[[[1/;[I·lr-r'I]· 
Ir-s[ 

Let B(r,5) denote the sphere [s-r[~5, and let 
5= [r-r'[l, then 

1121 ~[I1/;lIi 1 V(s)I[_l ___ l_]dS 
D-B(r,6) Ir-sl Ir'-sl 

+1I1/;lIf [V(s) I [_1_+_1_]dS 
B(r,a) Ir-sl Ir'-sl 

~ 111/;lllr-r'l if I V(s) Ids+OCII1/;II'lr-r'l] 
Ir-sl 

= 0[111/;11· 1 r- r' 1 i] as r -> r'. 

Therefore, T k1/;(r) is Hoelder-continuous. 

Lemma 2.2: The operator Tk is compact on B. 

Proof: Let {l/In} be a sequence in B such that II1/;nll ~ 1. 
The proof of Lemma 2.1 shows that {Tk1/;n} is uniformly 
bounded, equicontinuous, and tends to zero uniformly 
with respect to n as r -> 00. We can therefore select a 
subsequence of {Tk1/;n} which converges uniformly in 
r to a function in B. 

We discuss now the homogeneous equation 1/; = T k1/;. 

Lemma 2.3: Let 1/;EB be a solution of 

f 
eikir-si 

1/;= T k1/;= - (4?r)-1 --V(s)1/;(s)ds, 
Ir-sl 

(2.5) 

where Imk=b~O. Then 1/;(r) is O(r-le-br) at infinity. 

Proof: If 1/; satisfies (2.5) then it is Hoelder-continuous 
by Lemma 2.1, hence V1/; is Hoelder-continuous also. 

In this case (2.5) is equivalent to (Titchmarshll): 

Using the notation of Theorem 1 in reference 2 we then 
have 

1/;(r) =1/;0(r)+1 Go V1/;ds rEDo, (2.6) 
DO 

where 1/;0 is a surface integral over ~Rl and is O(rle- br). 

The method of the proof of the theorem mentioned 
above shows that 1/; itself is of the same order. 
Remarks: Since the representations (2.5) and (2.6) are 
valid for any L2 eigenfunctions of -6.+ V (Povzner3, 
Lemma 7, Chap. II) we deduce from the above lemma 
that an eigenfunction of [6.+E- V]1/; = 0 is O(rle-br) 

at infinity, where E= -b2. If E>O then there exist no 
eigenfunctions.12 

Lemma 2.4: If 1/; is a solution of (2.5), then it satisfies the 
radiation condition 

(2.7) 

where e(r) -> 0 as r -> 00 and does not depend on 1/;, and 
M is an upper bound for I r1/;(r) I. 

Moreover, if k2>O, then 1/; vanishes identically. 

Proof: Because of the corollary to Theorem 3 in reference 
2 it is enough to prove (2.7). Consider 

[
o1/; ] f eikl 

r-si [0 I r- s I 
-4?r --ik1/; =ik --V1/; ---

or Ir-sl or 

Let I l =Jl +J2, where J l denotes the integral over the 
sphere s<rt. To estimate J l we notice that 

olr-sl 
( 

s )[ 2s S2r i 

1= 1-;cosO 1--;cosO+r
2 

-1,(2.8) 
or 

where 0 is the angle between r, s. 
The right side of (2.8) is o (s2r-2), hence there exists a 

constant C 1 such that 

(2.9) 

11 E. C. Titchmarsh, Eigenfunction Expansions (Oxford Uni­
versity Press, New York, 1958), Pt. II, Chap. 22 and pp. 10-11. 

12 F. Odeh, Technical Report No.8, Department of Mathe­
matics, University of California, August, 1960 (Chap. I). 
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Also 

f I V(s)1 2M 
~2M ---ds~-El(r), 

sj r-s\ r 
(2.10) 

where El (r) --> 0 as r --> u:; • 

A similar estimate holds for /2 and the radiation 
condition (2.7) follows immediately. 

Lemma 2.5: If k2~0 is not a negative eigenvalue of H 
then the inverse (I-Tk)-l exists in B. 

Proof: Since T k is compact, the Riesz-Schauder theory 
(Dunford and Schwartz13) shows that (/ - T k)-l exists 
for all k such that the equation if; = T kif; implies that 
if;=0. In view of Lemma 2.4 we may assume Imk>O 
and hence Lemma 2.3 shows that if; would be an L2 
solution of [~+k2_'V]if;=0. Since H is self-adjoint, if; 
vanishes identically-unless k2 is a negative eigenvalue. 

A counter-example: The case k = 0 must be excluded 
in the preceding lemma (and in Povzner,3 Theorem 2, 
Chap. II). 

Consider 

{

3-3r+r2 r~1 
if;(r) = 

r-1 r;:::; 1 

Then if; is a regular solution of the homogeneous equa­
tion if; = Toif; and yet is not square integrable. 

3. PRINCIPLE OF LIMITING ABSORPTION 

In order to apply the results of the last section to the 
equation (2.2) we rewrite it in the form 

and iterate (3.1); therefore we define 

G1=G-GO, Al= TkGO' 

Then G1 satisfies 

Lemma 3.1: A1(r,s)EB(r) for all s. 

(3.1) 

(3.2) 

The proof is similar to that of Lemma 2.1 and will be 
omitted. 

We are now in a position to prove the existence of G 
and exhibit some of its properties. 

18 N. Dunford and J. T. Schwartz, Linear Operators (Inter­
science Publishers, Inc., New York, 1958), Pt. I, pp. 577-585. 

Lemma 3.2: Suppose k2~0 is not a negative eigenvalue 
of H. Then 

(1) The kernel equation (3.1) has a unique solu­
tion G(r,s) which is continuous in r except if r= s. Gis 
the Green's function for the operator [~+k2- V] and 
behaves asymptotically like O[y-1e-br], where b= Imk. 

(2) If k2>0 and s is bounded, then G satisfies the 
radiation condition. 

r[(aG/ar) -ikG] --> 0 
uniformly with respect to s, as r --> 00. (3.3) 

Proof: (1) Let G1 be the unique solution of (3.2). Then 
set G=GO+G1• G is again Hoelder continuous in r, for 
for r~ s, and Eq. (3.1) is then equivalent to [~+k2- V] 
XG(r,s) = -o(r-s). The asymptotic behavior is proved 
exactly as in Lemma 2.3 (and Theorem 1 in reference 2). 
We notice here that if we assume that s is bounded (and 
smaller than R 1 of Lemma 2 in reference 2) then the 
order is uniform with respect to s. 

(2) Lemma (2.4) proves the radiation condition for 
each fixed s. The uniformity follows from the uniform 
boundedness of rG(r) for all s<R1• 

Remark: If we wish to prove the existence of a Green's 
function K which vanishes on a closed surface l: and is 
outgoing at infinity, then we have to use, instead of Go, 
the Green's function Ko(r,s) of (~+k2) which vanishes 
on ~. Saunders14 proved the existence of Ko and in fact 
that Ko=Go+a certain dipole distribution over l:.l5 
In such a case K satisfies 

K(r,s)=Ko+ i Ko(r,t) V (t)K(t,s)dt, 

where D is the domain outside of ~. 
The same procedure that we used to prove the 

existence of G may be used to prove the existence of K. 
Thus it is possible to prove the existence of an outgoing 
solution of [~+k2- V]if;=O which assumes given 
boundary values on~. 

The following two lemmas pave the way for Theorem 
1 which formulates the principle of limiting absorption. 

Lemma 3.3: The operator Tk is continuous in k in the 
uniform operator topology. 

Proof: Let 

r eiklr-sl 

T(r,k)= --V(s)if;(s)ds, where 11if;11=1. 
. Ir-sj 

If e>O is given, then Lemma 2 in reference 2 shows that 
there exists a number R such that for all r 

f 1 V(s) j ds<e. 

.>R Ir-si 
14 W. K. Saunders, Proc. Nat!. Acad. Sciences 38 (4),342 (1952). 
16 Except in an exceptional case where it is taken over a neigh­

boring surface. 
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Now consider the difference 

I I(r,k l )- I (r,k 2) I 

~f + f ~2f+lkl-k2If IV(s)lds 
8>R 8~R 8~R 

~ 0 as ki ~ k2 independently of r. 

Hence 1(r,k) is uniformly continuous with respect to r 
and therefore T k is continuous in the sense of the norm. 

Lemma 3.4: If k2~O is not a negative eigenvalue of H 
then G(r,s,k) is continuous in k (except at r=s). 

Proof: We have 
G=GO+G1 

=Go+ (I -Tk)-lA l . 

Since T k is continuous and (1- T k)-l exists by 
Lemma 2.5, we conclude (Dunford and Schwartzl3) 

that (1- Tk)-I is continuous (in the norm). Using as­
sumption (2.1c) we can prove that Al is continuous in 
k uniformly in r, s and the lemma is proved. 

Theorem 1 (principle of limiting absorption): Let I/;(r,f) 
be the unique L2 solution of 

[-.:l- (E+ie)+ V)p= fer), (3.4) 

where E, e>O and f is integrable and of compact 
support.16 

Then I/;(r,e) tends uniformly in r as e ~ 0 to a func­
tion I/;(r) which is the unique outgoing solution of 
[ -.:l-E+ VJlf'= f. 
Proof: If k2=E+ie, then 

I/; (r,e) = J G(r,s,k)f(s)ds 

f 
eikJr-s] f 

= --f(s)ds+ Gl(r,s; k)f(s)ds. (3.5) 
Ir-sl 

Lemma (3.4) shows that GI(r,s,k) tends uniformly in 
r, s to GI(r,s,y E) as e ~ 0. Since f is integrable, the 
right side of (3.5) tends uniformly in r to 

I/;(r) = f G(r,s,YE)f(s)ds. (3.6) 

Since G is the Green's function for (-.:l-E+ V) 
which satisfies the radiation condition uniformly in s 
the last assertion of the theorem is proved. 

4. PRINCIPLE OF LIMITING AMPLITUDE 

We consider the scattering problem for a time­
harmonic wave 1/;0 (r,t) = p(r)e-iEt which is a solution of 
the unperturbed Schrodinger equation. It is incident 

,. The theorem remains true if j=O(ra-,) at infinity. 

on a potential V which is switched on at time t=O,17 
Using the time-dependent Schrodinger equation we 
find that the generated scattered wave I/;(r,t) satisfies 
an equation of the form 

alf'(r,t) 
i--+ (.:l- V)I/;(r,t) = f(r)e-iEtA (t), t~ ° 

at (4.1) 
If'(r,O) =0. 

Here fer) is determined by 1/to and V and is assumed to 
be integrable and 0(r-3-<), e>O, at infinity andA(t)=1. 
The function A (t) describes the switching on process 
and we take it to be 

{
t 0~t~1 

A(t)= 
1 t~ 1. 

(4.2) 

Let X (r,z) be the Laplace transform of If' with respect 
to t. Then we have from (4.1) 

e-i(E-)o,)-l 
(H-X)tjJ(r,X)= fer) ImX>O, (4.3) 

(E_X)2 

where X=iz and tjJ(r,X)=x(r,z). 
Our first step will be to define tjJ(X), as the unique 

solution of (4.3) in the closed half-plane ImX~O. The 
following lemma accomplishes this by imposing severe 
restrictions on the potential. 

Lemma 4.1: Suppose 

(i) H has no negative eigenvalues (4.4) 

(ii) The equation 1/t= Tolf' has no solutions in B.IS (4.5) 

Then the solution tjJ(r,X) of (4.3) is analytic in ImX>O 
and continuous in ImX~O except at X=E where it has 
a pole-like singularity. 

Proof: The analyticity of tjJ is a consequence of the fact 
that H is self-adjoint. The hypotheses of the lemma 
prove, in view of Lemmas 3.2 and 3.4, the existence of 
G(r,s; k), k=yX, and its continuous dependence on k 
for all ImX~O. The existence and the continuity of tjJ 
follow immediately. 
Example: If V satisfies either of the following conditions: 

(a) sup f 1 V(s) 1 ds<41r 
r Ir-sl 

(b) V(s)~O 

then the hypotheses of the preceding lemma are sa tisfied. 
The proof is immediate. 

To investigate the asymptotic behavior of tjJ(r,X) as 
X ~ co we first prove 

17 We may, on the other hand, assume that the incident wave 
is switched on in the presence of a potential. A similar equation 
to (4.1) would still hold in this case. 

18 Conditions (i) and (li) are equivalent to requiring that any 
bounded solution of >/I=T,.;" k2~O vanishes identically. 
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Lemma 4.2: The norm of the operator (1- T k)-l re­
mains uniformly bounded as I k I _ <Xl. 

Proof: The continuity of (1- T k)-l insures its bounded­
ness on every compact set. Since 

(I-Tk)-l= (I+Tk) (I-Tk2)-1 

= (l+Tk) (I+Tk2+Tk4+ ... ) (4.6) 

it is sufficient to prove that Tk2 becomes a "small 
perturbation" as I k I - <Xl. Now 

I/T
k
2//= sup [suplf eiklr-sIV(S)dS 

114>11 =1 r I r-s I 

xI eikls-yl V(Y)I/>(Y)dyl]· (4.7) 
Is-YI 

Let l(V; r) denote the integral on the right side of 
(4.7), then given E>O, choose Ro such that 

f I V(s)1 
---ds < E, independent of r 

DO i r-sl 

where Do={sls~Ro}. This is possible by Lemma 2 in 
reference 2. Let 

{ 
V(s) s~Ro 

U(s)= ° s>Ro. 

It has been proved (Ladyzhenskaia,4 or Zemach and 
Klein19

) that l(U,r) - ° as I k I - <Xl independently of 
r, therefore it is sufficient to prove that l(V; r) can be 
approximated uniformly by l(U; r). Consider the 
difference 

[leV; r)-l(U; r)J 

= f v(y)I/>(Y)dyf eik[lr-sl+ls-yll V(s)ds 

D DO I r- s II s- Y I 

+f .. . dyf .. ·ds=L1+L2. 
Do D -DO 

But 

IL11~f IV(Y)ldyj IV(s)1 ds 
D Dolr-slls-YI 

~f IV(Y)l dy r [IV(S)I+IV(s)l]dS 

D [r-YI JDO Ir-sl Is-yj 

~ C· 2E, where C is some constant. 

Similarly I L21 ~ 2C E. Therefore liT kl/2 - ° as I k j _ <Xl 

and the Neumann series (4.6) then converges, hence the 
lemma follows. 

19 C. Zemach and A. Klein, Nuovo cimento 10, 1078 (1958). 

Lemma 4.3: The function I/> (r,X) behaves asymptotically 
like O[ I X 1-2J as I X I - <Xl. 

Proof: In view of (4.3) we may write 

f 
e-i(E-~)-1 

l/>(r,X)= G(r,s; k)f(s)· ds, k2=A. 
(E-W 

Hence it is sufficient to consider the behavior of G. 
But 

(3.1a) 

where Go, A 1 are both uniformly bounded in k. The pre­
ceding lemma completes the proof. 

We formulate now the principle of limiting 
amplitude. 

Theorem 2: Let if;(r,t) denote the solution of Eq. (4.1) 
and suppose that the hypotheses of Lemma (4.1) are 
fulfilled. Then eiEiJ; (r,t) tends as t - <Xl to the unique 
outgoing solution of 

[A+E- VJif;(r)= fer). (4.8) 

Proof: By the inverse Laplace transform 

1 iaf-iOO 

if;(r,t)=-. eztx(r,z)dz a>O. 
271"$ a-ioo 

(4.9) 

But 

x(r,z)=I/>(r,X) is analytic in z for Rez>O, 

continuous for Rez~O except at z= -iE where it has a 
simple "pole." Deforming the contour in (4.9) to Rez=O, 
and noticing that I X (r,z) 1=0[1 ZI-2] as I zl- <Xl, we get 

eiEtif;(r,t) =~ f G(r,s,vE)f(s)ds 

1 f+oo 
+p. V'_eiEt ei{3tx (r,i(3)d(3. (4.10) 

271" -00 

The first term on the right side of (4.10) furnishes 
!if;(r), where if; is the outgoing and therefore unique 
solution of (4.8). In the Appendix we prove that the 
principal value of the second term exists for each t and 
tends, as t - <Xl, to !if;(r). The method used is a refine­
ment of the Riemann-Lesbegue lemma. 
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where 

e-i (E+IJ)-l 

x (r,i{l) = u({3) 
(E+{l)2 

u({l)= f G(r,Sj k)f(s)ds= (1- T k )-lF(r,k) , k2=-(3 

and 

F(r,k)= f Go(r,sj k)f(s)ds. 

We prove first that u satisfies a Lipshitz condition for 
all (3 < 0 j consider 

U({31)-U({32) = (1- Tk1)-1(I - Tk2)-1 

X{ (Tk1-Tk2)F(rj k)}. (2) 

Using the facts that (I - T k)-l exists and that 
F(r) =0(,--1) and is Lipshitzian in k, an argument 
similar to the proof of Lemma 3.3 proves that the 
right side of (2) is Lipshitzian in k and hence in {3. Now 
let us tum back to (1). The integral over the region 
outside any fixed neighborhood of (3= -E tends to 
zero as t --+ 00 by the Riemann-Lesbegue lemma. Let 

E>O be fixed and consider 

1 [f e-i(EH) -1 ] 
_eiEt eilJtu({3) d{3 
211" I E+lil ;;;. (E+{3)2 

1 i u({3) 
=_eiEt (cos{3t+i sin{3t)--d{3 

2m I E +Ii I ;;;. (E+{3) 

+terms which tend to zero as t --+ 00. (3) 

Let II, 12 denote the cos and sin terms in (3). Then, 
writing {3t=t[({3+E)-EJ and substituting in (3), we 
get 

1 { f cost({3+ E) 
I 1=-eiEt costE u({3)d(3 

211"i IE+liI;;;' ((3+E) 

f sint({3+ E) } 
+sintE u({3)d{3 . 

((3+E) 
(4) 

The first term in (4) tends to zero as t --+ 00 since u 
is Lipshitzian. 12 exhibits a similar behavior and we are 
left with 

eiEt f sint({3+E) 
lim - (sintE+i costE) --u({3)d{3 
t __ 2m ({3+ E) 

=!u(r, - E) as in the theory of Fourier series 

=tfCr). 
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This is a continuation of Part I with special emphasis on wave equations in an inhomogeneous medium. 

1. STATEMENT OF THE PROBLEM 

T HE principles which were employed in Part I to 
characterize the solutions of Schrodinger's equa­

tion can be applied, also, to the wave equation in an 
inhomogeneous medium.! It is assumed, however, that 
the properties of such a medium will approach those of 
a homogeneous one as the space variable r approaches 
infinity. This is expressed mathematically by assuming 
that the wave velocity is a function of r which tends to a 
certain constant as r --+ 00. The problem will be to 
characterize the solutions of the reduced wave equation 
in a three-dimensional space: 

[A+ (k2j c2 (r»Jf (r) = fer) k>O, (Ll) 

1 F. M. Odeh, J. Math. Phys. 2, 794 (1961). 

where fer) is an integrable function which is o (r-I') , 
.u>3, at infinity. If we assume that c2(r) --+ 1 as r --+ 00, 

it becomes possible to define a "potential" V(r) through 
the relationship 

[c2(r)J-1= 1-V(r). (1.2a) 

Equation (1.1) may now be written in the form 

[A+k2-k2V(r)Jf(r) = fer) k>O. (1.3) 

We assume that: 

(i) V (r) is integrable, bounded near infinity 
and locally Hoelder-continuous.1

& (1.2b) 

(ii) [1- V(r)J2:E>O except at a finite number of 
points where 1- V(r) may tend to zero. (1.2c) 

----
,. Except at a finite number of square· integrable singularities. 
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tion can be applied, also, to the wave equation in an 
inhomogeneous medium.! It is assumed, however, that 
the properties of such a medium will approach those of 
a homogeneous one as the space variable r approaches 
infinity. This is expressed mathematically by assuming 
that the wave velocity is a function of r which tends to a 
certain constant as r --+ 00. The problem will be to 
characterize the solutions of the reduced wave equation 
in a three-dimensional space: 

[A+ (k2j c2 (r»Jf (r) = fer) k>O, (Ll) 

1 F. M. Odeh, J. Math. Phys. 2, 794 (1961). 

where fer) is an integrable function which is o (r-I') , 
.u>3, at infinity. If we assume that c2(r) --+ 1 as r --+ 00, 

it becomes possible to define a "potential" V(r) through 
the relationship 

[c2(r)J-1= 1-V(r). (1.2a) 

Equation (1.1) may now be written in the form 

[A+k2-k2V(r)Jf(r) = fer) k>O. (1.3) 

We assume that: 

(i) V (r) is integrable, bounded near infinity 
and locally Hoelder-continuous.1

& (1.2b) 

(ii) [1- V(r)J2:E>O except at a finite number of 
points where 1- V(r) may tend to zero. (1.2c) 

----
,. Except at a finite number of square· integrable singularities. 
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The conditions (1.2b) imposed above on the potential 
V(r), and hence on the velocity e(r), insure that the 
radiating solution of equation (1.3) is unique (Zemach 
and Odeh2). In order to prove the existence of such a 
solution and to apply principles (2) and (3) of Part I 
to this equation, one has to consider again the resolvent 
operator R(k)=[.:l+k2-k2VJ-l. If Imk2;:e0 (and k is 
defined so that Imk>O) then this resolvent, on L 2(r), 
is an integral operator with a symmetric kernel G(r,s,k) 
which belongs to L 2(r), for a.e. s, and satisfies3 

G(r,s,k) = Go(r,s,k)- k2 f Go (r,t) V(t)G(t,s,k)dt, 

where 
1 eiklr-sl 

Go(r,s,k)=---. 
4?r 1 r-st 

(1.4) 

Since the solution if;(r) of (1.3) may be written in the 
form if;(r) =R(k)· fer), it is necessary to discuss the 
kernel equation (1.4) in the case of real k. This equation 
becomes exactly the same as the kernel equation (2.2) 
of Part I when the potential V in the latter one is 
replaced by k2V. We shall, therefore, follow the same 
procedures previously employed and adopt similar 
notation. The same Banach space B(r) is introduced as 
before and the operator T k is defined on B by 

-k2 f eiklr-sl 
Tkif;(r)=- --V(s)if;(s)ds, Imk2:0. 

471" Ir-sl 
Throughout the whole discussion, proofs will be given 
only if they differ materially from the corresponding 
ones in Part I. 

2. THE RESOLVENT OPERATOR [.~+k2_k2VJ-l 

In this section we show that the kernel equation (1.4) 
has a solution which is continuous in r a.e. whenever 
the condition Imk2:0 is satisfied. 

Lemma 2.1: The operator Tk is a linear bounded compact 
operator on B to B. 

Lemma 2.2: Let if;EB be a solution of 

if;(r) = Tkif;= -k2 f Go(r,s,k) V(s)if;(s)ds, (2.1) 

where Imk=b2:0. Then 

(i) if;(r) = o (,.-le- br) at infinity 

(ii) lim r[aif; -ikif;] =0. 
r--+OO ar 

(2.2) 

2 C. Zemach and F. Odeh, Arch. Rational Mech. and Analysis 
5, 226 (1960). 

3 For proof see A. Y. Povzner, Mat. Sbornik 32 (74), 109 (1953); 
or T. Ikebe, Arch. Rational Mech. and Analysis 5, 1-34 (1960). 
A proof of the existence and the uniqueness of G also follows 
from Sec. 2. 

Lemma 2.3: If if; = Tkif; and Imk2:0, then if; vanishes 
identically. 

Proof: The lemma is obvious if k=O. We distinguish 
three other cases: 

(1) k2>O: In this case if; satisfies 

[.:l+k2-k2V(r)]if;=0, (2.3) 

where we have used the Hoelder-continuity of both V 
and the solution if; of (2.1) in deriving (2.3). Since 
Lemma 2.2 shows that if; satisfies the radiation condition, 
it follows from the corollary to Theorem 3 in reference 2 
that if; vanishes identically. 

(2) k2<O, Imk=b>O: Let SR, 2:R denote a sphere of 
radius R around the origin and its surface, respectively. 
If Green's first formula is applied to if; and its conjugate 
if;*, we obtain 

aif;* 

1 if;--dA = r if;.:lif;*ds+ r 1 Vif; 12ds, (2.4) 
2:R as JSR JSR 

where dA,ds denote surface and volume elements, 
respectively. 

Let R --t 00 in (2.4), then the left side of (2.4) tends to 
zero by Lemma 2.2. Substituting for .:lif;* in the right 
side, we get 

lim i 1 if;(s) 12[1- V(s)]ds=O. (2.S) 
R--+oo SR 

Equation (2.S), together with condition (1.2c), 
prove that if; vanishes identically. 

(3) Imk=b>O, Imk2;:eO: Use of Green's second 
formula in conjunction with if;,if;* leads to 

Therefore, if; vanishes identically in this case also, and 
the proof is concluded. 

Lemma 2.4: The inverse (1- T k)-l exists as a bounded 
operator on B for all k such that Imk2:0. 

Proof: Since T k is compact and if; = T kif; holds true only 
if if;=0, the statement of the lemma follows from the 
Fredholm alternative property for compact operators. 

An iteration procedure similar to the one in Sec. 3 of 
Part I now yields 

Lemma 2.5: Suppose Imk2:0. Then 

(1) The kernel equation (1.4) has a unique solution 
G(r,s,k) which is continuous in r except if r=s. G is 
the Green's function for the operator [.:l+k2-k2V]. 

(2) The Green's function G satisfies the radiation 
condition (2.2). 
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3. PRINCIPLES OF LIMITING ABSORPTION AND 
LIMITING AMPLITUDE 

It was shown in the last section that, if Imk~O, there 
exists a unique solution if;(r,k) to the equation 

[.:l-k2-k2V(r)]if;(r)= fer). 

In fact y;(r) is then given by 

if;(r,k) = f G(r,s; k)f(s)ds. (3.1) 

The dependence of this solution on k is obviously 
governed by the behavior of G as a function of k. But, 
since G=GO+(I-Tk)-lTkGO and Go(r,s,k) is a con­
tinuous function of k (except at r=s) it would be 
sufficient to consider the operator (I - T k)-l. The follow­
ing lemma exhibits the smooth dependence of the 
operator on the parameter k. 

Lemma 3.1: The operator (I - T k)-l is analytic in k for 
Imk>O and is continuous in k for Imk~O (in the uni­
form operator topology). 

Proof: Since (1- Tk)-l exists, it suffices to consider the 
behavior of Tk itself (Dunford and Schwartz4). Let 
Imko = b> 0 and consider the difference 

[

eiklr-SI_eikOlr-SI ] 
D(r,k)=f ieikoir-si V(s)ds. 

Ir-sllk-ko[ 

Given E>O, choose R large enough that 

i [V(s)lds<E. 
'~R 

Then 

D(r,k)=i +i ~2E+C[k-kol 
8~ R .~ R xi [r-s[eikolr-sl[V(s)[ds, 

s;$R 

where C depends on ko only. 
Therefore, D(r,k) tends to zero as k ~ ko independ­

ently of r and the analyticity of Tk for Imk>O is 
proved. The continuity follows in a manner similar to 
Lemma 3.3 in Part I. 

We state now the principle of limiting absorption. 

Theorem 1: Let if;(r,E) be the unique L2 solution of 

{.:l+(k2+iE)[1- V(r)]}if;(r,E)= fer), 

• N. Dunford and J. T. Schwartz, Linear Operators (Interscience 
Publishers, Inc., New York, 1958), Pt. I, pp. 577-585. 

where k2,E>0 and f is integrable and O(r~), J.I>3, at 
infinity. Then if; (r,E) tends uniformly in r as E ~ 0 to a 
function if;(r) which is the unique outgoing solution of 
[.:l+k2-k2V]if;= f· 

The proof invokes the continuity of G as a function 
of k and proceeds along the same lines of Theorem 1 in 
Part I. 

We turn now to the task of characterizing the solution 
of (Ll) by means of employing the principle of limiting 
amplitude. Let us consider the time-dependent problem . 

where 

.:lif;(r,t)-_l_if;tt= f(r)e-iktA (t)} 
c2(r) , 

if; (r,O) =if;t(r,O) =0 

{
tiE O~t~E 

A(t)= 
1 t~E. 

(3.2) 

(3.3) 

Let x(r,z), Rez>O, denote the Laplace transform of 
if;(r,t) with respect to t and q,(r,X)=x(r,z) where X=iz. 
Then we deduce from (3.2), (3.3) that q,(r,X) satisfies 

1-ei .(A-k) 

[.:l+XLX2V(r)]q,(r,X)= fer) , 
(X_k)2 

ImX>O, (3.4) 
where V (r) is defined by (1.2a). 

The properties of the function q,(r,X) are summed up 
in the next lemma which can be proved by using the 
methods of Sec. 4 in Part I in conjunction with Lemmas 
2.5, 3.1. 

Lemma 3.2: Let ImX~O. Then 

(1) The equation (3.4) has a unique solution q,(r,X) 
which belongs to B(r) for every fixed X. 

(2) The function cp(X) is analytic in X for ImX>O and 
is continuous in X for 1m X~O except at A=k where it 
has a pole-like singularity. 

It is possible now to proceed in a fashion similar to 
the one employed in the last section of the first part and 
prove the analog of Theorem 2 there, namely: 

Theorem 2: Let if;(r,t) denote the unique bounded solu­
tion of the time-dependent problem (3.2). Then 
eik1f;(r,t) tends as t ~ 00 to the unique outgoing solu­
tion of 

[.:l+~]if;(r) = fer). 
c2(r) 
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A study has been made on the scattering of light by the hydro­
dynamical and statistical atom model. Bloch's treatment of the 
hydrodynamical equations of motion for this model is supple­
mented here by inclusion of the interaction with the electro­
magnetic field. We limited attention to oscillations of small 
amplitude. By correspondence principle arguments, general 
expressions were derived for the cross sections for absorption, 
coherent and incoherent scattering. 

The energy can be expressed-following Bloch-as the energy 
of a Thomas-Fermi atom plus a Hamiltonian which is associated 
with departures from the Thomas-Fermi distribution. Using 
Bloch's quantization of this Hamiltonian and applying the method 
of quantum field theory, we rederived the correspondence principle 
results for elementary cross sections. 

I. INTRODUCTION AND SUMMARY 

W E discuss several processes which involve the 
interaction between light and atomic electrons. 

This subject has been so much discussed in the past 
and at the present we might think that there is no 
essential problem left except to secure accurate knowl­
edge of atomic wave functions. 

Certainly for the hydrogen atom and other elements 
of small Z, there is no problem to be studied. However, 
when the value of Z gets larger and larger, the number 
of degrees of freedom of the dynamical motion becomes 
so big that we need some simple and suitable approxima­
tion method which can be applied universally for all Z. 

As such a method, we have the simple model of 
Thomasl and Fermi.2 This model gives a smoothed-out 
representation of the charge distribution in the ground 
state. When an atom absorbs a photon, typically one 
electron jumps to an excited state-or to the continum. 
This is one of the processes upon which attention will 
be focussed here. 

First we treat the interaction between light and 
atom in classical theory. The energy is taken up from 
electromagnetic field into vibration of the electron gas. 
This energy is the classical equivalent of photon absorp­
tion. Also, the electromagnetic moments induced in 
the electrified gas atom by the primary electromagnetic 
disturbance--and by any supplemental electromagnetic 
disturbance also from outside-generate secondary 
waves which are the classical equivalents of Rayleigh 
and Compton scattering. Therefore one has in the gas 
atom a far reaching model for treating the interaction 
of photons with atoms. 

The Thomas-Fermi gas model has the disadvantage 

* Based on the thesis submitted to Princeton University in 
partial fulfillment of the requirements for the degree of Doctor 
of Philosophy, May, 1961. 

1 L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1926). 
2 E. Fermi, Z. Physik 48, 73 (1928). 

Then applying the correspondence theoretical argument to 
the matrix element, we rederived Heisenberg's result for the 
total intensity of the Compton scattering. We also apply the 
method of stationary phase to the hydrodynamical treatment and 
show that this method gives the same result as does the linear 
term in the momentum transfer in Heisenberg's expression, except 
for a numerical factor 3t/2-a point that was discussed by Bloch 
many years ago. 

Application of the general formulas given here for angular 
distribution of Rayleigh and Compton scattering will require 
electronic machine calculations of higher modes of oscillation of 
the gas model of the atom analogous to those made by Wheeler 
and Fireman for 1= 1. 

of exaggerating the number of low momentum electrons. 
This effect shows up in the circumstance that the density 
of electrons in the Thomas-Fermi atom falls off more 
slowly at large distances than do the experimental and 
Hartree-Fock values. Attempts have been made to 
remedy this shortcoming of the simple model. Dirac3 

derived a revised equation of state by statistical 
methods from Fock's equation for a many electron 
system. This Dirac equation includes the exchange 
effect. The correlation energy between electrons with 
antiparallel spins was calculated by Wigner4 and this 
correction also has the same effect as Dirac's correction 
in cutting off the radius of the neutral atom to a finite 
value. 

Recently, much work5 has been done to include 
quantum corrections in a systematic way. The Thomas­
Fermi model is treated as the lower limit of the approxi­
mation in h. But all these corrections are obtained at the 
expense of the scaling law which is so important in the 
Thomas-Fermi equation. For this reason, no account is 
taken of such corrections in the following work. 

When the energy of an incoming photon and the 
momentum transfer to an electron become large, 
sufficient to eject a K electron from a heavy atom 
(Z"-' 1(0) to the continum, we have to use the relativistic 
wave functions for the electron or the relativistic 
equation of state developed by Chandrasekhar and we 
cannot use the Thomas-Fermi equation of state. 
Therefore, to test our theory we have to limit the 
transfer in energy and momentum below the K-absorp­
tion edge (Fig. 1). 

3 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930). 
4 P. Gombas, Z. Physik 121, 523 (1943). 
• W. D. Theis, Z. Physik 142, 503 (1955); W. Macke, Phys. Rev. 

100,992 (1955); Am. J. Phys. 17, 1 (1955); E. S. Fradkin, Soviet 
Phys.-JETP 64,5 (1957); S. Golden, Phys. Rev. 105,604 (1957); 
107, 1283 (1957); D. A. Kirzhnits, Soviet Phys.-JETP 5, 64 
(1957); L. C. R. Alfred, Phys. Rev. 121, 1275 (1961); G. A. 
Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961). 
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FIG. 1. Diagram showing the domain of atomic number Z 
and energy transfer from photon to atom where one can safely 
use the statistical atom model. 

To treat the dynamical motion of the electron gas as 
simply and universally as Thomas and Fermi treated 
the hydrostatics of the gas model, Bloch6 introduced 
the hydrodynamical proper modes in his famous work 
on the stopping power of a dilute gas for charged 
particles. He regards the electrons as a degenerate 
Fermi gas endowed with a characteristic pressure-­
density relation. The ground state has the property 
familiar from the work of Thomas and Fermi. This gas is 
capable of normal modes of oscillation about this 
equilibrium state. Bloch's model underlies the present 
analysis of the scattering of light by atoms. 

In Bloch's theory of stopping power, the interaction 
between a passing particle and atomic electrons has 
been assumed to take place directly through action 
at the distance. To treat the scattering of light by 
atoms, we derive (Sec. II) the hydrodynamical equation 
of motion of a coupled system of electron gas and 
radiation field. Based on these equations and the 
Poisson equation, we derive the absorption cross 
section. The absorption cross section is obtained as the 
energy uptake by the atom when the atom jumps to 
excited states from the ground state. Then we give a 
general definition for the oscillator strength. This work 
differs from that of Wheeler and Fireman7 only in 
this respect, that they used the dipole approximation 
whereas we use the general retardation factor. 

8 F. Bloch, Z. Physik 81, 363 (1933). 
7 l1\. Wheeler ~nd E. L. Fir~man, "A universal atomic photo­

absorptIOn curve, Aeronutromc Systems, Inc., a subsidiary of 
Ford Motor Company (1957). 

Following Maxwell's theory of classical electro­
dynamics we derive (Sec. III) the differential cross 
section for coherent scattering. For a long wavelength 
of the incoming wave, we find the well-known standard 
Rayleigh formula which connects the differential cross 
section to oscillator strength. 

The amplitude for coherent scattering turns out to 
be the sum of a "direct part" and a "dispersive part." 
The classical equivalent of a matrix element for the 
direct part makes no reference to any excitation of 
hydrodynamical oscillations, and when analyzed into 
partial waves contains contributions only of the type 
I (incident wave)=l (outgoing wave). The dispersive 
part is a product of factors akin to matrix elements one 
for the incoming wave, one for the outgoing wave, each 
satisfying the relation I (hydrodynamical oscillation) 
=1 (electromagnetic wave)±1. 

We apply Einstein's argument of statistical mechanics 
to derive (Sec. IV) the differential cross section for 
incoherent scattering. We consider an atom illuminated 
with two classical electromagnetic waves. Under these 
two perturbations we solve the hydrodynamical 
equations to the second order and get the absorption 
cross section. From the absorption cross section we 
obtain the differential cross section for inelastic scatter­
ing. The formula has three terms, (1) direct scattering, 
(2) dispersive scattering, (3) internal scattering (tenta­
tive name). The internal scattering is connected with 
the complexity of the original equations of hydro­
dynamics. It says that if two modes are excited, then 
these two modes in combination excite another mode 
through the internal mechanism. 

So far we discussed Bloch's hydrodynamical electron 
gas in classical terms as being capable of free vibration. 
We give (Sec. V) proper quantum field theoretical 
treatment to this free vibration. We divide the total 
Hamiltonian into the sum of a Hamiltonian of the 
ground state and a Hamiltonian which is associated 
with deviations from Thomas-Fermi's distribution. 
This Hamiltonian is quadratic in deviations in our 
approximation and has the form of an assembly of 
classical harmonic oscillators. We quantize this system 
and the radiation field. Following the perturbation 
method of quantum electrodynamics, we derive dif­
ferential cross sections for coherent and incoherent 
scattering. Compared with the results obtained by 
classical methods, the new results have the same form 
in direct scattering and more or less the same form in 
dispersive scattering. Corresponding to the internal 
scattering we have a new term which is related with the 
simultaneous excitation or annihilation of two modes. 
However, the states which have two or more modes 
excited are not stationary but decay exponentially with 
time. Therefore, our method of derivation is not correct 
in its treatment of these higher order processes. 

Finally, (Sec. VI) we discuss the Compton scattering. 
We take the direct scattering term. Using JWKB 
orbitals and the method of stationary phase, we rederive 
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Heisenberg's formula8 for total intensity for the 
Compton scattering. Also in the hydrodynamical model 
we employ JWKB expressions for the characteristic 
modes of oscillation and use the method of stationary 
phase to calculate the scattering cross section. The 
result agrees up to the Bloch factor9 of 3i /2 with 
Heisenberg-Bewilogua'sIO result for values of the 
scattering cross section for small momentum transfer. 
In this derivation we ascribe momentumll 'hw/ (dp/ 
mdno)t, and inertial massI2 hw/(dp/mdno) to a phonon 
of energy hw. We find that only at the distance where 
the momentum hw/(dp/mdno)t of the phonon agrees 
with the value of the momentum transfer from the 
photon do we get a contribution to the total intensity. 

II. HYDROELECTRODYNAMICS OF ELECTRON GAS 

Equation of Motion 

In this section we develop basic ideas and formulas 
which we use in this work, following Bloch and Wheeler­
Fireman. We start with Euler's hydrodynamical 
equation of motion for the electron gas which interacts 
with the electromagnetic field 

Dv ( v ) mn-=-vp-nvV+en E+-XH . 
Dt c 

(2.1) 

Here e and m are the charge and mass of the electron, 
n(x,y,z,t) is the number density of electrons, v(x,y,z,t) 
is the velocity distribution, and p(x,y,z,t) is the hydro­
dynamical pressure. Pressure p arises from the zero­
point energy of the degenerate quantum Fermi gas. 
We neglect exchange energy and temperature correction. 
We simply assume that the equation of state 

h
2 ( 3 )2/3 

P=_ _ n5/3 

sm 811' 
(2.2) 

is valid for hydrodynamically excited states as well as 
for the ground state. 

V is the electrostatic potential, E and H are the 
transversal electric and magnetic field intensity. These 
quantities represent the total electrostatic and electro­
magnetic field inside the atom. Therefore electrons move 
not in the given applied (external) field but in the final 
(total) field including the effect of the induced charge­
current distribution inside the atom. Inside the atom, 
we can neglect the electromagnetic interaction between 
electron and electron and take the electrostatic interac­
tion alone because the electromagnetic interaction is 
proportional to vic (<<1), where v is the velocity of an 
electron. 

8 W. Heisenberg, Physik Z. 32, 737 (1931). 
9 F. Bloch, Helv. Phys. Acta 7, 385 (1934). 
10 L. Bewilogua, Physik Z. 32, 740 (1931). 
11 L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941). 
12 H. Kramers, Physica 18, 653 (1952). 

We rewrite Eq. (2.1) into the following form: 

a ( e) 1 In dP(n') 1 1 
- v+-A =--v ----vv-v-v2 
at me m 0 n' m 2 

Then we can introduce the velocity potential u defined 
by 

v+eA/(me) = -Vu. 

We substitute (2.4) into (2.3) and get 

au 1 fndP(n') V 1( e)2 
-=- --+-+- vu+-A . 
at m 0 n' m 2 me 

(2.4) 

(2.5) 

The field equation inside the atom is the Poisson 
equation 

V'2V = -41l'e2n. (2.6) 

The equation of continuity is 

an/at= div[n(Vu+eA/ (me)]. (2.7) 

Three equations (2.5), (2.6), and (2.7) and the equation 
of state (2.2) supply the necessary and sufficient basis 
for the present analysis. 

Small Vibrations, Equilibrium State, 
Orthogonality Relations 

Bloch's hydrodynamical electron gas is capable of 
oscillations around the ground state. The deviation from 
the ground state can be treated, as usual, by the theory 
of small vibration. We expand hydrodynamical quanti­
ties in terms of deviations: 

number density: 

electron pressure: 

velocity potential: 

electrostatic potential: 

n=nO+nl+n2+'" , 

p= PO+pI+P2+' ", 

U=0+UI+U2+' .. , 

V=VO+VI+V2+···. 

(2.8) 

Succeeding terms are specified by the order of interac­
tion with the external field. Suppose the interaction is 
switched off at a certain time. From that moment the 
atom remains stationary in the various excited states. 
Exactly speaking, if two or more modes are excited, this 
state is not stationary because these modes in combina­
tion excite another mode as discussed in Sec. IV. 
However, this process takes place through the 2nd-order 
perturbation. Therefore, as far as we are concerned 
with the lowest order, the states where two or more 
modes are excited are stationary and are characterized 
by harmonic oscillations. These oscillations we call 
free vibrations. Then equations which are linear in nl, 
UI, and V I are 

V'2V I = -41l'e2nl, 

anI/at = V'(nOV'UI), 

mduI/at=nl(dP /nodno) + VI. 

(2.9) 

(2.10) 

(2.11) 
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We characterize the free vibration by proper fre­
quency wand by the indices of a spherical harmonic. 
The general solution is the superposition of the elemen­
tary solutions of the form 

nl(k) = -wkNk(r,8,f/J) sin(wkt+8k), (2.12) 

UI(k) = Uk(r,8,f/J) cos(wkt+8k), (2.13) 

(2.14) 

Inserting (2.12), (2.13), and (2.14) into (2.9), (2.10), 
and (2.11) we get 

V'2Vk= (4tre2/m)Nk, 

-Wk2Nk= V'(nOV'Uk), 

- Uk= - Nk(dp/mnodno)+ Vk. 

(2.15) 

(2.16) 

(2.17) 

Next we recall the derivation of the contribution of 
an individual mode of proper vibration to the energy 
uptake of the statistical atom. As usual we proceed with 
the variation principle. The total energy has the 
following form: 

(2.18) 

Let this energy be minimized with respect to n, keeping 
the total number of electrons Jndr=Z fixed. We get 
the unperturbed static solution no. Then let all free 
vibrations be excited, so that 

n=no+nl=nO+ Lk Cknl(k), 

U=O+UI= Lk CkUI(kl, 

V= Vo+ VI = VO+Lk CkVI(k). 

To secure real nl, Ul, and VI we claim that 

Ck=C-k*, 
where 

and 
C-k=C",k,I.-m 

since we define the spherical harmonic such that 

(2.19) 

(2.20) 

(2.21) 

(Not in accord with Condon's choice of phase!) 
The energy increase t:.E is given by 

t:.E=~ J dr{ mnO(VUI)2+nl VI 

[ 
d2 ( n pen') )] } 

+n12 - nf --, -dn' 
dn2 0 n 2 no 

(2.22) 

because terms of the first order in deviations from 
equilibrium vanish. This t:.E must be a constant of 

time after the perturbation is turned off. We can 
explicitly show this constancy by taking the time 
derivative of t:.E: 

~(t:.E)=JdS{ (noVl+nl dP)VUl 
dt dno 

1 [ aVI aVl 
]} +- VI---VVI . 

8tre2 at at 
(2.23) 

Then we impose the boundary conditions: 

(1) Normal component of gas velocity vanishes on 
the boundary surface. 

(2) Variations in potential vanish on the boundary 
surface. 

We eventually extend the boundary surface to the 
infinity. Due to the boundary conditions d(t:.E)/dt=O. 

On the other hand, the energy increase due to free 
vibrations has the following form: 

t:.E=L [Ck[2'~k2JNkUk*dr 
k 2 

(2.24) 

provided that we demand the orthogonality condition 

fNjUk*dr=O. (2.25) 

This condition annuls all the mixed terms which would 
otherwise contribute to (2.24) and which would vary 
periodically in time with a circular frequency of the 
form (Wj-Wk). The absence of these terms ensures 
that t:.E remains constant in time. 

Absorption Process 

Now we are ready to apply the hydrodynamical 
theory to th~ absorption of light. Following Wheeler­
Fireman, we sketch the general procedure. At time 
t= 0, let the electromagnetic interaction be applied. 
As time goes on, various modes are excited. The 
amplitude of the individual mode varies with time. 
After a sufficiently long time, let the interaction be 
stopped. The atom will be left in a superposition of 
free vibrations. During the supply of the electromag­
netic interaction, the energy for the individual mode 
increases linearly with time or oscillates with time. 
We pick up those terms which increase linearly with 
time, and get the absorption cross section. 

We expand the deviations nl, UI, and VI in terms of 
an orthonormal complete set N k, Uk, and Vk. 

nl=L gk(t)Nk (r,8,r/J), 
k 

UI=L hk (t)Uk(r,8,r/J), (2.26) 
k 

Vl=L dk(t) Uk (r,8,r/J) , 
k 
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where we have included the time dependence of 
stationary states into the expansion coefficients gk, hk' 
and dk • The equation of motion, field equation, and the 
equation of continuity in first order in the external 
field are as follows: 

aUI 1 dp VI 
-=nl--+-, 
at mno dno m 

(2.27) 

Inserting Eq. (2.26) into Eq. (2.27) we get the following 
relations: 

(2.28) 

The general solution of (2.30) is 

(2.32) 

P means the principal part and Ak is an arbitrary 
constant. We fix this Ak from the initial condition. 
We demand that at t=O, the number density deviation 
ni and the velocity potential UI vanish. Namely, we ask 

hk(t=O)=O, 

gk(t=O)=O. 
(2.33) dk(t) = -mgk(t), 

hk(t) = gk(t), (2.29) Then Ak takes the following form: 

Here, the external classical field is given by 

E= Re[EoeiCk .r-wt1J 

or 

A=Re\ ;-EoeiCk.r-wt1], 
.1W 

where Re means the real part. 

(2.30) 

(2.31) 

(2.34) 

At time t, the interaction is stopped and the atom 
remains in a state of free vibration. Therefore we have 
the following relations between gk(t), hk(t), and Ck(t) : 

Hence 

-CkWk sin (wkt+(h) = gk(t), 
(2.35) 

(2.36) 

f no(EO·VUk*)eiCkor1dr 

Im-----------------

f no(Eo· VUk*)eiCkor1dr f no(EOovUk*)eiCkor1dr 

M.",(t} XMk c21 (t)+ 2 Re 1m (2.37) 

wkf Uk*Nkdr Wk f Uk*Nkdr 
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where 
Mk(l) (t)=W-2(Wk2 sin2wt+w2 cos2wt-2wWk sinwt sinwkt-2w2 coswt coswkt+(2), 

Mk(2) (t) =W-2(W2 sin2wt+wk2- 2WWk sinwt sinwkt+wk2 cos2wt- 2Wk2 coswkt coswt), 

M k(8) (t) = W-2(Wk2_W~) sinwt(coswkt-coswt). 

(2.38) 

We sum over states k: 

(2.39) 

where dN / dWk is the level density at frequency Wk. It turns out that M k(8) (t) contributes only to oscillating terms 
so that we neglect it. Mk(l)(t) and Mk(2)(t) contribute to terms which increase linearly with time. Therefore we 
keep those terms. The final result is 

(2.40) 

Since the flux S of the incoming electromagnetic wave is then 

dN Ifno(e'VUk*)ei(k.r)drI2 

the absorption cross section becomes 

I f
no(e' V Uk *)ei(k .r)dr 12 

21r2e2 dN 
O'(W) =-- ----------­

me dwk 

(2.41) 

. (2.42) 

Wk=W 

This agrees with the result of Wheeler-Fireman when 
the general retardation factor ei(k ·r) is replaced by the 
first-order term i(k·r) (dipole approximation). 

Oscillator Strength 

If we define the oscillator strength j by 

21r2e2 

O'(w) =-j(w) , (2.43) 
me 

j(w) = 
dWk 

(2.44) 

Wk=W 

The eigenvalue of Eqs. (2.15), (2.16), and (2.17) 
were studied by Wheeler and Fireman. They have 
shown that the spectrum is not discrete, as Bloch had 
assumed, but continuous. 

III. COHERENT SCATTERING 

Scattering Cross Section 

In this section we apply Bloch's hydrodynamics to 
elastic scattering and analyze the differential cross 
section by the method of partial waves. 

The external electromagnetic field produces a current 
inside the atom. This current is given, to the first 
order, by 

(3.1) 

where Ul is already obtained in (2.26) and (2.32). However, we have to replace the principal part P III 

(2.32) by the outgoing boundary condition. 
From the induced current (3.1) we get the magnetic field H(r,t) outside the atom. 

(3.2) 
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From this expression we get the differential cross section for coherent scattering 

du =(~)2 
dw mc2 

f novUae-i(k'orJdT J nO(ein·VUa*)ei(korJdT 

ein f noei(k-k'J ordT-~ Xn 0 

J Ua*lVadT(wa2-w2-i~) 
Rewriting n by the product of two orthogonal polarization vectors, eout of the scattered wave, we get 

du (e
2)2 

-= - L 
dw mc2 polarization of 

scattered wave 

f no (eout 0 vUa)e-i(k' orJdT f nO(ein 0 vU a*)ei(k orJdT 

(ein °eout) f noei(k-k'J ordT-~ ------------------­

J Ua*}lladT(Wa2-W2-i~) 
Forward Dispersion Relation for Light with a Long Wavelength 

(3.3) 

. (3.4) 

Based on this equation, we discuss the dispersion relation. We take the scattering of light with a long wave­
length. Let the polarization vector ein point in the x directiono Since iVa forms a complete set of functions satisfying 

we expand the vector V (noe-·(k or» in terms of the Na with coefficients which are vectors Ca independent of position: 

J noe-i(k' 0 r) V U ",dT 

V(noci(k'or»=L CaNa*=-L: Na*. (3.5) 

We now multiply both sides with xe-i(kor) and integrate. Then we use Eq. (2.6) and get 

fnoe-i(k'orJVUadT 1 

-fxV(noe-i(k' .r»ei(k.r)dT= L .- fv. (noVU.,*)ei(k.r) ( -X)dT. (3.6) 

a J wa
2 

UaNa*dT 

We assume 
(3.7) 

where Tl is the distance inside which half of all the electrons are included. Then, noting V'x=ein, we can reduce 
Eq. (3.6) to 

(3.8) 

Inserting this relation into (3.4), we get 

(3.9) 
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For the forward scattering, the calculations given at the end of this chapter show that if eout points in y direction, 
then the scattering amplitude of (3.9) vanishes. Hence we have 

Thus we have 

Now we generalize the definition of the oscillator strength given previously by Eq. (2.43) to 

II nO(ein' VUa*)e'(k.r)drl
2 

!E,m(Wa)=--------

Inserting this relation into (3.11) we get 

where 
dN 

djl,m(Wa ) = jl,m(wa)-dwa, 
dWa 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3,14) 

This is the well-known standard classical Rayleigh formula which connects the forward differential cross section 
to the oscillator strength. 

Deriving Eq. (3.13) by simple argument, Putnam13 takes the photoelectric cross section of the hydrodynamical 
gas model from the preliminary calculations of Wheeler and Fireman. He fits their results by a simple analytic 
formula for dj/dw as a function of w. He uses this representation of the oscillator strength in the Rayleigh formula 
and integrates to get the elastic scattering cross section as a function of energy for wavelengths great in comparison 
with atomic dimensions. Eq. (3.4) of course is not limited to the case of long wavelengths and also forward 
scattering. 

We looked for a dispersion relation for nonforward elastic scattering, but we have not yet succeeded in estab­
lishing it. 

Analysis by the Method of Partial Waves 

The scattering amplitude given by Eq. (3.4) can be written in the following way: 

'" dN(wa") 
M(eout, k'; ein, k) = (ein .eout)Inoei(k-k') .rdr- L f dw","---

l",m" Jo dwa " 

I no(eout·vU",,)e-i(k"X)d3x f nO(ein'VUa*)ei(k' Y)d3y 

X (3.15) 

where we have defined 

2wa"! Ua"*N",,dr(w(/'-w-i~) 

U -wa,l,m= Uwo"l,m, 

N -w", l,m= NWa,l,m. 

13 P. Putnam, "Photon scattering by statistical atom," Ph.D. thesis, Princeton (1960). 

(3.16) 
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We analyze the scattering amplitude M(eout,k' jein,k) 
in Eq. (3.15) by the methods of partial waves. We 
choose the coordinate system as in Fig. 2. Here, 

ein= (COScf>in, sincf>in, 0), 

eout= (coscf>out cosE>, sincf>out, -coscf>out sinE», (3.17) 

k' = k(sinE>, 0, cosEl). 

The direct scattering term is well known and given by 

Z (k) -Z'(k') 

~r,8,cf» 

If---------- y(y') 

(3.18) 

To evaluate the dispersive scattering term we employ 
expansion of the familiar type: 

00 I' 

e-i(k' ·r) = 411" :E :E (-i)I'jdkr) Y1',m' 
l'=O m'=-l' 

X (E>,O)YI',m'*(O,cf». (3.19) -We assume for Ua,,(r,O,cf» the following form: eout 

(3.20) 

For simplicity we write ja" (r) instead of j"''',I'' (r) in the 
following formulas. Then two factors, f no(r) (ein' V U a *) 
Xei(k 'Y)d3y and f no(r) (eout' V Ua" )e-i(k' ,x)d3xin the dis­
persive scattering term can be reduced further as below: 

FIG. 2. The coordinate system that we use for the calculation 
of the matrix element, M(eout, k', 'ein, k) for the coherent scatter­
ing in Eq. (3.15). k and k' are the wave vectors of the incoming 
wave and the scattered wave. ein and eout also are the polarization 
vectors of the incoming wave and the scattered wave. We choose 
the direction of k as the z axis so that ein lies in the (x,y) plane. 
Also, we take x and y axes such that k'-taken as the z' axis-lies 
in the (z,x) plane. 

where mil = ±1 and 
2(1-1)l 2 (1+ 1) (l+ 2) 

Kl(l,l") = - 01",1-1+ 01",1+1, 
(2l-1) (2l+ 1) (2l+ 1) (2l+3) 

2(l-1)2l 2(l+1) (l+2)2 
K2(l,l") = 01",1-1+ 01",1+1. 

(2l-1) (2l+ 1) (2l+ 1) (2l+3) 

(3.22) 

From this result we see that the incoming partial wave of angular momentum I induces hydrodynamical oscilla­
tions of proper modes of angular momentum (I-i) and (l+ 1). 

f no (eout . vUa,,)e-i(k' .r)dT 

(l"-1)! ! 00 

= (coscf>out cosE>+im" sincf>out)7I'( (2l ll+1») :E (-i)I'(21'+1)Y1',0(El,O) 
(til + 1) ! 1'=0 

[ 

00 dja" foo ] (lll-l)! )t 
X K 1(l',lll)1 dr r2nojdkr)--+K2(l',l") drrnojl,(kr)ja" +71' (21"+1) 

° dr ° (til + 1) ! 



                                                                                                                                    

812 MASAMI WAKANO 

where m" = ± 1 and 
-2 (l"+1)! 2 (t"+3)! 

K 3(l',l") = 01'.1"-1+ 01'.1"+1, 
(2l" -1) (2l" + 1) (l" - 3) ! (2l" + 1) (21" +3) (l" -1) ! 

2(l"+1)(l"+1)! 2l"(l"+3)! 
K4(l',l") = - 01'.1"-1- 01'.1"+1, 

(2l"-1)(2l"+1)(l"-3)! (2l"+1)(2l"+3)(l"-1)! 
(3.24) 

2(l"+1)l"! 2l"(1"+2)! 
K.(l' ,1") = 01' .1"-1+ 01' .1"+1, 

(2l"-1) (21" + 1) (1"_ 2) ! (21" + 1) (2l" +3)l"! 

2(1"+1)(l"+1)! 2l"(l"+2)! 
K 6(l',1") = - 01'.1"-1+ 01'.1"+1. 

(21"-1) (21" + 1) (t" - 2) ! (21" + 1) (2l" +3) (t"-1) ! 

We conclude that, for the hydrodynamical oscillations 
of proper mode of angular momentum t", the partial 
waves of angular momentum (l" -1) and (1" + 1) of 
the scattered wave give the nonvanishing contribution. 
These expressions are well adapted to numerical 
evaluation. 

IV. INCOHERENT SCATTERING 

Use of Einstein's Statistical Argument to Derive 
Incoherent Scattering of Radiation 

In this section we discuss the incoherent scattering 
of radiation in the framework of a classical picture, in 
which we treat both the oscillations of the electron gas 
and the perturbing effect of the electromagnetic 
radiation in classical terms.14 We recall Einstein's 
derivation of the relation between coefficients BO-+1 
and B1-+o for absorption and stimulated emission 
(essentially classical concepts) with the spontaneous 
emission rate A 1-+0. 

The principle of detailed balance states that the 
number of transitions per second up has to equal, in 
equilibrium, the number of transitions down: 

where the equilibrium numbers have the ratio 

NJNo=e".,/kT. (4.2) 

From this argument, Einstein derived, in a familiar 

way, the formula 

A1-+0= (ftw3/(2'l1')3C3)B1-+0. (4.3) 

In tum, B1"'O(W) is related to the absorption cross 
section u(w'), which has a sharp peak at w'=w, by the 
equation 

(4.4) 

Therefore, we have 

A1-+0CW) = [w2/C2'l1')3C2] f u(w')dw'. (4.5) 

Here, following Gregory Breit, we generalize this 
kind of reasoning to find the cross section for a slightly 
more complicated process where atoms are illuminated 
by the primary beam of frequency w, of given direction 
and given polarization, and emit electromagnetic 
radiation of frequency w', of given direction and given 
polarization. 

We illuminate atoms with an additional beam which 
has the same frequency, direction, and polarization as 
does the secondary wave, and contains W'2/ C2'l1'C)3 
photons per cm2 and per second and per unit solid 
angle. Under these two perturbations, we solve the 
hydrodynamical equations to the second order and 
calculate the absorption cross section. We insert this 
expression into Eq. (4.5) and then we obtain the dif­
ferential cross section for the incoherent scattering. 
We summarize the reasoning in the following formula: 

atom is illuminated by the Rrimary radiation of circular frequency wand simultaneously by 
[

Probability per second of transition from the ground state to the kth excited state when the] 

light of frequency w' and of given polarization containing w'2/C2'l1'c)3 photons per cm2, and 
per second, and per unit solid angle. 

, (4.6) 
[Number of primary photons incident per cm2 and per second] 

where 

This method was applied to the scattering of light 

14 G. Breit (the author was told by Professor Wheeler that 
G. Breit had used this method). 

by a hydrogen atom and it was shown (details of 
analysis not reported here) that the result for the 
differential cross section for incoherent scattering is 
identical with the formula obtained by the quantum 
field theory of radiation. 

We rewrite this definition into a more convenient 
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iJU2 h
2 

( 3 )l( n2 1 n12) 
-;;;= 3m2 871" no! -(; not 

form for calculations, 

(4.7) 

and 
V 2 1( e)2 +-+- VUI +-A , 
m 2 me (4.9) 

V'2V2= -471"e2n2, 

! Ein 0 !2e ! Eout 0 !2e 
iJ~2 = V -[ nOVU2+n{ VUI+ ~/) 1 

871"1iw 871"nWI 

(4.8) 
As before we expand n2, U2, and V 2 in terms of N k, Uk, 
and Vk such that 

Here !1Ek(2) (W,WI) is the energy uptake by the atom 
when the atom jumps to the kth excited state under 
two perturbations of frequency, wand WI, respectively. 
To evaluate !1Ek(2) (W,WI), we make a calculation of 
second order. 

n2= L gk(2) (t)Nk(r,O,I/J), 
k 

U2=L hk(2) (t)Uk(r,O,I/J), 
k 

V2= L dk(2) (t) Vk(r,O,I/J). 
k 

The equation of motion, field equation, and the 
equation of continuity in second order in the external 
field are as follows: Inserting Eqs. (4.10) into Eqs. (4.9) we get 

and 

We impose the same initial condition as before. 

gk(2) (t=O)=O, 

hk(2)(t=O)=0. 

(4.10) 

(4.12) 

Let the interaction be stopped at t and the atom be left in a state of free vibration. Then the energy uptake 
!1Ek(2) (t) for mode k is given by the familiar formula 

V'Ek(2)(t)=!m f UkNk*dr(!gk(2)(t) !2+wk2!hk(2)(t) 1
2). (4.13) 

We insert these results into Eqs. (4.7) and (4.8) and get the final result 

{

f nO(ein' V U/)ei(k or)dr ., f no(eout' V Ui*)e-i(k' or)dr 

X fC-'(k or)eout O (WkNk*VUi-wN;VUk*)dr+----------
w;2-w2 W;2- (W-Wk)2 

(Continued on next page) 
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f nO(ein' VUi*)ei(k .r)dr f no(eout' vU/)e-i(k' .r)dr 

X f ei(k .r)ein· (wklfk *V Ui+ (w-wk)NiV Uk *)dr } + L. ----------------­
'.J f U/Nidr f U/Njdr(Wi2-w2)[Wj2- (W-Wk)2] 

Comparing this expression with Kramers-Heisen­
berglLWaller'sl6 formula of wave mechanics, we see that 
the first term corresponds to the direct scattering. 
This correspondence is pursued in Sec. VI. The second 
and third terms are also familiar and correspond to the 
dispersive scattering. The last term is less familiar. 
One might argue that the correspondence theoretical 
method we used is the cause of this term. However, we 
applied our method to the simple system of hydrogen 
atom plus radiation field where the hydrogen atom is 
composed of a fixed force center and a bound electron. 
And we used Schrodinger's equation for this electron. 
Then we got the formula of Kramers, Heisenberg, and 
Waller. One might argue in another way that we omitted 
the electromagnetic interaction inside the atom and 
retained the electrostatic interaction. This electrostatic 
interaction eliminates itself in determining basic 
functions N k, Uk, and V k • Therefore, this elimination of 
the electrostatic interaction is reflected as the direct 
interaction between three modes i, j, and k. To check 
this point, let us drop the Poisson equation and the 
deviation in electrostatic potential. Then we see that 
all formulas which we obtained, Eqs. (2.25), (3.3), and 
(4.14), remain the same. The electrostatic interaction 
changes only lVk and Uk themselves. Thus we come to 
the conclusion that the complexity of the original 
hydrodynamical equations produced this term. The 
term in Eq. (4.14) which includes fNk*NiNjno-tdr 
arises from the term in the first equation of (4.9) which 
includes n12• This term shows that two modes i and j, 
excited by the external field, excite mode k through the 
compressional force. Terms in Eq. (4.14) which include 
fNk*(VUi · VUj)drandfNi(VUk*·VUj)dr arise from 
terms in the first and third equations of (4.9) which in­
clude (VUI)2 and V· (nlVul), respectively. This kind of 
term is reasonable. Flow of the Fermi gas excited in mode 
iI, and flow of the Fermi gas excited in mode i 2, build up 
in combination certain excesses and deficits of density 
which excite mode i a. Indeed, suppose that at t= 0 the 
external field be stopped and the atom be left in the 

15 H. A. Kramers and W. Heisenberg, Z. Physik 31, 681 (1925). 
16 I. Waller, Z. Physik 51, 213 (1928). 

(4.14) 

state where two modes i and j are excited. Then, 
from Eq. (4.11), we see that through these terms, 
fNk*N;lvjno-tdr, fNk*(VUi'VUj)dr, and fN; 
X (V Uk *. V U j)dr, the third mode k is excited. 

V. QUANTIZATION OF THE OSCILLATING ATOM 

Hamiltonian of the Free Field Which Is Quadratic 
in Deviations of Charge Density and 

Velocity Potential 

Bloch's hydrodynamical electron gas is capable of 
oscillations around the ground state. We termed this 
oscillation the free vibration. In this section-following 
work of Bloch,9 Wentzel,17 and Bohrl8-we give a 
proper quantum field theoretical treatment to this 
free vibration. 

Let us start with total Hamiltonian of the coupled 
system of electron gas and radiation field: 

m f ( e)2 e2 f n(a)n(b) 
H=- n vu+-A dr+- ---dradrb 

2 me 2 rab 

f Ze2 f in P(n*) 
- -ndr+ drn --dn* 

r 0 n*2 

(5.1) 

Further we divide H 0 into the Hamiltonian of the 
ground state plus the Hamiltonian which describes 
deviations from Thomas-Fermi's distribution. 

f Ze2 f in P(n*) 
- -ndr+ dr n --dn* 

r 0 n*2 

=Ho.o+Ho.2, (5.2) 

17 G. Wentzel, Quantum Theory of Fields (Interscience Pub­
lishers, Inc., New York, 1949). 

18 A. Bohr, Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 
26, No. 14 (1952). 
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where 

and 

The interaction Hamiltonian is given by 

Canonically Conjugate Coordinate 
and Momentum 

(5.3) 

Let us forget the interaction HI for a while and 
discuss the free vibration. We regard the system 
described by Ho.o as vacuum and nl and Ul as dynamical 
variables. As before, we expand these operators by 
Na and Un. 

nl(t)= - L L Cwa.l.m(t)waNwa.l.m(r,fJ,r/J), 
Wa~O 11m 

nl(t)= L L hwa.l.m(t)Uwa.l.m(r,fJ,r/J). 
(5.5) 

Wa~O l,m 

To secure real nl and Ul, we claim 

Cwa.l.m(t) = CWa.l. -m*(t) 
and (5.6) 

hwa.l.m(t) = hwa.1, -m*(t). 

We define the momentum 7rwa, I,m conjugate to CWa,l,m by 

7rwa.1.m= aT / ac wa,l,m= Cw",l,m* 

x( m f Uwa,I,m*Nwa,l.mdT). (5,9) 

Inserting (5.8) and (5.9) into (5.7) we get 

(5.10) 

Here, and from now on, we use the symbol a instead of 
w", I, and m. From the Hamiltonian, (5.10) we see that 
the hydrodynamical system can be regarded as an 
assembly of harmonic oscillators with frequency w". 
We introduce creation and annihilation operators ba * 
and ba of the hydrodynamical oscillation of the proper 
mode a in the familiar way: 

Ca= (_h_)! (b,,+L,,*), 
2Baw" 

where 

B,,=mf Ua*NadT. 

We define the number density operator n" by 

bab,,*=n,,+l 

(5.11) 

(5.12) 

and (5.13) 

With these operators, Cw".l.m and hw".l,m, we rewrite 
H o,2 into the following form: Then the Hamiltonian H O•2 takes a familiar form 

=T+V. (5.7) 

From the equation of continuity we have 

hWa,I,m=w,,-lCwa,I,m. (5.8) 

(5.14) 

S-Matrix Formalism19 : Matrix Elements for 
Coherent and Incoherent Scattering 

Now we deal with a coupled system of hydrody­
namical electron gas and radiation field. We use the 
interaction representation. The interaction Hamiltonian 
density operator H I(Xl,X2,xa,t) is given by 

(5.15) 

19 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 27 (1946); J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949),76, 790l 
(1949); R. P. Feynman, Phys. Rev. 76, 769 (1949); F. J. Dyson, Phys. Rev. 75,486,1736 (1949). 
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The S matrix is given by 

(5.16) 

or more conveniently for our purpose, 

(5.17) 

We quantize the radiation field too. 

(5.18) 

We take only transversal fields because we already included longitudinal and scalar fields into the Coulomb 
potential. Then for the coherent scattering we get, to the lowest order, 

<k',eout,O I S I k,ein,O) 

e2 7r 1 
1 J no (eOul . VUa)e-i(k' OXl)d8XlJ nO(ein' VUa*)ei(koX2)d3x2 

(einoeout) f nO(xl)ei(k-k') d3xl--L ----------------------=- - ----0 (wout-w) 
mc2 Ji Vw 

2 a f Ua*Nadr(wa-w-iE) 

1 f no(ein'VUo)ei(kOXl)d8Xlf no(eout·vU,,*)e-i(k'oX2)d8X2 

--L------------------------
2 " 

f d8x£walNal*(X2) (ein . VUa2*(X2»+WazNa2* (X2) (ein . VUal*(X2»]ei(k,x2) 

X---------------------------------------------
(Wal+Wa2-W-iE) 

x f d3Xl[WalN al(Xl) (ein' V Ua2 (Xl) +W"2Na2 (Xl) (ein . VUal(Xl»]ei(k';l:l) 

f d8X2[WalNal*(X2) (eout' V Ua2*(X2»+Wa2Na2*(X2) (eout' V Ual*(X2» ]e-(k' 'X2») 

X . 
(Wal +Wa2+W- if) 

(5.19) 

We are familiar with the first three terms. These terms agree with previous results in Sec. III. The last two 
terms are new. These terms arise from 

(e/2c)nl(X) (A(x)· VUl(X)+VUl(X)' A(x» (5.20) 
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in Hr(x). Therefore, two hydrodynamical oscillations can be excited or annihilated simultaneously. From the 
consideration given in Sec. IV, we see that the state where two modes are excited is not stationary. Two modes in 
combination excite another mode. Therefore, such a state has an exponentially decaying time dependence. So our 
method of derivation is not correct in its treatment of these higher-order processes. 

We can make the similar calculation for incoherent scattering. We write down the result 

f nO(ein· vU;*)e-i(k' .X2)d3X2f d3X1 ei(k.Xl)ein· (Wf3Np*VUi-WiNiVUrl) 

+-----------------------------------------------

f nO(ein· V Ui)ei(k .xlld3Xl f d3x2 e-i(k' .X2)eout· (wpN p*V U;*+wiN;*V U p*) 

+------------------------------------------------

+ f '0("".'· V U ,)r'''· . '''d'x.j d'x, ,0('. 'de, •. (w,N ,'V U ,'+w;N,'v U ,') 11 
(Wi+w{J-w-iE) I 

J 

(5.21) 

Again the first three terms are familiar and agree with previous results provided that those parts of the second 
and third terms in Eq. (4.14) which have a factor (WdVk*V Ui-wiNiV Uk*) after rearranging these two terms such 
that they have the denominator which depends linearly on w, can be neglected compared with other terms. The 
last two terms correspond to the simultaneous excitation of two modes i and (3. However, from the reason given 
previously, our method for this particular process is not correct. 

In this way, we can automatically compute other processes which involve the interaction between hydrody­
namical electron gas and radiation field. However, we do not proceed further into these processes, but we tum 
attention to the Compton scattering because, for this process, we can easily compare hydrodynamical results with 
experiments and we can work out cross sections with the semi-classical JWKB approximation, both for the hydro­
dynamical model and for standard wave mechanics. 

VI. COMPTON SCATTERING 

Rederivation by Orbital Method Plus the Method of Stationary Phase of Heisenberg's Formula 

The intensity for the Compton scattering is in the approximation of direct scattering, proportional to 

where Z=2n. 

2" 

[Mij [2= [fi(X1, 0"1; ... ; X2n, 0"2n) fj*(X1, 0"1; ... ; X2n,t72n) L ei(k-k') . XidT1· .. dT2n [2, 
i=1 

(6.1). 
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The ground state wave function of the atom is given in the familiar approximation by a determinant 

1 I ¢l,+(Xl,Ul) '" ¢8,+(Xl,Ul) .. , ¢n,-(Xl,Ul) I 
[(2n) !]~ ¢1,-(X:2n,U2n)" '¢8,+(X2n,U2n)" '¢n'-(~2n,U2n) . 

(6.2) 

Let one of the electrons be excited from the sth level with spin + to the (s+k)th level with spin +. Then the 
wave function of the final state will again be a determinant of the form 

1 I ¢l,+(Xl,Ul) ... ¢s+k,+(Xl,Ul) ... ¢n,-(Xl,Ul) I 
ifif(Xl,Ul;"';X2n,U2n)=: : . 

[(2n) !]! ¢1,+(X2n,U2n) ' . '¢8+k,+(X2n,U2n)' . '¢n,-(X2n,U2n) 
(6.3) 

Then we can easily show that 

(6.4) 

For the total intensity, we sum \Mif \2 over f and separate off the coherent scattering term as Heisenberg did. 
We get 

where 

L ¢;*(r)¢i(r') \ 2e is ,(I-I'), 

occupied 
states 

s=k-k'. 

(6.5) 

To evaluate the second term in this equation, we use the JWKB approximation for ¢i(r) in the following way: 

where 
w,n=~(aEn'l) . 

h an I 

And in the same approximation, the spherical harmonic takes the following form: 

Y
l 

mUM) [(l+!)]! cost re 
((l+!)L m

2 

)"dO-":...}eim4>. 
, '/I"[(l+t)2 sin20-m2Ji JOT,P. sin20 4 

Using these expressions for Rn,l and Yl,m, we compute Eq. (6.5). 

f f dVdV'\ 
L ¢;* (r)¢i(r') \ 2eis(I-I') 

occupied 
states 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

= 2 L ffdVdV'¢n,l,m *(r)¢n' ,1',m,(r)¢n,l,m(r')¢n',l',m,*(r')eis(I-r'). (6.10) 
n,l,m 

n'.l'.m' 

Let us perform the angular integration first, 

where we choose the s direction as z direction. 
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Using Eq. (6.9) we get 

f sinOdOdcpY1,m*(O,cp) Y1',m' (O,cp)e iST cos8 

= om',m((z+!)(Z'+t))! 1 .{exp[iJ8' (k1,m(O)+k1',m(O»)dO+sr COs()I+(h] 
27rsr (COSOI)!( (Z+t)2(Z' +t)2-m2s2r2). OT.P. 

+exp[i L81 

(k1,m(O)-k1',m(O))dO+sr cOSOI+Q2] 
8T.P. 

+exp[i J::~P' (-kl, m(O)-kl' ,m(O))dO-sr COSOI+Qa J}. (6.12) 

In the above derivation we used the method of sta- where 
tionary phase. Here R=t(r+r'), 

(6.17) 
(6.13) 

(h, 15 2, and Qa are constants independent of r. For Z>Z', 
we have to drop the third term and for Z<Z' we have to 
drop the second term. The stationary angle Ol is defined 
by 

~(18 (k1,m(O)+kl',m(O))dO+sr coso) =0, 
dO 8T.P. 

~(i8 (kl,m(O)-kl',m(O))dO+sr COSO) =0, (6.14) 
dO OT.P. 

~(i8 (-kl,m(O)+k1',m(O))dO+sr COSO) =0, 
dO OT.P. 

where 
0:::;0:::; t7r. 

All three equations give the same answer to Ol. 

1 
sinOl =-{ (l+t)2+ (l'+t)2 

sr 
±2 ((l+t)2(Z' +t)2-m2s2r2)!}!. (6.15) 

The physical interpretation of this equation in terms of 
vector summation of angular momenta appears in Fig. 3. 

N ext we make the approximation-based on the 
correspondence principle-to drop the rapidly varying 
terms in the product of JWKB radial wave functions at 
two nearby points,20 finding 

Rn,l (r )Rn,l (r') 

(
me ) 1 1 

"'" 7rli
w

, n R2 ( 2me( 
- En,l-V(R) 
li2 

(

2me( Xcos fj En,l- VCR) 

20 S. O. Hart, A. B. thesis, Princeton, 1942. The author could 
not find Hart's thesis. He knew Hart's work from Wheeler and 
Fireman's note. 

r1=r-r'. 

z 

R 

s 

I 
FIG. 3. Final angular momentum of the struck electron 

«I'+1f2>.v) (in units Ii) represented as the vector sum of the 
original angular momentum «1+ %>.v) and the transfer of angular 
momentum sXr. Here s is the transfer of linear angular momen­
tum. The Z axis has been chosen parallel to this vector. The 
angular momentum m about this axis is unchanged by the impact. 
The dihedral angle 0, between the two planes TRQ and PRQ, is 
important in analyzing the impact. It is identical with the angle 
between the lines TU and PU because TU and PU are perpendic­
ular to QR. 0, is the angle for which the phase of the product of 
Pl,m(O), Pl',m(O) and eisrcos9 becomes stationary. For OI the 
following equation holds: 

[(/'+!)2- (m2/sin2fJt)]'+[(l+!)2- (m2/sin20')]'=sr sinOt, 
or solving with respect to OI, 

sinOI=.!..{ (I+!)2+ W+!)2±2«l+!)2(/'+!)2-m2s2r2)i}t. sr 
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We insert this relation into Eq. (6.10) and get the 
following result. 

IfdV dV' [ L. <t>;* (r)<t>; (r') [2e;s(r-r') 
occupied 

states 

me
2h 

= L -'W,nW,n,(l+t)(l'+t) 
n,l,m 7r'2S 

n'.l',m' 

f
dR 1 

X --------------
R PRPR' coslh((l+t)2(l'+t)2-m2s2R2)! 

XOm,m'{O(P R+pR' -sh COsf)l)+O(pR-PR' +sh COS(1) 

+O(PR-PR'-sh COS(1)}' (6.18) 

Using Eq. (6.14) we rewrite this expression into the 
following form: 

11'/2 (m.2k) f dR r dO L -2 W,nW,n,(l+t) (l'+t) 
Jo n.l.m 1f 

n',t',tn' 

1 
X Om.m,O(k1,m(e)-k1',m' (0) 

PHPR'k1,m(0)k l , ,m' (0) 

+sR sinO) 0 (PR-PR'+sh cosf), (6.19) 
where 

Finally we change 1Z, I, and m to PR, pe, and p",. 
We get 

1 f J1f/2 f - dR dO dp Rdpedpq,dp R' dpe' dpq,' 0 (p", - pq,') 
7r

2k3 0 

Xo(pe- Pe' +shR sinO) 0 (pR- PR'+sh cosO) 

f i 1l' f211' fdPRdpedpq,dPR'dPe'dPq,' 
= 2 R2dR sinOdO d<t> 

o 0 R 2h3 sinO 

XO(p",- pq,')o(pe- Pe'+skR sinO) 

XO(PR-PR'+sk cosO). (6.20) 

We can easily see that the integration 

f dp Rdpedp",dp R' dpe' dpq,' 0 (p", - p/) 

Xo(pe- Pe'+skR sinO) 0 (pR- PR'+sk cosO) (6.21) 

is the area of intersection or "overlap" in (PR, pe, pq,) 
space when the Fermi sphere in momentum space at 
the spatial distance R from nucleus is transferred by 
sh in z direction. And since 

(6.22) 

we get Heisenberg's result 

f 

dpztlPudp.dp:r:'dPu'dp.' 
2 dV o(p-p'+sk). 

h3 
(6.23) 

Thus we proved that the correspondence principle 
argument gives a right answer. We expect further that 
this same method also applies to hydrodynamics. 

Predictions of the Hydrodynamical Formula Using 
the JWKB Approximation and the Method 

of Stationary Phase 

In hydrodynamics the Compton scattering IS, III 

the approximation of direct scattering, given by 

(
dtJ') ( e2 

)2 w'(w-W
I

) h 
- =(ein·eout)2 -- ------
dn k,l,m mec2 w 2m. 

This differential cross section corresponds to the 
excitation of the hydrodynamical vibration of proper 
mode, k, I, and m. 

In contrast with coherent scattering, the hydrody­
namical vibration of angular momentum 1=0 gives a 
nonzero contribution to the incoherent scattering. For a 
fixed momentum transfer h(k' - k), we can show from 
this formula using the completeness theorem, that the 
total intensity of the Compton scattering is given by 

X k
2
(k-k')2(_1 ___ 1), (6.25) 

2m. (/twJ) /two 

where we assumed that only modes of hydrodynamical 
vibration in the neighborhood of a most probable 
scattered frequency contribute strongly to the Compton 
scattering so that we could extract the average value 
(/iwj) of the excitation energy from the summation 
over j. For a frequency sufficiently high to neglect 
(l/hwo) term, we have 

(6.26) 

(hwj) depends upon angle of scattering and incoming 
frequency. To make this situation clear, we use the 
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JWKB approximation for the hydrodynamical vibration 
amplitudes Nj and Uj. 

Let us compute the JWKB approximation formula 
for Nk.l,m and Uk,l,m, which satisfy Eqs. (2.15) and 
(2.16) (neglecting Coulomb interaction, for simplicity), 

(6.27) 

where 

1 dp 
Uk,l,m= -- --Nk,l,m' 

meno dno 

Solving this equation in the JWKB approximation, 
we get 

r (m,p/2 (no')2 no" no' (l+t)2)l 
cos ---+ - -------- dr 

const fT.P. dp/dno 2no 2no rno r2 
Uk,l,m(r,e,cp)=-- Y1,m(e,cp) 

rno! ( m"w'2 + ( nO')2 _ no" _ no' _ (l+t)2)t 
(6.28) 

dp / dno 2no 2no rno r2 

and 

Now 

and 

meno 
Nk,l,m=---Uk,l,m. 

dp/dno 

n~ 1 1 

no (scale of potential) L 

m"w'2 1 
---"-'-
dp/dno :\2' 

(6.29) 

(6.30) 

(6.31) 

where A is the wavelength of sound wave. Therefore, 
the condition L»'A justifies neglecting (no' / no)2, 

no" / no, and no' / rno. But L»'A is just the condition for 
the validity of the JWKB approximation. Therefore, 
under the conditions where one can legitimately use 
the JWKB approximation at all, one can neglect terms 
in (no' / no)2, no' / rno, and no" / no. 

Let us consider the normalization integral, 

We put const= 1 in Eq. (6.28) because, after all, this 
constant is cancelled by itself. Then we have 

r (m"w'2 (l+t)2! 
cos21 -------) dr 

f i
'T.p.e2l me 'T.p.el) dp/dno r2 

Uk,I,m*Nk,I,mdr= dr----------------
'T.p.ell dp/dno ( m"w'2 _ (l+t)2)i 

dp/dno r2 

"",,_1 irT.p.(2)dr~ 1[[ ~' 12_ (l+t)2]i. 
2w' 'T.p.el) ~ dp I (_1 dP)!J r2 

me dno me dno 

(6.32) 

We give a physical interpretation to this equation in 
correspondence with classical mechanics. To a phonon 
of energy ~' we ascribe momentum 

(
1 dP)t 

hw' --I m.dno 
and inertial mass 

I( 1 dP) hw' --
medno 

Then we can rewrite Eq. (6.32) into the following form, 

1 i!r.,ydro Thydro 
- dt=--
2w' 0 4w' ' 

(6.33) 

where Thydro is the period of orbital motion of a phonon 
in the region of binding. 

After having thus solved the hydrodynamical wave 
equation, we have to apply the boundary conditions 
to find the proper modes of oscillation. We apply the 
semiclassical method of finding eigenvalues to sound 
wave. We get 

rrT.p.e
2
l (( 'I (1 dP)i)2 (l+t)2)! L dr ~ -- --- dr 

rT.p.ell me dno r2 

= (k+t)lr. (6.34) 

Taking the derivative of both sides with respect to k 
we get 

me (aw') 
1

rT.p.C2l dP/dnow' ak I 

dr 11', 

rT.p.ell ( m.w'2 _ (l+tF)' 
dp/dno r2 

(6.35) 
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or 

hence 

(aw') ftThY"," 
- dt = 71" 
ak I 0 ' 

Thydro=271" j(aw') . 
ak I 

(6.36) 

(6.37) 

Though, generally, w' depends on k and l, for a large 
value of rT.F.(2), w' depends only on k. Eventually we 
extend the arbitrary surface to infinity, so that hence-

( 
d2T, ) ( e2 )2 w'2(w-w') 
-- = (ein ·eout)2 - 8me1i(l+!) 
drtdw' I m"c2 w 

forth we assume that w' depends only on k. Thus we 
get for the normalization integral 

( Uk.l,m*Nk.l,mdT=-7I"-, (6.38) 
• 2w'w\ 

where 
(6.39) 

Inserting Eqs. (6.28), (6.29), and (6.38) into Eq. 
(6.24) we get 

{ 

r (m.w'2 (l+!)2)!} 
cos r dr -----

f 

no! JrT.P. dp/dno r2 
X drr-- jl(Jk-k'Jr) , (6.40) 

dp/dno ( m.w'2 _ (l+!)2)i 

where we have defined (d2T,/drtdw')1 such that 

(6.41) 

To evaluate the integration in Eq. (6.40) again, we 
use the JWKB approximation for j I ( J k - k'J r) : 

1 1 
jl(lk-k'[r)=----------

1 k-k'l r ((k-k')2- (l+!)2/r2) 1 

1f T ( U+1.)2)! 71"1 
Xcos (k-k')2----2~ dr--!. 

I rT.p. r 4 
(6.42) 

dp/dno r2 

We make another approximation-correspondence 
principle argument-for the product of two Bessel 
functions jl( J k- k'J r) and jl( J k-k'J r') (dropping 
rapidly varying parts!) : 

jICJk-k'lr)· jIClk-k'lr') 

1 
~-----------------

21 k-k'i ((k- k')2- (l+!F/R2)!R2 

Xcos(((k-k')L (l+!)2/R2)!rl). (6.43) 

Further, we make this approximation for the product 
of two radial parts of iYk,l,mCr) and Uk,l,m(r'). Then 
we get 

( 
d2T, ) = (ein .eout)2(~)2 W'2(W-W') (2me1i) (l+!)fdR no(R) 1 

drtdw' z mec
2 

wlk-k'l (dP)2(m.w'2 _(l+!)2)!((k_k')2_(l+!)2)i 

dno dp/dno R2 R2 

Xfdr1 cos(( m.w'2 _ (l+t)2)trl) cos((Ck-k'F- (l+!F)ir1). (6.44) 
dp/dno R2 R2 

We perform the integration over rl from - 00 to + 00. We have 

( 
d2T, ) ( e2 )2 W'2(W-W') f noCR) -- = (ein·eout)2 - (271"me1i) (l+t) dR-----------

drtdw' I mec2 wlk-k'J (dP )2( (l+!F) 
-- Ck-k')2---
dna R2 

(( 
m.w'2 (l+!)2)! ( (/+1.)2 t 

Xo ----- - (k_k')L_
2_». (6.45) 

dp/dno R2 R2 
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Global analysis 

Local analysis. 
Approximation 
the better the 
higher one is in 
the spectrum of 
proper modes 

TABLE 1. 

Electrons 
in atom 

Wave equations; 
boundary condi­
tions, eigenvalues 
and eigenfunctions 
if;; 

Electrons moving 
in any small 
region of atom 
characterized by 
both position and 
momentum. Two 
electrons per cell 
in phase space. 

Hydrodynamical 
disturbances 

Hydrodynamical equation 
of motion, equation of 
continuity, Poisson's equa­
tion, equation of state, 
boundary conditions, 
eigenvalues, density devia­
tion Ni, and velocity 
potential Vi for hydro­
dynamical vibration of 
proper mode j. 

Phonons moving in any 
small region of atom 
characterized by both 
position and momentum. 
Spectrum becomes con­
tinuous when artificial 
boundary surface is 
brought to infinity. 

From this equation we see that only when 

hw'/(~ dp )!= Ik-k'i 
me dno 

does the a function differ from zero. In other words, 
at the distance where the momentum 

/( 
1 dP)! 

hw' --
medno 

of the sound wave takes the value of the momentum 
transfer from the photon, there the phonon is produced. 
Just as electron states (extended functions of position) 
are analyzed on a local basis in the statistical atom 
model (Table I), so characteristic modes of hydro­
dynamical vibration-which are solutions of a global 
eigenvalue problem-can be replaced in a certain 
approximation by the local concept of phonons. 

Integrating (d2"l:,j dQdw') lover the modified circular 
frequency w' and over the angular momentum of 
hydrodynamical vibration l, we get the total intensity. 

dO"Compton 

27rh f no(R) 
X-Ik-k'i R 2dR . 

met (dp/dno)! 
(6.46) 

To make this integration, we perform the transforma­
tion of variable 

R=J.l.x 

1.0,-----------,-----------. 

0.9 

0.8 

0.7 

t 
0.6 

" 0 (j) 0.5 

HEISENBERG- BEWILOGUA 

I 04 

0.3 

-·--w-----
o 0.1 0.2 0.3 0.4 

FIG. 4. Intensity factor S02 for Compton scattering defined as 
ratio between differential cross section and the "ideal" value 
(ein·eout)2(e2/m,c2)2Z. The curved line shows Heisenberg-Bewilo­
gua's result 

where 

and 
(<1>(1;0)/ /;0)1 = W. 

The straight line shows the correspondence theoretical expression 
for Bloch's hydrodynamical formula. This expression agrees with 
Heisenberg'S formula except for a numerical factor 3i /2, provided 
that we take the term linearly dependent on in Heisenberg'S 
formula. 

and 
Z (q,)J no(R)=- - . 

%J.l.3 X 
(6.47) 

Inserting this into Eq. (6.46) we have 

J
dlJdw' (_d_2"l:,_) = (ein . eout) 2 (_e_2 

) 2 Z_0._17_6_X_l_O-_
8 

dQdw' ! m,c2 Zl 

4 O( 00 ) X~ sin2 1.73 i q,(x)dx . (6.48) 

It is interesting to compare this new result with 
Heisenberg-Bewilogua's result. We take the computa­
tion of Miranda21 for -q,' (0) = 1.5882 for a neutral 
atom. From Fig. 4 we see that for low values of momen­
tum transfer both results give nearly, at least qualita­
tively, the same answer. In fact, if we take the term 
linearly dependent on momentum transfer in Heisen­
berg's expression 

21 C. Miranda, Mem. Ace. Italia 5, 283 (1934). 
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and 

x( (cp~~») t+!W )~2d~, (6.49) 

where 
O.176X10-8 4 8 

W= -sin-
Zi X 2 

and 

[cp~:o)r = w, 

we find that hydrodynamics and wave mechanics give 
the same answer within the Bloch factor of 3t/2. This 
fact seems to indicate that our method of correspond­
ence principle argument is right. 

VII. CONCLUSION 

The principal results of this paper are Eq. (2.42) 
for the absorption cross section, Eq. (3.4) for the 
coherent scattering cross section, and Eq. (4.14) for the 
incoherent scattering cross section. Some understanding 

is won about the connection between the hydrodynam­
ical method and the wave mechanical method. In 
other words, we showed that, for the total intensity of 
the Compton scattering, the hydrodynamical treatment 
gives the same results as does the linear term in the 
momentum transfer in Heisenberg's expression except 
for Bloch's factor of 31/2. 

Equation (6.24) for the Compton scattering, in the 
approximation of direct scattering, can be used for 
comparison with experiment if we know the charge 
density deviation for single mode k, I, and m of hydro­
dynamical vibration. Equation (2.42) for the absorption 
cross section can also be used for the same purpose with 
almost the same knowledge. Others, Eqs. (3.4) and 
(4.14) require-before application-electronic machine 
calculations of all proper modes of oscillation of the 
gas model of the atom, analogous to those which 
Wheeler and Fireman made for 1= 1. 
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A one-center expansion of the electrostatic interaction energy of a discrete charge distribution is developed 
by making use of the algebra of irreducible tensors. The result is completely symmetric in the coordinates 
of the particles, and the relative magnitude of the vectors need not be specified. It is shown that a suitable 
interaction representation provides useful formulas for electrostatic and quantum mechanical applications. 
In addition, some transformation equations make it possible to refer any arbitrary number of vectors to a 
second origin, thus yielding general two-center expansions for overlapping charge distributions. 

I. INTRODUCTION 

I N many electrostatic and quantum mechanical 
problems, an expansion of the-interaction energy 

(1) 

between n particles in terms of the individual particle 
coordinates ri and rj is needed. In atomic problems, 
these vectors are referred to a single origin; whereas 
in molecular applications, the origin of the ri vectors 
may be different from that of the r/s. 

In the usual one-center expansion of (1) using the 
generating function of Legendre polynomials one has 
to distinguish between the magnitudes /ri/ and /rj/ of 
the two vectors, and one obtains two expansions; one 
in which r;>rj and another one which satisfies the 
condition rj>ri. Quite often, and especially when (1) 
appears in differential equations, this limitation of the 
expansion is a very cumbersome one. A similar situation 
exists in the bipolar expansion of the Coulomb potential 
between two charge distributions. The range of 
validity of the formulas depends on the relative 
magnitudes of ri, rj, and R, the separation of the 
two centers.'-3 

The method outlined here provides formulas for 
the one-center expansion of (1) which are symmetric 
in the ri and rj coordinates and which do not require 
knowledge of the relative magnitudes of the two 
vectors. Some transformation equations will make it 
possible to refer any number of the ri to one, two, 
and in principle to any number of centers, and one 
obtains general expressions for the interaction energy 
between overlapping charge distributions. This paper 
is restricted to a detailed discussion of the one- and 
two-center cases. 

* Work supported by a grant from the National Science 
Foundation. 

1 B. C. Carlson and G. S. Rushbrooke, Proc. Cambrjdge Phil. 
Soc. 46, 626 (1950). 

2 R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628 
(1951); 85, 149 (1952). 

3 M. E. Rose, J. Math. and Phys. 37, 215 (1958). 

II. ONE-CENTER EXPANSION OF THE 
ELECTROSTATIC INTERACTION 

ENERGY 

The interaction energy of (1) is a scalar invariant 
and thus it is possible to write it as a suitable con­
traction of irreducible tensors of the same rank.4 To 
see how these tensors can be generated, let us consider 
the first term of (1) which can be written as 

ele2 [87r ]-! 
-=e,e2 r,2+r22-- L 'Y,a*(r,)'Y,a(r2) , 
r12 3 a 

(2) 

where r, and r2 refer to charges el and e2, respectively, 
and the solid spherical harmonic 'Yaa(r) is defined as 

Setting r= [rI2+r22J+, we can rewrite (2) as 

(4) 

The term in the square brackets of (4) can be expanded 
since 

and we get' 
e,e2 e,e2 (2n-l)!! 
-=-L xn, 
r12 r n (2n)!! 

(5) 

where we have set 

(6) 

Writing 

xn = ({[x·x} x} ·x)· .. , (7) 

then xn can be reduced by n-l contractions with the 
use of the algebra of irreducible tensors. The first 

4 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957), Chap. V. 

~ (2n-1)!!=1·3·5.·. (2n-1)j (2n)!!=2·4·6··· (2n). 

825 
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contraction in (7) is obtained in the following way: 

= (87r)2 L: L: (- )a-I-/l9 

3r2 a./l P.q 47r[(2p+1) (2q+1)]! 

XC(l1p; -a, -,B)C(l1q; a,!3)C(l1p; 00) 

XC(l1q; 00)r12-Pr22-q1/p-a-/l(r1)1/qa-l-/l(r2). (8) 

In the second line of (8) we have used the coupling 
rule for spherical harmonics which can be obtained 
from the Clebsch-Gordan series. The parity co­
efficients C(l1p; 00) and C(l1q; 00) are zero unless 
p, q=2, 1, or 0, and the sums 1+1+p and 1+1+q 
are even. Thus p and q can assume the values 0 and 2 
only. 

The substitution 'Y=a+!3 transforms (8) into 

X'X=(87r)2L:L: (-)1'9 
3r2 P.q l' 47r[(2P+1)(2q+1)]! 

X[L: C(l1p; a, 'Y-a)C(l1q; a, 'Y-a)] 

XC(l1p; OO)C(l1q; 00) 

Xr12-pr22-q1/p -1' (r1) 1/ q 'Y(r2)' (9) 

The orthogonality condition of the C coefficients, 
however, requires that 

a 

and X· x reduces to 

Now, 

{
i; p=2 

C(l1p; 00)2= 
!; p=O, 

and we get for the first contraction in (7) 

(10) 

(12) 

n-4· . '1, or O. In particular, 

(14) 

and by induction 

A=0,2, .. 'n-2, n for n even 

A= 1, 3, ... n- 2, n for n odd. (16) 

Substitution of (16) into (5) yields for the electrostatic 
interaction energy between the two charges C1 and C2 

C1C2 [(2n-1)!!r1n-Ar2n-A J 
-= 47rC1C2 L: L: --------­
r12 A n (n+A+1)!!(n-A)!!r2n+1 

xL: 1/AI'*(r1)1/AI'(r2), n=A,A+2,A+4,···. (17) 
I' 

This is a symmetric one-center expansion and has the 
advantage over the Laplace expansion that one does 
not have to specify the relative magnitudes of r1 and r2. 

A comparison of (17) with the Laplace expansion 

(18) 

where r< is the lesser and r> the greater of the two 
vectors, yields the following useful results: 

(1) After setting r<=r>, r1=r2 and comparing the 
monopole terms of (17) and (18), we get the expansion 

(2n-1)!! 
V2=L: ---­

n=O (2n)!!(n+1) 
even 

(19) 

(2) A term by term comparison of (17) and (18) 
yields the result 

r<A r1nr2n (2n-1)!! 
-=(2A+1)L: , 
r>H1 n (n+A+1)!!(n-A)!!r2n+1 

Equation (13) expresses X·X in terms of multiples of n=A, A+2, A+4, ... , (20) 
order 2 and 0, and one can show in a straightforward 
way that xn generates multipoles of order n, n-2, where r<.>=r1.2 and r=[r12+r22J!. 
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Equation (20) can be proved directly by setting 
r1<r2, y=r</r> and then expanding r-Zn-

1 in a power 
series. 

(2}..+I)(2n-l)!!yn{ '" (n+m-!)!} 
~=~ ~(-~ tm 

n (n+}..+I)!!(n-}..)!! m9l m!(n-!)! 

=yA+[ - (}..+!) +! (2}"+ 1)JyH2+[H}..+!) (}..+!) 

- (}..+t)(}..+!)+H}..+!)(}..+~)JyH4+.... (21) 

It is easily shown that all the coefficients of the 
yH2k terms with k= 1, 2, .. , vanish, and thus (20) is 
verified. 

In some cases, it is convenient to rewrite (17) 
by making the following substitutions: r1 = r sinx; 
r2=r cosx(O:(x:( t7r; r= [r12+ r22Jt). 

We then have 

e1eZ 47re1eZ 
-- = --LX/-(x)YAI'*(01,'P1)Y/-I'(OZ,'P2), (22) 
r12 r h,1' 

where 

sinnx cosnx(2n-l)!! 
XX(X)=L , 

n (n+}..+I)!!(n-}..)!! 

n=}.., }..+2, }"+4, .. ". (23) 

This "interaction representation" of the one-center 
expansion of the electrostatic interaction energy has 
the advantage over (17) that all the summations 
extend over angle variables. 

In the r, X representation we also have from (5) 

r12 r[1- 2 sinx cosx COS012J' 

e1e22n(2n-l)! ! 
= L (sinx cosx)n (COS012) n, (24) 

n r(2n)!! 

where 012 is the angle between rl and r2. Comparing 
(24) with (22) yields 

n! 
(COS012)n=4'/I" L ------­

AI' (n+}..+l)!I(n-}..)!! 

X Y>..I'*(8I,<PI) YxP.(8z,<pz), 

}..=o, 2, "" ·n-2, 12 for 12 even 

}..=1,3,···n-2,n for 12 odd, (25) 

and by applying the addition theorem of spherical 

harmonics to (25) we get the well known result6 

n n!(2}"+I) 
(coso)n= L P>..(cosO), 

>.. (n+}..+I) !!(n-}..) !l 

}..=o, 2·· '12-2, 12 for 12 even 

}..=1, 3·· '12-2, 12 for 12 odd. (26) 

These results make it possible to express X>..(x) of (23) 
in terms of Legendre polynomials by setting '1/ = t7r- 2x. 
Use of (26) then transforms (23) into 

121(212-1) !1(2v+ 1) 
Xx(n) = L -----------­

n,v 2"(n+}..+1) !!(n+v+ 1) ll(n-}..) !!(n- v)!! 

XPv(COS'1/), 

n=}.., }..+2···, 

v=O or 1," ·n-2, n, (27) 

which will be useful when (22) appears in integrals. 
This method is of course also applicable to potentials 

which are of the form (rii)-n where n is a positive 
integer. The general derivation is analogous to the 
one outlined here; the only change occurs in Eq. (5). 

It may be worth noting that (17) is proportional 
to the Green's function for the Laplace equation.7 If 
rI, 01, <PI are the coordinates of the observer point, 
and r2, 8z, .<P2 the coordinates of the source point, then 

[ 
(2n-l)!!r Inr2n ] 

G(r1I r2)=47rL L------­
AI" n (n+}..+I) !1(n-}..) llrZn+1 

X Y>..I'*(Ol,<Pl) Yxl'(Oz,<pz) 

=G(rZlr1), (28) 

and the reciprocity theorem is immediately satisfied. 

III. TWO-CENTER EXPANSION OF THE 
ELECTROSTATIC INTERACTION 

ENERGY 

As a straightforward extension of the methods 
outlined in Sec. II, let us transform rz to a second 
center such that rz= R+gz, where R connects the two 
centers and gz originates at the second center and 
points to charge 2 (Fig. 1). The corresponding trans­
formation of the one-center expansion (17) can be 

FIG. 1. Vector diagram 
for the transformation 
from the one-center 
to the two-center 
expansion. 

I r., 2 .--- ...... 

I~ '\ 
\ I / R II I 
"'-- \ / ,_/ 

6 See for instance, P. M. Morse and H. Feshbach, Methods of 
Theoretical Physics (McGraw-Hill Book Company, Inc., New 
York, 1953), p. 1326. 

7 Reference 6, p. 1273. 
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accomplished in three steps: 

(1) 

(29) 

and 
4rk !2t Rt-ap2~-a 

r22k= L: --------------
t,a (k-~) !(R2+p22)H(~+a+1) !1(~-a) 1 1 

XL 'Y., ,,* (R) 'Yo" (!l2) , (30) 
" 

where we have set 2k=n-A. 

(2) 

(31) 

and 
(2'1]+2n-1) lIR'1-bp2'1-b 

r-2n- I =L (-)~'------------
~.b m2'!+2n+l(2n-I)! 1 (l1+b+ 1) 1 1('I]-b) 11 

where m=[r12+P22+R2Ji. 

XL 'Yb il*(R)'Yb8(!l2), (32) 
fJ 

(3) The solid spherical harmonics 'Y"I'(r2) can be 
transformed to the second center by applying the 
addition theorem of Rose.3 

'Y"I'(r2) = 'Y"I'(R+!l2) = [4r(2A + 1) I]! 

C(e, A-e, A; 'Y, p,-'Y) 
XL L: -------

c=O 'Y [(2c+1)1(2A-2c+1)IJI 

X'Yc'Y(R)'YX--cl'-'Y(!l2). (33) 

The range of 'Y is restricted by the C coefficient to 
-c:::;'Y:::; c. 

The transformation equations when combined with 
(17) provide the general two-center expansion of the 
electrostatic interaction energy. Setting either rl, pz, 
or R to zero yields a one-center expansion in (!l2,R), 
(fl,R), or (rl,!l2), respectively. 

The structure of the resulting two-center expansion 
is not nearly as compact as the form of the one-center 
expansion. The only advantage attained here is that 
the method does not require the knowledge of the 
relative magnitudes of fl, P2, and R. The formulas 
can be considerably simplified in the region where 
R>rl and R>pz since here the shell formed by 1'1 

does not intersect the shell of pz (see dashed curves in 
Fig. 1). This process of transforming vectors to different 
centers could of course be continued by setting 
!l2=R'+P2' in (29)-(33). The form of the resulting 

three-center expansion, however, while possible III 

principle is complicated in practice. 
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APPENDIX 

In second-order perturbation theory one often has 
to evaluate the matrix element 

(Oll/rilIO), (AI) 
where 

10)=uoul" 'UiUj" . Urn (A2) 
and 

Ui= lV irini-le-tir; Y lr i (0., 'Pi). (A3) 

Using the results of Sec. II, the operator in (AI) can 
be written as 

1 [ 4r2~'I]!r i~rj~ 1 
-=L: L -----­
ril "I' ~ r2~+2('I]+A+1)1!('I]-A)!1 

X Y"I'*(Oi,'Pi) Y"I'(Oj,'Pj), 

'1]= A, A+2, "', (A4) 

which in hyperspherical coordinates 1', X takes on the 
form 

1 4r [ 2~'I]! sin ~x cos~x ] 
-=-L: L -----
ril 1'2 AI' ~ (11+A+1) 1 1 ('I]-A) I! 

X Y"I'*(Oi, 'Pi) Y).I'(Oj,'Pj). (AS) 

On the other hand, if one contracts (l/rij)' (l/r;j) 
by using the Laplace expansion of (18), one gets the 
following expression: 

I 4rr <Al+A. 
-= L C(AIA2A; 00)2 
rii A,p. 1'> Al+A2+2 (2A + 1) 

AI,A' 
X Y}"I'* (Oi, 'Pi) Y,,"(Oj, 'Pj) , (A6) 

where the summations over A, AI, and A2 are limited 
by the condition A=Al+A2, Al+A2-1,' .. ,IAI-Azl, and 
the sum of Al+A2+A must be even. The two expansions 
of (A4) and (A6) can be compared by the method used 
to prove Eq. (20). 

In evaluating the matrix element of (Al), the use 
of the Laplace expansion (A6) yields a sum of diverging 
terms and thus is untractable. In hyperspherical co­
ordinates, however, the matrix element of (AI) can 
be calculated in a straightforward way yielding a 
series which consists of finite terms. 
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S.ome isoperimet:i~ al!d other !nequali~ies occ~:ring in the one-velocity theory of neutron transport are 
denve.d: The qu~nt~tle~ Involved In thes~ ~nequalitle~ ~ll refer to bare solids with isotropic scattering and are: 
~he cnt~c~l multlphcatlO?, the first-collisIOn probability, the non-escape probability, and the buckling. The 
mequalitles proved prOVIde upper and lower bounds for the quantities considered, and numerous examples 
of the estimation of these quantities in cases not readily amenable to direct calculation are given. 

1. INTRODUCTION 

1 l In a mathematically complicated subject like 
• • the theory of neutron transport, simple, 

exact, and general formulas are usually not obtainable. 
In order to calculate quantities of interest, recourse 
must generally be had either to numerical calculation 
or to the introduction of simplifying but untrue assump­
tions. The introduction of such assumptions usually 
provides explicit and easily evaluated formulas but also 
usually results in errors of indeterminate sign and 
magnitude. It must be fairly said that situations in 
which these errors are small can generally be recognized 
when one understands the "physical" content of the 
theory, but the intuitive nature of this approach 
nevertheless involves an unavoidable, and furthermore 
itself uncertain, extent of error. 

An elegant and also useful way out of this dilemma 
consists of enlarging the class of acceptable results to 
include inequalities. Thereby is one often provided with 
relationships involving the quantities of interest 
which are again simple and general, and which are 
furthermore exact at least in the sense of involving no 
mutilation of the theory. Two such inequalities pro­
viding, respectively, an upper and lower bound will 
furthermore yield estimates whose maximum possible 
error is known. If these bounds are close ones, as often 
happens, the numerical accuracy of the estimates may 
suffice for practical purposes. 

1.2. The quantities of interest which we shall consider 
in this paper are all set functions which arise in the 
theory of neutron transport and which refer to bare, 
homogeneous, convex solids with isotropic scattering. 

They are: the critical multiplication, the non-escape 
(absorption) probability of neutrons from a uniform 
isotropic source inside the solid, the corresponding first­
collision probability, the buckling, and the diffusion­
theoretic non-escape probability. The first three of 
these set-functions belong to strict one-velocity transport 
theory; the fourth and fifth to the simpler diffusion 
theory. 

The transport-theoretic quantities have been calcu­
lated accurately in terms of simple formulas or as the 
result of not prohibitively great numerical labor only 

* On leave from Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, U.S.A., operated by Union Carbide Corporation for 
the U. S. Atomic Energy Commission. 

for the simplest geometrical shapes. The critical multi­
plicationl has been calculated only for slabs and spheres, 
the non-escape probability2 only for slabs, while the 
first-collision probability3 has been calculated only for 
slabs, spheres, infinite right circular cylinders, hemi­
spheres, and some oblate spheroids. For such a simple 
solid as a cube, however, no exact values for any of 
these quantities are available. Even the diffusion­
theoretic quantities can only be calculated easily for 
spheres, rectangular parallelepipeds, and finite and 
infinite right circular cylinders. For more exotic shapes 
than those just mentioned, straightforward calculation 
can be very tedious. To avoid this tedium we can try 
to bound the quantities of interest using the inequalities 
developed in the body of this paper, and hence estimate 
them for solids of irregular shape. 

1.3. Inequalities for set functions can be derived in 
several ways. The first and simplest way is just to 
compare, when possible, the values of the same set 
function for two solids, one of which can be totally 
included in the other. A second and more subtle way is 
to compare the values of the same set function for two 
solids which are related to each other by some process 
of symmetrization. (Symmetrization is the name given 
to a class of geometric transformations by which a 
solid is transformed into another which in some sense 
(depending on the precise nature of the transformation) 
is more symmetrical than its ancestor.) The first process 
of this kind was invented in 1836 by J. Steiner4 who 
showed that this symmetrization leaves the volume of 
the solid unchanged while diminishing its surface area. 
Since constant reapplication of Steiner's symmetrization 
reduces all finite solids to spheres, Steiner was able to 
prove the classical isoperimetric theorem: Of all solids 
of a given volume, the sphere has minimum surface 

IE. Inonii, Nuclear Sci. and Eng. 5, 248 (1959) j M. H. L. 
Pryce, MSP-2A (declassified 1947), H.M. Stationery Office, 
London; E. Inonii, USAEC Report ORNL-2842, p. 134, 1959. 

2 N. C. Francis, J. C. Stewart, L. S. Bohl, and T. J. Krieger, 
Proceedings of the Second United Nations International Conference 
on the Peaceful Use of Atomic Energy, Vol. 16, p. 517, 1958. 

3 K. M. Case, G. Placzek, and F. de Hoffmann, Introduction to 
the Theory of Neutron Di.ffusion (U. S. Government Printing 
Office, Washington, D. C., 1953), Vol. I. 

4 G. P6lya and G. Szego, Isoperimetric Inequalities in Mathe­
matical Physics (Princeton University Press, Princeton, New 
Jersey, 1951). 

829 



                                                                                                                                    

830 LAWRENCE DRESNER 

area. 5 It follows from this theorem that S3~361rV2 for 
any arbitrary solid of surface S and volume V; this 
"isoperimetric" inequality can now be used to bound 
the surface of any solid from below. Similarly to the 
surface area many other set functions, including those 
which interest us here, vary monotonically under sym­
metrizing transformations. Thus for each an isoperi­
metric inequality holds from which a bound may be 
derived. 

Another rich source of inequalities are the variational 
expressions which exist for many set functions. These 
expressions, when they are either of the maximum or 
minimum type, can be used directly to obtain bounds 
by the appropriate choice of trial functions. Indirectly, 
they can be used as very convenient starting points for 
the derivation of the inclusion and isoperimetric 
inequalities mentioned above. 

A third source of inequalities arises from the appli­
cation of what may be termed the "standard" inequal­
ities of analysis to the sum or integral representations 
of the quantities of interest. In particular, the law of 
the mean, the inequality connecting the geometric and 
arithmetic means of a function, some more general 
inequalities involving convex functions, and the clas­
sical inequality of Schwarz are all used later in just 
this connection. 

1.4. Research of the type described above has had a 
very long history. The isoperimetric theorems connecting 
the perimeter and area of a circle and the surface area 
and volume of a sphere were known to the Greeks. The 
powerful concept of symmetrization, by whose use 
many more isoperimetric theorems can be proven, was 
invented by Steiner more than a century ago, and only 
shortly thereafter a number of interesting isoperimetric 
inequalities concerning certain physical rather than 
purely geometric quantities were announced. In 1856, 
B. Saint Venant conjectured an isoperimetric inequality 
involving the torsional rigidity of elastic prisms on 
inductive grounds. In 1877, several isoperimetric 
theorems concerning the principal frequency of vibra­
tion of plates and membranes were stated without 
proof by Lord Rayleigh, who also developed the varia­
tional method of obtaining bounds to a high degree of 
refinement. In 1903 a famous isoperimetric theorem 
regarding the electrical capacity of solids was stated by 
Poincare, but accompanied by an incomplete proof. 

In the years between about 1900 and the present, 
effort was given to the proof and elaboration of these 
conjectures by T. Carleman, G. Faber, E. Krahn, R. 
Courant, G. Szego, G. P6lya, and others. These 
workers confined their attention largely to inequalities 
involving purely geometric quantities and those physical 
quantities arising from Laplace's, Helmoltz's, or related 

6 The word "isoperimetric" is actually a misnomer since the 
solids have the same volume (area) not the same surface area 
(perimeter). However, the theorem stated is a trivial deduction 
from the truly isoperimetric theorem: Of all solids of a given surface 
area, the sphere has maximum volume. 

equations (i.e., ansmg in electrostatics, the study of 
vibrations of plates and membranes, hydrodynamics, 
the theory of elasticity, the theory of heat conduction, 
etc.). In 1951, G. Szego and G. P6lya published a 
book4 in which all the old results and many new ones 
are systematically described, thus elevating this 
research, which in these authors' words "moves some­
what outside the usual channels," to the level of a 
discipline. 

The mathematics of neutron diffusion theory is 
extremely similar to the mathematics of the studies 
mentioned parenthetically in the last paragraph. The 
methods described by P6lya and Szego can thus be 
systematically applied to diffusion theory. Indeed, in 
some cases all that is required is a simple reinterpreta­
tion of P6lya and Szego's results. Regrettably, only 
those quantities can be really effectively treated which 
admit of a variational representation of the maximum or 
minimum type; this limitation is probably a funda­
mental one. A single paper pointed in this direction 
has already been written by Ackroyd and BallG who 
studied the effect of Steiner symmetrization on critical 
mass in diffusion theory. 

The mathematics of strict transport theory is, how­
ever, essentially different from that involved in electro­
statics, hydrodynamics, etc., since it is governed not 
by second-order partial differential equations but rather 
by integral (or integro-differential) equations. To 
obtain inequalities from these equations the author 
previously developed several new techniques7 whose 
application is extended in the present work. 

1.5. The arrangement of this paper is as follows: In 
the next short section, the quantities of interest are 
precisely defined, and in the following section, the 
process of symmetrization is defined. Following that, 
in the fourth section, the subsequently used repre­
sentations of the quantities of interest are derived. In 
the fifth section, the various theorems are stated and 
proved. In the sixth section, a discussion and some 
examples are given. The reader who wishes to avoid 
the laborious details of the proofs may read Secs. 2 
and 3, the statements of the theorems in Sec. 5, and Sec. 
6 without difficulty. 

2. DEFINITIONS 

2.1. In one-velocity transport theory the criticality 
of a bare, homogeneous reactor with isotropic scattering 
is governed by the integral equation 

q,(r) = c Iv K( I r- r'l )q,(rl)d3r', (1 a) 

where 
(lb) 

6 R. T. Ackroyd and]. M. Ball, "On the conjecture that Steiner 
symmetrization reduces critical mass," UKAEA Risley Declas-
sified Reprint WHC-(C)P-36, No. 8135, 1955.' , 

7 L. Dresner, Nuclear Sci. and Eng. 6, 63 (1959); 7, 260 (1960); 
9, 151 (1961). 
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Here I/>(r) is the flux of neutrons at r, defined as the 
product of the neutron density at r and the (single) 
neutron velocity, c is an eigenvalue whose physical 
significance is that it is the average number of secondary 
neutrons emerging from each collision which will make 
the reactor just critical, and K ( I r- r' I) is an integral 
kernel which represents the probability density that a 
neutron originating at r' will have its next collision in 
a differential volume element at r. V finally is the 
reactor volume. Here, as in the rest of the paper, the 
mean free path (m.f.p.) in the reactor has been chosen as 
the unit of length. The spectrum of eigenvalues of (1) 
is discrete and characterized by the fact that there is 
a lowest one co.8 To this lowest eigenvalue corresponds 
an eigenfunction (flux) which is positive everywhere in 
the reactor interior, while to all other higher eigenvalues 
correspond eigenfunctions which change sign somewhere 
in the reactor interior. Thus the lowest eigenvalue 
alone corresponds to a physically realizable persisting 
state, and henceforth, only it will be called the critical 
multiplication. Its reciprocal P, which will prove more 
convenient to consider in what follows, is just the aver­
age first-collision probability of neutrons spatially 
distributed in the persisting flux mode. It will therefore 
simply be called the critical first-collision probability. 

2.2. Another average first-collision probability of 
interest is that of the neutrons originating from a 
uniform, isotropic source inside V. It will henceforth 
just be called the first-collision probability and will be 
denoted by Pc. 

2.3. If V is filled with a non-multiplying medium 
capable of scattering and absorption only, one can 
consider a second probability referring to a uniform, 
isotropic source, viz., the average absorption or non­
escape probability P a. This quantity is defined as the 
average probability that a neutron will be absorbed 
in V, rather than leak out of it, irrespective of how 
many scattering collisions it has had. 

2.4. The diffusion theoretic calculation of criticality 
is governed not by (1) but rather by the much simpler 
second-order partial differential equation 

D'\I21/> (r)+ (c-1)I/>(r)=O, (2) 

where D is the diffusion constant and c and I/> are defined 
as before. The most common boundary condition used 
with (2) is that the flux I/> shall vanish on some pre­
scribed surface, usually lying just outside the actual 
reactor surface. For the considerations of this paper no 
formal distinction exists between this extrapolated 
surface and the actual reactor surface. Hence, to (2) 
we shall add the condition that I/> vanish on the reactor 
surface 5. 

8 A. M. Weinberg and E. P. Wigner, The Physical Theory of 
Neutron Chain Reactors (University of Chicago Press, Chicago, 
Illinois, 1958), pp. 406-10. See also the remarks by B. Davison, 
Neutron Transport Theory (Oxford University Press, London, 
1957), pp. 195-6. 

The eigenvalue problem 

'I121/>(r)+ B21/>(r) = 0 in V, 

l/>(r)=O on 5, 

(3a) 

(3b) 

which arises from (2) has infinitely many discrete eigen­
values Bn2, of which there is a lowest, B02.8 This lowest 
eigenvalue alone corresponds to a flux I/> which does 
not change sign inside V. We call it the buckling. It is 
a purely geometric quantity depending only on the size 
and shape of V. In terms of it the criticality condition 
may be expressed as c=1+DB02. 

2.5. It is not possible to define an average first­
collision probability in pure diffusion theory since the 
individual flights of the neutrons do not appear in the 
theory. On the other hand, the average absorption 
probability can be defined simply as the ratio of the 
total absorption rate in V to the total source rate in V. 
When the source is a uniform, isotropic one, we shall 
denote the corresponding diffusion-theoretic average 
absorption probability by Pad. 

3. SYMMETRIZATION 

3.1. The process of Steiner symmetrization can be 
succinctly defined as follows: Symmetrization with 
respect to a plane Q changes the solid V into a solid V* 
such that: 

(i) V* is reflection symmetric with respect to Q. 
(ii) Any straight line perpendicular to Q that inter­

sects one of the solids V and V* intersects the other also. 
Both intersections have the same length. 

(iii) The intersection with V* consists of just one 
line segment. The plane Q is called the plane of sym­
metrization. 

A simple picture of the process of symmetrization is 
this: The solid is broken into paraxial differential 
cylinders, all of which are perpendicular to Q. These 
cylinders are then slid parallel to their axes until their 
midpoints all lie in Q. In case any of the cylinders 
consists of several pieces these are slid together and 
then the resulting single cylinder is slid so that its 
midpoint lies in Q. 

3.2. It is clear from the definition of Steiner sym­
metrization that it leaves the volume of the solid 
unchanged. The surface area, on the other hand, is 
either decreased or remains the same. This last result 
is not at all obvious; it was first proved by Steiner. A 
little thought will convince the reader that repeated 
Steiner symmetrization with respect to a suitably 
chosen infinitude of planes will change any finite solid 
into a sphere of equal volume. Furthermore, repeated 
symmetrization in a suitable infinitude of planes all 
containing a common line L will reduce any infinite 
cylinder to a right circular cylinder with axis L. From 
these last two statements isoperimetric theorems follow 
for any quantities which never increase (decrease) 
under Steiner symmetrization. 
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FIG. 1. Steiner symmetrization of a right elliptical cylinder. 

3.3. Symmetrization of a right elliptical cylinder with 
respect to a plane containing its axis produces anot~er 
right elliptical cylinder of the same base area but wIth 
the same or a smaller eccentricity. This fact can be used 
to show that any quantity which never increases 
(decreases) under Steiner symmetrization is a monotone 
increasing (decreasing) function of eccentricity, the base 
area being held fixed. It can be proven as follows: The 
midpoints of the differential cylindrical elements already 
lie in a plane Q' by a well-known property of the ellipse 
(see Fig. 1). Steiner symmetrization is then equivalent 
to rotating the plane Q' around the center of the ellipse 
until it is parallel to Q, all points sliding on lines per­
pendicular to Q, as though they were beads sliding ?n 
wires. This transformation is affine, and hence carnes 
the original ellipse into another (in this case also of the 
same area). From the fact that one of the new axes AA' 
cannot be larger than the old major axis nor smaller 
than the old minor axis, but can be chosen arbitrarily 
in between, the desired conclusion follows. 

3.4. Similar conclusions hold for spheroids but to 
prove them we must introduce the notion of Schwarz 
symmetrization. A solid V and a solid of revolution V* 
can be related by Schwarz symmetrization as follows: 

(i) Any plane perpendicular to the axis of revolution 
of V* which intersects one of the solids V and V* also 
intersects the other. 

(ii) Both intersections have the same area. 

Clearly, Schwarz symmetrization leaves the volume 
invariant. As it happens, the solid V* which results from 
Schwarz symmetrization can also be obtained by an 
appropriately chosen infinitude of Steiner symmetriza­
tions. We choose this infinitude as follows: All the planes 
of symmetrization contain the axis of the Schwarz 
symmetrization, but are otherwise distributed randomly 
in azimuth. This series of symmetrizations reduces all 
cross sections perpendicular to the common axis to 
circles, and thus has the same effect as Schwarz sym­
metrization. 

If we first Steiner symmetrize a prolate spheroid we 
get, in general, an ellipsoid of equal volume whose 
largest principal axis lies in magnitude between the 
principal axes of the initial spheroid (again by an 
affine transformation). Schwarz symmetrization of the 
resulting ellipsoid with respect to largest principal axis 
gives another prolate spheroid of the same volume, but 
smaller eccentricity. If the original spheroid was oblate, 
the only difference is that the Schwarz symmetrization 
must be carried out around the smallest principal axis 
of the resulting ellipsoid. Since the largest (smallest) 
principal axis of the ellipsoid can be made as close to 
that of the original prolate (oblate) spheroid as desired, 
the eccentricity of the resulting spheroid can be made 
arbitrarily close to that of the original spheroid, from 
which the desired conclusion follows: Any quantity 
which never increases (decreases) under Steiner sym­
metrization is a monotone increasing (decreasing) 
function of the spheroid eccentricity, the volume being 
held fixed. (The spheroids being compared, however, 
must either be all prolate or all oblate.) 

3.5. Steiner symmetrization of a hemisphere with 
respect to its diametral plane gives a volume equivalent 
oblate spheroid with a ratio of principal axes of 1: 1 :~. 
Schwarz symmetrization with respect to a diameter 
gives a volume equivalent prolate spheroid with a ratio 
of principal axes of 1 :V1/2 :V1/2. 

Further discussion of Steiner symmetrization can be 
found in P6lya and Szego's book.4 

4. REPRESENTATIONS OF QUANTITmS 
OF INTEREST 

4.1. A variational representation of the lowest eigen­
value Co of (1) is given by the Rayleigh quotient 

i d3rl tFr'ep(r)K( I r- r/l )ep(r/) 
1 v v 

P=-~ W 
Co 

where ep(r) is any function. Equality in (4) occurs if and 
only if ep(r) =ep* (r), the true solution of (1). The sense 
of the inequality in (4) is related to the nature of the 
eigenvalue spectrum of (1), which we prove follo,:",ing 
the method of Davison9 : Let epn(r) be the normalIzed, 
orthogonal eigenfunctions of (1) corresponding to the 
eigenvalues cn • In terms of them, Davison writes the 
kernel K (I r- r' I) in a bilinear Hilbert-Schmidt serieslO 

<Xl epn(r)ep,,(r') 
K(I r-r/l)= L , (5) 

n=O en 

9 B. Davison, reference 8. 
10 See, for example, S. G. Mikhlin, Integral, Equations (Pergamon 

Press, London, 1957), Chap. II, especially pp. 88-92. 
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indicating that (5) holds irrespective of whether the 
cp,,(r) form a complete set or not. Furthermore, cp(r) 
may be written 

00 

cp(r) = L a"CPn(r) +p(r), (6) 
n-o 

where per) is orthogonal to every CPn(r) and vanishes if 
the latter are complete. Then the right-hand side of 
(4) is given by 

i (a,.2JCn)/ (f a,,2+i p2(r)iFr) ~CO-I, (7) 
n-o n-o V 

4.2. A useful and obvious representation of Pc is 

Another useful representation for Pc, whose derivation 
is outside the scope of this paper, is 

(9) 

where 1(1) is a certain normalized distribution of chord 
lengths l, whose mean i is equal to 4V/S, i.e., to four 
times the volume-to-surface ratio.3 

4.3. For Pa the only representation we shall use is a 
variational one. To derive it we must proceed as 
follows ll : First consider the equation 

Hif;*=S, (10) 

where H is a positive, hermitian operator, and the star 
denotes the true solution of (10). A variational ex­
pression for the inner product (S,if;*) can be obtained 
by noting that for any if; 

I (S,if;) 12= I (Hif;*,if;) 12 

~ (Hif;*,if;*) (if;,Hif;) = (S,if;*) (if;,Hif;). (11) 

Here, the inequality has been obtained from an obvious 
generalization of the Schwarz inequality in which (j,Hg) 
plays the role of the inner product between f and g. 

That this is possible depends on the positiveness of the 
operator H; for this property of H ensures that all 
norms (j,Hf) are non-negative. The proof that the 
operators H to which (11) is applied in this paper are 
positive as well as a proof of the generalized Schwarz 
inequality are to be found in the Appendix. From (11) 
it follows that 

(S,if;*)~ I (S,if;)/2/(if;,Hif;) (12) 

for any if;, with equality if and only if if;=if;*. 
Now, when a uniform, isotropic source of unit total 

strength exists in a non-multiplying medium V, the flux 
is determined by the inhomogeneous equation 

cp*(r) = C i K (I r- r/l )cp*(r/)iFr' 
v 

+ V-If K( I r- r' J)iFr', (13) 
v 

where C is now just the ratio of scattering to total cross 
section in V. The terms on the rhs are contributions to 
cp* from collided and uncollided neutrons. The total 
absorption rate in V is given by 

(1-c) L cp*(r)d3r 
v 

= (1-C)[C L d3r Iv iFr'K( I r- r'l )cp*(r') 

+V-IL d3r fv d3r'K(lr-r'I)], (14a) 

= (l-C)[CV Iv s(r)cp*(r)iFr+pc) (14b) 

The second line follows from (8) and the identification 
of S(r) with the last term on the rhs of (13). Further­
more, H must then be given by 

H= f·· {5(r-r')-cK(lr-r'I)JiFr'. (15) 
v 

Now, applying (12) to the first term on the rhs of 
(14b), we have that for any function cp 

C{ V-I£ iFr L iFr'cp(r)K(/r-r'l) r I 
Pa= (l-c) f cp*(r)d3r~ (1-c) +Pc • 

v V-l~ cp2(r)d3r-cv-1l"v iFr Iv iFr'cp(r)K(1 r-r/l)cp(r') 

(16) 

Since the source in V is of unit total strength, the lhs of (16) is equal to Pa and has been so denoted. Equality again 
occurs if and only if CP=cp*. 

11 T. Kahan, G. Rideau, and P. Roussopoulos, Memorial des Sciences Mathematiques, Fascicule CXXXIV (Gauthier-Villars, Paris, 
1956); N. C. Francis et at., reference 2. 
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4.4. For B02 we also employ a variational repre­
sentation based on a Rayleigh quotient, viz.12 : 

for any (suitably well behaved) function cf> which 
vanishes on 5, the surface of V. The sense of the 
inequality follows from the eigenvalue structure of (3), 
that is from the fact that B02 is the lowest eigenvalue. 
Equality again occurs if and only if cf> equals the exact 
flux given by (3). 

4.5. For eigenvalue problems with Hermitian opera tors 
another variational representation of the eigenvalue due 
to Weinstein13 exists which gives both upper and lower 
bounds. However, the most forceful application of 
Weinstein's method unfortunately involves a number of 
assumptions which render it fundamentally unsound. 

Let us begin by considering the quantity 

M = ({H-R}cf>, {H-a}cf»/(cf>,cf», (18) 

where H is an hermitian operator, R is the Rayleigh 
quotient associated with cf>, i.e., (cf>,Hcf»/(cf>,cf», and a is 
any number. Multiplying the numerator out shows that 

(19) 
where 

W= (Hcf>,Hcf»/(cf>,cf». (20) 

If now we set cf>= Ln~o'" a"cf>n, where cf>n are the eigen­
functions of H corresponding tOo eigenvalues An and are 
now assumed to form a complete set, it can easily be 
shown that 

M= i: /an/2(An-R)(An-a)/ i: /a n / 2. (21) 
n=O n=() 

N ow we designate by Am the eigenvalue to which R 
lies closest. Furthermore we choose a=R. In this case, 
it follows from (21) that 

M~ (Am-R)2, 

from which it follows that 

(22) 

(23) 

Now if in fact Am=Ao, the lowest eigenvalue, (23) 
will give bounds for it. The Rayleigh quotient R itself 
is clearly a better upper bound than R+v'M, but for 
the lower bound R-yM, there is as yet no competitor. 

12 R. Courant and D. Hilbert, Methoden der Mathematischen 
Physik, Erster Band (Springer Verlag, Berlin, 1931), sechstes 
Kapitel. 

13 D. H. Weinstein, Proc. Nat. Acad. Sci. 20, 529 (1934); G. 
Goertzel and N. Tralli, Some Mathematical, Methods oj Physics 
(McGraw-Hill Book Company, Inc., New York, 1960), pp. 213-15. 

Two remarks need to be made: First, of the identi­
fication Am=Ao we cannot in general be sure. Second, if 
the trial function cf> differs from the true lowest eigen­
function of H by a small quantity of order .\, Ae will 
differ from R by a quantity of order .\2 as is well known, 
but it will differ as we shall see presently from R-yM 
by a quantity of order 1.\ I. Thus, (23) will provide 
only very rough bounds. This situation can be improved 
if we choose a=Am+Am-tl-R or a=Am+Am_l-R ac­
cording as R is > or <Am. In these cases, respectively, 

M~ (Am+I-R) (R-Am), R >Am, (24a) 

M~ (R-Am-l) (Am-R), R<Am • (24b) 

If Am=AO, we can use (24a) and obtain 

In case some simple estimate of Al can be made, (25) 
may provide a much sharper estimate of Ao than (23). 
To see how this may happen let us consider a trial 
function cf>, which differs from the true lowest eigen­
function cf>o, by a quantity of order E. Then, for small E, 
it can easily be shown that W - R2 is of order E2. Since 
R-Ao is also of order E2, it follows that the rhs of (25) 
differs from Ao by a quantity of the order of E2 at most. 
In the case of Eq. (23), however, the rhs and lhs both 
differ from Ao by a quantity of order E. 

In principle, Weinstein's method may be used to 
bound B02; we shall say more of this application later. 

4.6. Finally, we derive a variational representation 
for Pad using (12) exactly as we did in treating Pa. This 
we do as follows: When a uniform, isotropic source of 
unit total strength exists in V, the flux cf> is given accord­
ing to diffusion theory by 

-V'2cf>*(r)+K2cf>*(r)= (VD)-I in V, (26a) 

cf>*(r)=O on 5, (26b) 

where K2 is the inverse squared diffusion length and is 
given by (1- c)/ D. The total absorption rate, equal 
here to Pad, is given by 

Pad= (I-c) f cf>*(r)d3r 
v 

= (l-c)VD i 5(r)cf>*(r)d3r, (27) 
v 

where here 5(r)= (VD)-l. Using (12) plus the iden­
tification H = - V'2+K2, we have that for any function cf> 

(l-C)VD(~ (VD)-lcjJ(r)d3r r 
Pad~ (28a) 

Iv cf>(r) (- V'2+K2)cf> (r)d3r 
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or 

(28b) 

if we use Green's theorem. Equality occurs if and only 
if cP=cp*. 

5. THEOREMS AND PROOFS 

5.1. A versatile class of results which will prove 
extremely useful in estimating all of the quantities P, 
Pa, Pc, B02, and Pad is the class of inclusion theorems. 
Our results along this line are expressed in the following 
theorem: 

Theorem 1. If VI can be entirely included in V2, then 
P(V2) ~ P(VI), Bo2(V2) ~ B02(VI), V2P ad (V2) ~ VIP ad evI) , 
V2Pc(V2)~ VIPcevI), and V2Paev2)~ VIPaevI). 

Proof. The proofs of all parts of the theorem follow 
the same general rationale and are based on the ex­
pressions (4), (17), (28b), (8), and (16). The details for 
the first three parts of the theorem are very similar and 
we shall only carry them through for P: Let CPI * (r) be 
the exact flux in VI, i.e., the exact solution of (1) in VI. 
Let us define a trial function cp2(r) in V2 by the stipu­
lation: cp2(r)=cpI*(r) in VI, CP2(r)=0 otherwise. Then 

i d}r r d3r'CP2(r)K(lr-r'I)CP2(r') 
V2 JV2 

(29) 

Q.E.D. The fourth part of the theorem, that for Pc, 
follows trivially from (8), the last part .for Pa results 
from proving an inclusion theorem for the quantity 
V (Pa- Pc) from (16), and then using the already proven 
result for Pc. 

5.2. Another class of results arising from the com­
parison of different solids is expressed by: 

Theorem 2. P, Pa, Pc, and Pad all increase under Steiner 
symmetrization. B02 decreases under Steiner symmetriza­
tion. 

Proof. The proof of this theorem must be accom­
plished by two separate techniques. The first suffices 
to prove the theorem for the transport-theoretic quan­
tities P, Pc, and P a, while the second is reserved for the 
diffusion-theoretic quantities B02 and Pad. Let us begin 

with Pc in the form (8). Let us break the solid V up into 
paraxial differential cylindrical volume elements all of 
which are perpendicular to the plane of symmetrization, 
which for simplicity we take to be the xy plane. Let two 
of these cylindrical volume elements lie at XlYI and X2Y2 
and have base areas dxldYI and dx2dY2, respectively. 
Let them intersect the surface of the (convex) solid V 
in Zl' and z/', Z2', and Z2", respectively. The contribution 
of this pair to the multiple integral in (8) is 

This can be rewritten as 

where/r(zl) = 1 for Zr'~ZI~Zr" and zero otherwise, and 
similarly for h. Now let us rearrange the function$ /r 
and h in symmetrical decreasing order, i.e., let us 
replace !r(ZI) by a new function ]I(ZI) which (i) is 
symmetric around ZI = 0; (ii) is monotone decreasing; 
and (iii) has values between wand w+dw over a set 
of the same measure as that for which /r has values 
between wand w+dw; and similarly with h. Since in 
(30b) K is a monotone decreasing function of I ZI- Z2! , 

by theorem 380 of Hardy et al.,14 this rearrangement 
increases the integral of (30b). The result of this rear­
rangement can also be seen to be just the integral 

where a=z/'-z/ and b=z2"-z2'. But this is precisely 
the result of Steiner symmetrization, since the infini­
tesimal cylinders now have their midpoints in the plane 
of symmetrization. Thus, Pc increases under Steiner 
symmetrization. 

The proofs for P and P a follow similar lines. For P 
this is the procedure: If cp*(r) is the exact solution of 
(1) in V, then 

i d3rf d3r'cp*(r)K( I r- r'l )cp*(r') 
v v 

P(V)= (32) 

Iv [cp*(r)J2d}r 

14 G. H. Hardy, J. E. Littlewood, and G. P6lya, Inequalities 
(Cambridge University Press, London and New York, 1934). 
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On the other hand, for any arbitrary function </It(r) 
in vt, the Steiner symmetrized solid 

To obtain </l t (r) we again divide the solid V into 
infinitesimal cylinders whose axes are perpendicular to 
the plane of symmetrization Q. </It(r) is obtained by 
sliding each of these cylinders with the value of </l (r) 
fixed in the cylinder until all the midpoints lie in Q, 
and then rearranging </l* (r) along each of these cylinders 
in symmetrical decreasing order with the midpoints 
of the cylinders as the centers of symmetry. Since rear­
ranging of a function in symmetrical decreasing order 
does not alter the measure of the set over which it lies 
between specified values, the denominators of the rhs's 
of (32) and (33) are clearly equal. However (since </l* 
and </It are ~O), by a repetition of the argument given 
above in connection with Pc, it can be shown that the 
numerator of the rhs of (33) exceeds that of (32). Thus 
P(vt) ~ P(V), Q.E.D. 

A very similar method applied to (16), together with 
the already proven result for Pc, yields the announced 
result for P a' 

For B02 and Pad the approach is roughly similar but 
does not involve the notion of "symmetrical rearrange­
ment in decreasing order." Instead a function </It in V 
is used in (17) and (28b) which is obtained from </l*, 
the exact flux in V, by symmetrizing its level surfaces. 
That is to say, if </l*=C on the surface Sl of V1 then 
</It=C on the surface 51 of the symmetrized solid V1t. 
From this definition it easily follows that 

f G(</l*(r))tJ3r= f G(</lt(r))d3r, 
y yt 

(34) 

where G is any function. However, as we shall presently 
see 

From these last two equations the desired results for 
B02 and Pad easily follow. 

Rather than (35) we shall prove a more general 
theorem, due to P6lya and Szego,4 whose method we 
follow without change: Let F(x) be a concave-upwards, 
monotone increasing function of x. Then, with </It and 
</l* related as above, 

I=. r F(IV'</l*I)tJ3r~ r F(IV'</ltl)tJ3r=.l. (36) 
Jv Jvt 

To prove (36) we proceed as follows: Let S be a level 
surface of </l* on which </l*=C; on 5 let </It=G. Let an 
infinitesimal cylinder perpendicular to the plane of 
symmetrization (now chosen as the xy plane) and with 
base area dA = dxdy intersect S at Zl and Z2, and 5 at 
±zo. Let us compare the contributions to I and 1 from 
the respective volumes lying inside dxdy and corre­
sponding, respectively, to values of cj>* and cj>t between 
C and C+dG. In V there are two such volumes, one at 
Zl of volume dV = dAdC 1 dz1/ de!, and one at Z2 of 
volume dV = dAdC 1 dz2/ dC I. At Zl the value of I V'</l* I is 

where nZ1 is the Z component of the outward normal to 
Sat (X,y,Zl), and similarly at Z2. The contribution of the 
two volumes to I is then just 

dI=[ldZ1IF(1 dCI~)+ldZ2IF(1 dCI_1 )]dAdC. 
dC dZ1 nZ1 dC dZ2 nZ2 

(37) 

Since F is concave upwards, we may write according to 
theorem 204 of Hardy et al.,14 

dI~F([:'l+ :J/[I::I+I:~I]) 
x(\ :~\+\ :~I )dAdC. (38) 

Next we note that 2Z0=Z2-Z1' Hence, 

(39a) 

Since dz2/dC and dz1/dC must have opposite signs, 
(39a) can be rewritten 

Furthermore, since 

Bzo BZ2 BZ1 
2-=--­, 

ax ax ax 

aZo aZ2 aZ1 
2-=--­, 

ay ay By 

(39b) 

(40a) 

(40b) 
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we have by application of Minkowski's inequality 

(41a) 

~ (1+ (;:2Y + (;:2yr 

+( 1+ (;:ly+(;:lyy. (41b) 

Proof. We shall first prove the theorem for Pc: Let 
us introduce the characteristic function fer) of V 
defined by 

f(r)=l rin V 
= 0 otherwise (44) 

and its Fourier transform 

f(k)= f eik . rd3r; f(r) = (21r)-a! f(k)e-ikord3k. (45a) 
v ~ 

Introducing these into (8) one can show after some 
simple manipulation that 

f 
arctan k 

VPe= (21r)-3 If(k)!2 d3k. 
~ k 

(46a) But (41b) is simply the equation 

211 
-~-+-, (42) Here, use has been made of the fact that 
nzo nZl nZ2 

since for any surface 

(nz)-l= (1+(;:)2+(;:)) 1. 

Substituting (39b) and (42) in (38), and using the 
monotonicity of F, we obtain 

dI~2F( I dCI~) I dzoldAdC. (43) 
dzo nzo dC 

Comparing the rhs of (43) with that of (37), we see 
it is just the contribution to dI from the volume dV 
lying inside dA for which C~q,t~C+dC. Thus, dI~dI 
and I~I, Q.E.D. 

It is worth noting that (41) and (42) express the 
essential step in showing that the surface is decreased 
by Steiner symmetrization; for further discussion of 
this as well as the preceding proof the reader is referred 
to reference 4. 

5.3. In cylindrical and rectangular coordinates, 
among others, the diffusion equation is separable, so 
that solutions to problems involving right cylinders and 
rectangular parallelepipeds may be expressed in terms 
of results applicable to slabs and infinite cylinders. For 
two of the transport-theoretic quantities considered in 
this paper, viz., P and Pc, results are available which 
have to some extent the same effect. The first of these is: 

Theorem 3. If V is the volume common to (i) two per­
pendicular slabs Sl and S2, or (ii) three mutually per­
pendicular slabs Sl, S2, and S3, or (iii) an infinite right 
cylinder C and a slab S perpendicular to it, then 

(i) Pe(Sl) and Pc(S2)~Pe(V)~Pc(Sl)Pc(S2)' 
(ii) Pe(Sl) and P e(S2) and Pe(S3)~Pe(V)~Pe(Sl) 

x P e(S2)Pe (Sa). 
(iii) Pe(C) and Pe(S)~Pc(V)~Pc(C)Pc(S); where 

Pe(Sl) is the value of Pc for the slab Sl, etc. The same 
results also hold for P. 

f 
e-r arctan k 

K(k)= _eikord3r= . 
~ 41!""r2 k 

(4Sb) 

If in (8) one replaces K(r) of oCr), the Dirac delta 
function, (46a) becomes 

V=(21r)-3f If(k)1 2d3k. (46b) 
~ 

Let us first consider part (i) of the theorem. Let V 
be a rectangular parallelepiped of sides b1, b2, and ba. 
Then, 

(47) 

where Xj are the cartesian coordinates of r, and kj are 
the cartesian coordinates of k. Now if b2 and ba become 
very large, f(k) is only appreciable when k2 and ka are 
near zero. Hence, for large b2 and ba, k ~ kl' and 

(48a) 

The second equality follows from the one-dimensional 
analog of (46b). If we let b2 and b3 approach infinity, 
we then have 

f
+~ arctan k 

(21r)b 1P c(b 1) = Ih(k) IL_-dk, (49a) 
_~ k 

where Pc(b1) is the value of Pc for a slab of thickness b1• 

On the other hand, if only ba becomes infinite, 
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where k2= k 1
2+k22 and Pc is appropriate to the volume 

common to two perpendicular slabs. With k so defined 
it is true that 

arctan kl arctan k2 
and > 

kl k2 

arctan k arctan kl arctan k2 
--> (50) 

k kl 

Substitution of (50) in (49b) and use of (49a) yields 
the conclusion Pc(bl) and Pc(b2)'?;'Pc?;'Pc(bl)'Pc(b2), 
Q.E.D. Parts (ii) and (iii) of the theorem for Pc are 
treated similarly. 

For P we proceed as follows: If we introduce the 
Fourier transforms 

¢(k)= fv¢(r)eik.rlPr; 

(51) 

¢(r)= (211')-3 f ¢(k)e-ik.rlPk 
00 

of any trial function ¢(r) which vanishes outside of V, 
then it follows from (4) that 

f arctank If 
P?;. I¢(k) 12 ---lPk I¢(k) 1

2lPk. (52) 
00 k 00 

Let us choose V to be the same rectangular parallelepiped 
as before. As a trial function, ¢(r), let us choose 
IL~l ¢i(Xj) where ¢j(Xj) is the exact solution of (1) 
in a slab of thickness bi> and therefore vanishes for 
IXjl >!bj. Then 

3 

¢(k) = IT ¢j(kj ). (53) 
i=l 

It now follows from (52) and (53) by reasoning quite 
similar to that used previously in connection with Pc 
that 

(54) 

where P(b j ) is the critical first-collision probability for 
a slab of thickness bi . This is the second inequality of 
part (ii) for P. Since P(ba) approaches unity as ba 
becomes infinite, (54) also gives the second inequality 
of part (i). The second inequality of part (iii) follows 
similarly. For P the first inequality follows from 
theorem 1. 

5.4. The potentialities of this method are not yet 
exhausted and a slightly more subtle application of it 
yields the following very beautiful and powerful 
theorem for Pc: 

Theorem 4. Part 1. Consider a convex solid V and an 
arbitrary line L in space. Let the position of a point on L 
be measured by a coordinate z. Let the intersection of V 

and a plane Q perpendicular to L at z be denoted by 
A (z). Let Pc(z) be the collision probability of an infinite 
right cylinder with A (z) as base and L as axis. Then 

Pc(V)~ v-lfb dzA(z)P.(z), 
a 

where a and b are the limits determined by the planes 
tangent to V and perpendicular to L. 

Theorem 4. Part 2. Consider a convex solid V and an 
arbitrary plane Q in space. Let the position of a point on 
Q be measured by a coordinate two-vector ~. Let the inter­
section of V and a normal L to Q at g be a line segment of 
length t(g). Let Pc(g) be the collision probability of a slab 
of thickness t(g). Then 

Pc(V)~ V-Ii dgt(g)Pc(g), 

where A is the projected area of V on Q. 
Proof. To prove this theorem we again employ the 

method of characteristic functions introduced above. 
For the first part of the theorem let us write the Fourier 
transform f(k) of the characteristic function of V as 

f(k)= Jb eikazdz f dg exp(ikp·g), (55a) 
a A(z) 

where g is the coordinate two-vector in the plane Q. 
Substituting (55a) in (46a) and rearranging the order 
of integration we obtain 

+00 b b f 
= f dk3 f eikszdz f e-ikaz'dz' dkp 

-00 a a 00 

x f dg' exp( -ikp' g')K(k). (56) 
ACz') 

Since the integrand with respect to k in (56) is positive 
for all k we can insert K(kp)?;.K(k) on the right-hand 
side, perform the ka and z' integrations in that order, 
and obtain 

(211')3VPc(V)~(211') fb dz[f dkp f dgexp(ikp·g) 
a '" A(z) 

x f dg' exp( -ikp' g')K(kp)]. (57) 
A(z) 

If we let a approach - 00 and b approach + 00 and 
imagine A (z) is a fixed area, we obtain, by now familiar 
reasoning, the result that the square bracket in (57) is 



                                                                                                                                    

I N E Q lJ A LIT I E SIN THE THE 0 R Y 0 F N E U T RON T RAN S P 0 R T 839 

just (27r )2.4 (Z)Pc(Z). But then 

b 

VPc(V)~ f dzA (Z)Pc(Z) 
a 

(58) 

Q.E.D. The second part of theorem 3 is proven in an 
exactly similar manner, except we write j(k) as 

(55b) 

where a(g) and beg) are the intersections of the normal 
L to Qat g with V, interchange the order of integration 
so that k p , g and, g' arelast, and substitute K(k3)~K(k) 
for K(k). 

5.5. With a somewhat different use of Fourier trans­
forms one can prove the following theorem: 

Theorem 5. P~BO-I arctan B o, where B02 defined by 
(3) is the buckling oj the solid V to which P rejers. 

This theorem is related to the so-called "second 
fundamental theorem of reactor physics" 15; more will 
be said about this connection in Sec. 6. 

Prooj. If the angular integrals in (52) are performed 
it becomes 

f
oo arctan k 

p~ W(k) dk, 
o k 

(59) 

where W(k) is a positive normalized weighting function 
of k only. Now k-I arctan k is a convex-downwards 
decreasing function of k2 ; thus by theorem 204 of 
Hardy et al. I4 

f
'" arctan k arctan ko 

W(k) dk~ , 
o k ko 

(60) 

where 

k02= 1:'" W(k)k2dk (61a) 

= J I q,(k) 1
2k?dYk / f I q,(k) 1

2d1k. (61b) 
'" <Xl 

If we invert the transforms in Eq. (61b), noting that 

i\1q,(r)= (27r)-3f kq,(k)e-ik.rdYk, (62) 

'" we find 

k0
2= Iv [\1q,(r)]2dYr / Iv tf>2(r)dYr. (63) 

Equation (62) can only converge if q,(r)=O on S 
the surface of V; for, otherwise, since q,(r) =0 outside 
of V [see (51)J, \1q,(r) will have an infinite singularity 
on S. Now, since k-I arctan k is a monotone decreasing 
function, the best value for k0

2 will be the smallest 
possible. But it follows from (63) and (17) that 
(k0

2)min = B02. Thus combining this result, (59), and 
(60) we have P'~BO-I arctan Bo, Q.E.D. 

5.6. As noted in the introduction, a rich source of 
inequalities are the variational representations of the 
different quantities; e.g., by the simple choice of a 
constant trial function q,= 1 in (4) and (16) one obtains 
the following two theorems immediatelyI6: 

Theorem 6. P~Pc. 
Theorem 7. Pa~ (l-c)Pc/(l-cPc). 
By combining the variational technique with an 

application of Schwarz's inequality, one can further­
more prove: 

Theorem 8. Pa~ (l-c)Pc/(l-cP). 
Proof. Let q,=q,*, the exact solution of (13). Then 

c{ V-Ifv dYr Iv dYr'q,*(r)K( I r- r' J) r 
Pa=(l-c) ------------------------------------------+Pc (64a) 

V-Ifv [q,*(r)J2d3r- C V-I Iv d3r Iv d3r'q,*(r)K( I r- r' I )q,*(r') 

~ (l-c) 

c V-2{ Iv dYr Iv d3r' K( I r- r' I) } {Iv d3r Iv d3r'q,*(r)K( I r- r' I )q,*(r') } 1 
+Pc • 

V-IIv [q,*(r)]2d3r-cV-I Iv d3r Iv d3r'q,*(r)K(lr-r'I)q,*(r') J 

(64b) 

The application of Schwarz's inequality here is made in 
the same way as in (11). Dividing the numerator and 
denominator in (64b) by 

c V-I.( d3r .( dYr'q,*(r)K( I r- r'! )q,*(r') 

15 A. M. Weinberg and E. P. Wigner, reference 8, pp. 397-406. 

and using (4) and (8) one finds Pa~ (l-c)Pc/(l-cP), 
Q.E.D. By exactly the same technique as above applied 
to (28b) one can prove: 

16 Theorem 6 is due to P. A. M. Dirac, "Approximate rate of 
neutron multiplication for a solid of arbitrary shape and uniform 
density," declassified British Report MS-D-5, Part I, 1943. 
Theorem 7 is originally due to H. Hurwitz, Jr., according to N. C. 
Francis et al. (reference 2); see also: G. W. Stuart, Nuclear Sci. 
and Eng. 2, 617 (1957). 
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Theorem 9. Pad~ (1+B02/K2)-I. 
Noting that in diffusion theory the critical first­

collision probability 

the last theorem can be rewritten as 

(Here c means only the fraction of scattering per col­
lision.) In a sense this statement is weaker than that 
of theorem 8, since there P is replaced by Pc~P in the 
numerator resulting in a lower upper-bound. Also 
somewhat weaker than the theorems already proved 
and a consequence of them are the physically obvious 
inequalities P;;;"Pc;;;"Pa and Pd;;;"Pad. 

5.7. For the strictly transport-theoretic quantities 
which can be variationally represented, viz., P and Pa, 
use of more complicated trial functions than those 
mentioned above leads to great difficulties [although 
theorem 5 results in a manner of speaking from the use 
of a diffusion-theoretic trial function in (4)]. For the 
diffusion-theoretic quantities the case is otherwise, and 
some elegant and useful results can be obtained by 
suitable choice of trial fluxes. These results can most 
easily be expressed in terms of a certain "effective 
radius" of a solid Ro, which is defined by 

(65) 

where V is the volume of the solid, r is the radius 
vector from some fixed point 0 in the interior of V to 
any point Q on the surface, n is the outward normal at 
Q, and dS is the infinitesimal element of surface at Q. 
When V has a center of symmetry it will be chosen as 0, 
otherwise the choice is left open and Ro will be a 
function of O. In terms of this "radius" one can prove: 

Theorem 10. For any finite solid V, Bo2~r/Ro2. 
Proof. We use the method of prescribed level surfaces 

described by P61ya and Szego4 : With 0 as origin let 
the equation of the surface S of V be r=R(w), where w 
is a unit vector giving the direction of r, and r is the 
latter's magnitude. Let us choose the level surfaces of 
the trial flux q,(r) to be the surfaces r=uR(w) where 
O~u~ 1. (The point u=o is 0, the surface u= 1 is S.) 
Furthermore, let us set cf>(uR(w»=f(u), wheref(l) =0 
and feu) is as yet otherwise undetermined. 

Now the volume dV between the surfaces u and u+du 
and lying inside an infinitesimal cone whose apex is at 
o and whose intersection with S is dS, is given by 
dV =u2du(r· n)dS. Furthermore, at Q, I V'q,1 is given by 
Idf/dul (r·n)-I. Using these relations in (17) gives 

11 (df/du)2U2du f f (r· n)-ldS 
o 

Bo2-:::.-----------. 

i1p
U2dU f f (r· n)dS 

II (df/du)2U2du 
o 
-----·RO-2 (66) 

since 

V = J: 1

U2dU f f (r·n)dS= t f f (r· n)dS. 

The best choice of feu) is that function which will 
make the rhs of (66) a minimum. We can formulate the 
requirements on feu) conveniently through the vari­
ational equations 

1 

5 i (df/du)2U2du=0, (67a) 

1 i u2f2du=1, 
o 

(67b) 

f(l)=O. (67c) 

The corresponding Euler-Lagrange differential equation 
forf(u) is 

d2f 2 df 
-+- -+'Y2 f = 0, 
du2 udu 

(68) 

where 'Y is an undetermined Lagrange multiplier. The 
regular solution of (68) is 

feu) =u-!J!('Yu) a: u-1 sin'Yu. (69) 

To satisfy the requirement f(l)=O, 'Y must be chosen 
as 7r. Furthermore, by a partial integration the ratio 
fol(df/du)2u2du/ fo1j2u2du can be shown to equal 
'Y2=r if feu) satisfies (68). Substituting this value in 
(66) gives the desired result. Finally, equality occurs 
when V is a sphere. By an exact repetition of the fore­
going argument one can prove: 

Theorem 11. For any infinite right cylinder, 

B02= ex2j (RO')2, 

where ex is the first root of the Bessel function J o 
(= 2.405), and Ro' is defined by 

Here A is the base area of the cylinder, r is the two­
dimensional radius vector from some arbitrary fixed 
point 0 in the interior of A to a point Q on the perimeter 
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of A, n is the outward normal at Q, and ds is the infini- where 
tesimal element of perimeter at Q. Equality occurs here 

(75a) for right circular cylinders. 
5.8. With a very similar technique one can prove and 

the theorems: 

Theorem 12. For any finite solid, 

P ad~ 1-~{ cothKRo-_1_}. 
KRo KRo 

Theorem 13. For any infinite right cylinder, 

2 II (KRo') 
Pad~l----­

KRo'Io(KRo') 

Proof. By using the same level lines as in the last 
section (5.7) in (28b) we can rewrite it in the case of a 
finite solid as 

3 (ilfu2dU r 
P ad~ , (71) 

flpU2dU+ (KRO)-2f<df / dU)2U2du 
o 0 

where feu) is again undetermined, save f(l)=O. The 
requirement thatf(u) be so chosen as to make the rhs 
of (71) a maximum leads to the Euler-Lagrange equation 

d2f 2 df 
-+---(j_'Y)~R02=0; f(l)=O, 
du2 udu 

(72) 

where 'Y is again an undetermined constant. It enters 
feu) however, only as a multiplicative factor and hence 
does not affect the rhs of (71). Indeed, 

{ 
Sinh(KRoU)} 

f(u)='Y 1 . 
u sinh(KRo) 

(73) 

With the help of this expression and a partial integra­
tion, the rhs of (71) can be evaluated and yields the 
theorem as stated. Equality occurs again for spheres. 
When the solid is an infinite right cylinder the proof 
is similar. In theorem 13 equality occurs for right cir­
cular cylinders. 

5.9. For the buckling, the variational treatment can 
be extended by application of the method of Weinstein. 
To carry this method through we must not only cal­
culate the Rayleigh quotient R, as is done in the last 
section, but also the quantity W of (20). Choosing q, 
exactly as in Sec. 5.7 [i.e., choosing feu) given by (69) 
in the case of finite solids, etc.], we find that for finite 
solids and infinite right cylinders, respectively, 

W = 11"4/ Rl4 (finite solids), (74a) 

W=a4/(R I')4 (infinite right cylinders), (74b) 

(75b) 

We have not stated these results in the form of a 
theorem because of the somewhat uncertain nature of 
our application of Weinstein's method. The proof of 
(74) is as follows: 

Proof. We consider only finite solids; the proof for 
cylinders is very similar. Since H = - V'2, we need an 
expression for V'2 in terms of the variable u. This we 
obtain by noting first that, from our previous expres­
sions for dV and I V'q, I, it follows that 

f II L
ldf dg 

w· V'q,dV = (r· n)-ldS - -u2du, (76) 
v 0 du du 

where q,(r)=f(u) and if;(r)=g(u). An integration by 
parts in both sides of (76) gives [since both q,(r) and 
if; ( r) vanish on S]: 

- f/VZq,dV 

I d2j 2 df } 
=-IfdS(r.n)-IJ g(u){-+-- u2du 

o du2 u du 
(77a) 

f {d:! 2df} 
=- dS(r·n)u2du·g(u)· ._+-- (r·n)-2. (77b) 

du2 u du 

Since the first factor in the integrand on the rhs of 
(77b) is dV, and the second factor is if;, which is arbitrary, 
it must be that 

V'2q,={d2
f 
+:d

f
}(r.n)-2. (78) 

du2 udu 
Then 

1{d2
f 

2 df }2 JI f -+-- u2du (r·n)-3dS 
o du2 u du 

W=------------------------ (79) 
1 i u2f2du J I (r· n)dS 

If we furthermore require f to satisfy (68) with 'Y=1I", 
we get 

W=1I"4J f (r·n)-3dS / 3V, (80) 

which is identical with (74a), Q.E.D. 
5.10. The variational theorems of the last three 

sections explicitly state relations between B02 and Pad 
and certain effective "radii." A similar theorem for Pc 
which has an origin quite different from a variational 
principle is: 
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Theorem 14. Pc~ 1-l-1(1-exp( -l)); l-4V/S. 
Proof. The proof is based on the use of the following 

inequality of Hardy et al,14 (theorem 184) in (9): 

if 1(1) is a normalized probability density. 

6. DISCUSSION AND EXAMPLES 

6.1. A number of remarks will be given below con­
cerning the question of when a particular theorem can 
be expected to yield a limit close to the actual value of 
the quantity being estimated and when not. All of 
these remarks, however, only apply in extreme cases 
and, in general, the limits supplied by the various 
theorems must be compared to see which are best. 

Theorem 1. This "inclusion" theorem works best when 
the volumes of the solids being compared are not too 
different. Thus inscribing a sphere in a cube may give 
fairly good limits while inscribing one in a long, thin 
cylinder should give rather bad limits. 

Theorem 2. When using the isoperimetric corollary to 
theorem 2, viz., "Of all finite solids of a given volume 
the sphere has maximum P, P a, Pc, Pad, and minimum 
B02," the best results will be obtained with equilateral 
or "sphere-like" solids. Thus cubes, cylinders with 
height and diameter equal, or ellipsoids of low eccen­
tricity are all suitable for the application of theorem 2, 
while solids which are much longer in some directions 
than in others are quite unsuitable. Similar remarks 
refer to the isoperimetric corollary for cylinders. 

Theorem 3. In discussing this theorem let us consider 
for the sake of argument situation (iii) of the hypothesis, 
viz., the perpendicular intersection of a cylinder C and 
a slab S. Furthermore, although we only discuss Pc in 
what follows, similar remarks apply to P. If the radius 
of the cylinder C is large, then PeeS) will be a very good 
upper limit and Pe(S)Pc(C) a very good lower limit for 
Pc of the intersection solid. This is simply because Pc (C) 
does not differ very much from unity, and thus the 
upper and lower limits do not differ very much from 
each other. Quite a similar conclusion holds if the slab 
is very thick. On the other hand, if the thickness and 
radius are both small, then it immediately follows that 
PcCC)'Pe(S) will be a very bad lower limit since the 
value of the product of the two Pc's falls much more 
rapidly with decreasing size than the Pc of the inter­
section solid. One expects that the upper limit in this 
latter case will also not be very close to the exact value 
for the following reason: In the intersection solid 
neutrons born at any point and with any direction of 
velocity are within a short flight of the edge. In the 
bounding solids, i.e., cylinder or slab, however, neutrons 
whose velocity is nearly parallel to the elements of the 
surface are removed by a long flight from the edge. In 
sum, theorem 3 will work best for large solids. 

Theorem 4. This theorem essentially generalizes the 
upper limits obtainable from theorem 3, and roughly 
similar remarks apply to it. 

Theorem 5. This theorem is based essentially on the 
choice of a diffusion-theoretic trial function in the 
variational expression for P. Thus it ought to be a close 
underestimate for relatively large reactors where dif­
fusion theory is approximately valid. This tendency is 
reinforced by the fact that for large reactors both P 
and BO-l arctan Bo approach unity. 

Theorem 5 is related to the so-called "second funda­
mental theorem of reactor theory" 15 which, for a one­
velocity, bare reactor with isotropic scattering, equates 
P and BO-l arctan Bo, but which permits adjustment of 
Bo through the introduction of an extrapolated surface. 
The requirement that the flux vanish on an extra­
polated surface has the effect of decreasing Bo and 
raising the value of B O-l arctan Bo. This will, in general, 
prolong agreement of this latter formula with P to 
much smaller sizes than otherwise, but render the sign 
of the error uncertain. Moreover the choice of an extra­
polated surface is arbitrary although quite reasonable 
procedures can be worked out based on the extrapola­
tion distance one obtains in Milne's problem. This 
arbitrariness renders the existence of any general 
inequality involving P and an extrapolated buckling 
unlikely, so that theorem 5 seems the strongest theorem 
we can prove in this direction. 

Theorem 6. Theorem 6 is based on the choice of a flat 
trial flux and therefore should be best for small solids, 
in which the curvature of the true flux is not too large. 
Furthermore, since both P and Pc must both approach 
unity for large solids, this theorem may even provide 
useful estimates for large solids. 

Theorems 7, 8. These two theorems are discussed to­
gether because: If P and Pc are close to one another, 
then ceteris paribus the upper and lower limits provided 
by these theorems should also be close. This will occur 
particularly for small solids as mentioned in the last 
paragraph although it should be pointed out, for ex­
ample, that for slabs of any thickness P and Pc never 
differ by more than 3%. Trouble can develop, however, 
when c, the scattering fraction, is near unity and the 
solid is large, so that P is near unity, too. Then the 
upper limit provided by theorem 8 may grow incon­
veniently large. 

Theorem 9. Theorem 9 has the same meaning in dif­
fusion theory as theorem 8 has in the strict transport 
theory. One expects therefore, that for small solids the 
two sides of the inequality are not widely different in 
analogy with the discussion above. This can be directly 
supported as follows: Aside from the use of Schwarz's 
inequality, the chief step in the derivation of theorem 9 
(or for that matter 8 too) is the use of the flux originating 
from a uniform isotropic source as a trial value for the 
critical flux (i.e., as a trial flux in the variational prin­
ciple for B02 or P). Since the first of these fluxes is 
concave upwards and the second concave downwards, 
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10 

CUBE'S SIDE. 

FIG. 2. Limits for P e of cubes as a function of the length of the 
side. The limits shown are: 1, the lower limit from theorem 14; 
2, the cube of Pe of the circumscribing slab; 3, Pe of the volume 
equivalent sphere; and 4, Pe of the circumscribing slab. The true 
value must lie in the cross-hatched area. 

one can be a good trial value for the other only when 
the curvature of both is negligible. This happens, how­
ever, only in small solids. Furthermore, when the flux 
is essentially flat, the use made of Schwarz's inequality 
also entails little error. 

Theorems 10-13. Since in theorems 10 and 12 equality 
holds for spheres, these theorems should give very close 
limits for "sphere-like" solids. However, these need not 
be the only solids for which they give close limits, 
since the trial fluxes we have used are quite reasonable 
for many solids. Similar remarks apply to theorems 11 
and 13. 

Theorem 14. Regrettably little else can be said about 
when to expect close estimates from this theorem, save 
that it has the right values for very large and very 
small bodies. 

6.2. As our first example let us consider the estimation 
of Pc for cubes. According to theorem 2 the value of Pc 
for the volume equivalent sphere is an upper limit for 
Pc of a cube. Another upper limit is Pc for a circum­
scribing slab, that is a slab of thickness equal to the 
cube's side. This follows from theorem 3. Theorem 3 
also gives a lower limit, namely the cube of Pc for the 
circumscribing slab. Finally, theorem 14 gives a lower 
limit. These limits are plotted in Fig. 2 as a function of 
the cube's side; the true value of Pc for a cube must 
lie in the shaded region. 

A number of observations concerning this figure are 
relevant. In the first place, for cubes, Pc of the circum­
scribing slab is a very bad overestimate as one might 
originally have expected. Indeed, in the range of sides 
from 0.2 to 8.0 m.f.p., this upper limit is much larger 
than that given by the volume equivalent sphere. On 
the other hand, for cubes one expects Pc for the volume 
equivalent sphere to be a fairly close over-estimate and 
this is borne out in the case at hand by its nearness to 
the lower limits in Fig. 2. For large cubes the under­
estimate provided by the cube of Pc of the circum­
scribing slab is the better of the two considered; 

•.• 1-----+----+--;>"''''''''''-+----+-----4 

RADIUS 

FIG. 3. Limits for Pc of! m.f.p. thick disks of various radii. The 
limits shown are: 1, the lower limit from theorem 14; 2, the 
product of the Pc's of the circumscribing slab and cylinder; 3, Pe 

of the circumscribing slab; 4, Pc of the volume equivalent sphere; 
5, Pe of the circumscribing cylinder. The true value must lie in 
the cross-hatched area. 

however, for small cubes for which Pc of the circum­
scribing slab becomes small, its cube becomes extremely 
small and provides a rather useless limit. Thus, for 
cubes whose side is less than 2.0 m.f.p., the better 
lower limit is that of theorem 14. 

For solids which are not "sphere-like" Pc of the 
volume equivalent sphere is usually a gross over­
estimate. This can be clearly seen in Fig. 3 where limits 
for Pc of disks! m.f.p. thick and of various radii are 
plotted. These limits are: Pc for a slab! m.f.p. thick 
(an upper limit by theorem 3); Pc for an infinite cylinder 
of radius equal to the disk radius (an upper limit by 
theorem 3); the product of these two numbers (a lower 
limit by theorem 3); Pc for the volume equivalent 
sphere (an upper limit by theorem 2); and the lower 
limit given by theorem 14. For disks for which the 
radius is very much greater than the thickness, Pc for 
the volume equivalent sphere is much larger than Pc 
for the circumscribing slab, whereas when the thickness 
and radii are comparable this situation is reversed. Not 
surprising is the further fact that the lower limit from 
theorem 14 is better than that from theorem 3 when the 
disk radius is small and worse when the disk radius is 
large. 

Cubes and disks belong to that special class of solids 
which can be formed by the orthogonal intersection of 
slabs and cylinders. When we consider solids not 
belonging to this class we can no longer use theorem 3 ; 
however, we can use theorem 4 instead. The latter, 
however, supplies only an upper limit; hence, we have 
for the upper limit but two choices: the one just men­
tioned (theorem 4) and Pc of the volume equivalent 
sphere. For a lower limit we can use only theorem 14 
in general. 

Oblate spheroids are an excellent example of solids 
not belonging to this special class. A simple and useful 
upper limit for Pc for them can be obtained from 
theorem 4, part 2 by choosing the plane Q perpendicular 
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FIG. 4. Limits for Pc of oblate spheroids whose minor axes are 
1 m.f.p. long as a function of eccentricity. The limits shown are: 
1, a lower limit based on the Pc of certain hemispheres related to 
the spheroids by Steiner symmetrization (see text); 2, the lower 
limit from theorem 14; 3, Pc of the volume equivalent sphere; 
4, an upper limit from the factorization theorem 4. The true 
value must lie in the cross-hatched area. Given also are three 
exact values available from reference 3. 

to the minor axis of the spheroid. If the half-length of 
the minor axis is b it can then be shown from theorem 4 
that 

Pc~3 [I u2P C8 (2bu)du, 
o 

(82) 

where pc. is the value of Pc for a slab of thickness 2bu. 
Interestingly enough, this limit depends only on the 
length 2b of the minor axis and not at all on the eccen­
tricity of the spheroid! 

In Fig. 4 the limit (82), the value of Pc for the volume 
equivalent sphere, and the limit from theorem 14 have 
been plotted as functions of the eccentricity ~ for oblate 
spheroids with 2b= 1 m.f.p. t is defined by 

(83) 

where a is the semi-major axis of the spheroid. The limit 

" cuaE's SIDE 

FIG. 5. Limits for P of cubes as a function of the length of the 
side. The limits shown are: 1, the lower limit for Pc taken from 
Fig. 2; 2, BO-l arctan Bo; 3, P of the inscribed sphere; 4, the 
cube of P of the circumscribing slab; 5, P of the volume equivalent 
sphere; and 6, P of the circumscribing slab. The true value must 
lie in the cross-hatched area. 

of theorem 14 has been calculated with the aid of the 
relations3 : 

1= (8/3)b/ F( ~), 

F(t)= 1+t-1(1-t2) tanh-It. 

(84a) 

(84b) 

In addition to these limits one other can be derived 
which is applicable only to spheroids. If Pc(V) is the 
first-collision probability for a hemisphere of volume V, 
we can write for oblate spheroids: 

Pc(b=!; ~)=Pc(V; ~)~Pc(V; t=v3/2)~Pc(V) 
if t~v'J/2. (85) 

The first inequality follows from the monotonic de­
creasing behavior of the first-collision probability for 
spheroids with eccentricity proved in Sec. 3.4; the 
second from the fact that an oblate spheroid of eccen­
tricity v'J/2 results from Steiner symmetrizing a hemi­
sphere in its diametral plane (Sec. 3.5). When E~v'J/2 

... I----+---+----+---+----{ 
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RADIUS 

FIG. 6. Limits for P of ! m.f.p. thick disks of various radii. The 
limits shown are: 1, P of the inscribed sphere; 2, the lower limit 
for Pc taken from Fig. 3; P of the volume equivalent sphere; and 
P of the circumscribing slab. The true value must lie in the cross­
hatched area. 

we can furthermore write 

where V'is the volume of an oblate spheroid with b=! 
and E=v'J/2. Here, the first inequality comes from the 
inclusion theorem (theorem 1), and the second again 
from the Steiner symmetrization process. Since Pc is 
tabulated,3 this limit can be realized and is also plotted 
in Fig. 4. 

Included in the diagram are three exact values of Pc 
corresponding to ratios alb equal to 5/3, 5/2, and 5 
which have been taken from the work of Case et al,3 
They indicate that for values of E$O,7 at least the 
value of Pc is very close to that of the volume equivalent 
sphere. The upper limit of theorem 4 under these cir­
cumstances (i.e. E$O,7) is much too high. However, 
when the eccentricity approaches 1 with the minor axis 
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remaining fixed, the volume increases rapidly and Pc 
for the volume equivalent sphere rapidly approaches 1. 
Finally for the most eccentric spheroids the upper limit 
of theorem 4 becomes applicable. Since when 1-E«l, 
F(E) is very close to unity in this case the upper and 
lower limits depend only on b. 

6.3. In the estimation of P, somewhat similar indi­
cations apply. Shown in Fig. 5 are the following limits 
for the P of cubes: (i) P of the circumscribing slab 
(upper limit by theorem 3 or theorem 1); (iO the cube 
of P of the circumscribing slab (lower limit by theorem 
3); (iii) P of the volume equivalent sphere (upper limit 
by theorem 2); (iv) BO-l arctan Bo (lower limit by 
theorem 5); (v) the lower limit given by theorems 6 
and 14; and (vi) P for the inscribed sphere (lower limit 
by theorem 1). (i) and (iii) are upper limits of which 
(iii) is much the lower of the two due to the equilateral 
nature of the cube. For large cubes (ii) gives the best 
lower limit; for small ones it is a gross underestimate 
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FIG. 7. Limits for P of oblate spheroids whose minor axis is 
1 m.f.p. long as a function of eccentricity. The limits shown are: 
1, P of the inscribed sphere; 2, the lower limit for Pc taken from 
Fig. 4; 3, P of the volume equivalent sphere; and 4, P of the cir­
cumscribing slab. The true value must lie in the cross-hatched 
area. 

an (vi) is the best lower limit. (ii) and (vi) together 
cover the range plotted and for the best estimate in 
this case it is not necessary to use (iv) and (v). 

In Figs. 6 and 7 are shown the following limits for P 
of the disks and spheroids we discussed in the last 
section: (i) P of the circumscribing slab, (ii) P of the 
volume equivalent sphere, (iii) P of the inscribed 
sphere, and (iv) the previously calculated lower limit 
to Pc. The first two are upper limits, the second two are 
lower limits. 

In Fig. 6, both of the limits (i) and (ii) are used, 
(i) for the larger radii and (ii) for the smaller exactly 
as in Fig. 3. The lower limit consists mainly of (iv) 
except for the smallest cylinders where (iii) was used. 
In Fig. 7, the situation is quite similar to that of Fig. 4. 
For small eccentricities, (ii) was used for the upper 
limit; while for large eccentricities (i), which is the 
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FIG. 8. A comparison of P with Pc and BO-l arctan Bo for spheres. 

analog of the upper limit in Fig. 4 from theorem 4, 
was used. For large eccentricities, (iv) was used for a 
lower limit; while for small eccentricities, (iii) was used. 
Figure 7 shows clearly the extremely slow variation of 
P with eccentricity for small eccentricity. 

In neither of these last two figures was BO-l arctan Bo 
used as a lower limit for P. In the case of the oblate 
spheroids, this is because the calculation of Bo presents 
difficulties, and indeed the estimation of B02 for spheroids 
forms the subject of one of the later paragraphs of this 
paper. In the case of the disks, however, BO-l arctan Bo 
was calculated and found always to be less than limit 
(iv) above. This is due to the fact that theorem 5 is 
always unsuitable for a disk of thickness! m.f.p., since 
such small dimensions preclude the use of diffusion 
theory. 

The expectation that Pc should be the closer lower 
limit to P for small solids and BO-l arctan Bo the closer 
lower limit to P for large solids has already been 
alluded to in the discussion of paragraph 6.1. Presented 
in Figs. 8 and 9 are comparisons of these two limits 
with the exact values of P for spheres and slabs, at 
once confirming this expectation and showing the rather 
good accuracy attainable with these variationally derived 
limits. 
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FIG. 9. A comparison of P with Pc and BO-l arctan Bo for slabs. 
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FIG. 10. Limits for the buckling of prolate spheroids as a function 
of eccentricity. Plotted as ordinate is the ratio of the buckling of 
the spheroid to that of the volume equivalent sphere. The limits 
shown are: 1, that derived from the volume equivalent sphere, i.e., 
unity; 2, that derived from the circumscribed cylinder; 3, that 
derived from Weinstein's method, i.e., from (25) and (87); and 
4, that derived from theorem 10. The true value must lie in the 
cross-hatched area; if curve 3 is admitted as a lower limit the 
true value must then lie in the smaller doubly cross-hatched area. 

6.4. We shall study but one more example, this one 
chosen to illustrate the technique of estimating the 
diffusion-theoretic quantities. We consider estimating 
the buckling of a prolate spheroid: From theorem 10 
and (65) a short calculation shows that 

B02 1-i€2 
<--­

Bves2 (1-€2)1' 
(87) 

where Bves is the buckling of the volume equivalent 
sphere and € is the eccentricity again defined by (83). 
From theorem 2 it follows that Bo?;,Bves, so that the 
lhs of (87) is always greater than or equal to unity. 
This last limit we expect to be a good one near €= 0, but 
to become quite useless for highly eccentric spheroids. 
The only remedy we have for this situation must be 
found in theorem 1, the inclusion theorem, since no 
other one can be directly applied to the estimation of 
Bo. For eccentric prolate spheroids a suitable solid for 
comparison is the circumscribed cylinder, i.e., that one 
with the semi-minor axis as radius and the major axis 
as height. It follows from the properties of this solid 
and theorem 1 that 

B02 4a2/1T2+(1-€2) 
-->------
Bve,2 4(1- €2)1 

(88) 

The limits (87) and (88) for the ratio Bo/ Bves have been 
plotted in Fig. 10 as functions of the eccentricity. Also 
plotted is the lower limit unity. Finally, a lower limit 
based on the method of Weinstein is plotted. This curve 
was obtained by using (25) with the further assumption 
that Al=4R (correct when €=O). W, which is given by 
(74) and (75), can easily be evaluated explicitly and is 

given by 

W 1-1€2+l€4 

Bves4 (1_€2)1 
(89) 

Under these circumstances the estimate given by (25) 
differs from B02 by a quantity of order €4. This high 
accuracy is reflected in the fact that for small E the 
curve based on (89) and that on theorem 10 (which 
also differs from B02 by order €4) nearly coincide. Of 
course, the limit based on (88) is not a proven lower 
limit because of the inexact value of Al used to obtain 
it, and its inclusion in Fig. 10 is to some extent contrary 
to the spirit of the rest of the paper. 

6.5. What remains to be done? Very much indeed 
the author believes, so that when it is all mentioned 
the present paper will appear, as it properly should 
only as a beginning. 

In the first place, the notion of seeking inequalities 
rather than equalities, and the rather exotic techniques 
(at least for physicists) this notion brings with it, such 
as Steiner symmetrization or rearrangement of a 
function in symmetrical decreasing order, have only 
been very slightly applied to physical problems. It is 
doubtless true that this enlargement of the conventional 
point of view will be a very fruitful one. 

In the second place, even if we confine ourselves to 
the framework of neutron transport phenomena, the 
present paper is little more than a start. For example, 
our considerations here have been based on the presup­
position that the scattering process is isotropic. But 
surely it is true that Steiner symmetrization decreases 
the critical multiplication even in a solid in which scat­
tering is anisotropic. And quite probably there is some 
inequality similar to theorem 5 in media with anisotropic 
scattering, too. 

Not only must a generalization to anisotropic scat­
tering be made, but reflected media must be considered 
as well. Indeed, a start in this direction has already 
been made by Ackroyd and Ball,6 who essentially 
consider the effect of Steiner symmetrization on critical 
multiplication for reflected systems. 

Finally, even within the restricted milieu of bare, 
one-velocity reactors with isotropic scattering there are 
a number of open questions. For example: Does a 
factorization theorem like theorem 3 hold for P a or not? 
Are the multiple collision probabilities from a uniform, 
isotropic source increased by Steiner symmetrization? 
(The answer here seems intuitively clear; the basic 
difficulty is generalizing theorem 380 of Hardy et al.14) 

Does a factorization theorem hold for these multiple 
collision probabilities or not? 

ACKNOWLEDGMENTS 

The author wishes to thank Dr. F. Stummel and 
Dr. J. Merkwitz for many illuminating discussions. 



                                                                                                                                    

I N E QUA LIT I E SIN THE THE 0 R Y 0 F N E U T RON T RAN S P 0 R T 847 

APPENDIX 

By a posItIve operator is meant one for which 
(j,Hf) ~ 0 for all f. If H is both positive and Hermitian 
then for any "A 

o~ (j+"Ag, HU+"Ag}) 
= (j,Hf) +2 Re ["A (j,Hg)] + I "A12(g,Hg). (Al) 

If we now choose arg"A= -arg(j,Hg), it is easy to verify 
that 

2 Re["A(j,Hg)]=21"A11 (j,Hg) I. (A2) 

Combining (A1) and (A2) gives the identity in I"A \ : 

\"A12(g,Hg)+21 (j,Hg) I \"A\+(j,Hf)~O. (A3) 

For (A3) to hold for all values of the modulus I"A I, the 
discriminant must never be positive, i.e., 

I (j,Hg) 12 _ (j,Hf)(g,Hg)~O, (A4) 

which is a generalization of the usual Schwarz inequality. 
The first of the operators for which (A4) is to be 

applied is (15). To prove it is positive we first expand 
f(r) as 

"" f(r)= L ancf>n(r)+p(r), (AS) 
n=O 

where p(r) is orthogonal to all the cf>n(r). Then we use 

the Hilbert-Schmidt series (5) for K (I r- r'l) to obtain 

(f,Hf)=ilf(r)12d3r-cI: lanl2/c n 
v n-o 

~ilf(r)12d3r- i: lan l2 

v n=O 

= Iv' p(r) 12d3r~ O. (A6) 

Here use has been made of the fact that e, the fraction 
of scattering, is by definition less than one, while en by 
virtue of its definition as a critical multiplication, must 
be larger than one. 

The second operator to which (A4) is to be applied 
is K (I r- r'l) itself; from (5) and (AS) is trivially 
follows that 

OG 

(j,Kf) = L lan!2/en~O. (A7) 
n=O 

The third operator to which (A4) is to be applied is the 
operator - V2+K2 in the volume V, with vanishing 
boundary condition on the surface S of V. Then by a 
simple application of Green's theorem, 

(j,Hf) = f;*(r){ - V2+K2}f(r)d3r 

= j>IVf(r)12+K2!f(r)i2}d3r~o. (A8) 
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Probability Distribution for Classical Fluids* 
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The pr~bability distr~buti~n ~n phase space ~s. o~tained for particles in a small part of the total volume 
of a .classlcal monatomic liUl? m thermal eqUIlIbrIum. It is shown that the distribution reduces to that 
ob~am.ed ~ro~ a grand.can.olllcal ~nsen:ble as this part of the volume increases in size. The Debye-Huckel 
pair distrIbutIOn functIOn IS obtamed m the proper limit for the Coulomb case. The distribution is in the 
form of a first approximation with an infinite series of correction terms. 

1. INTRODUCTION 

I N classical statistical mechanics, the assumption is 
generally made that, for an isolated system in 

equilibrium, the representative point is equally likely 
to be found in any of equal elements of volume of the 
phase space that is available to the system. An argument 
for this assumption has been made by Kinchin from 
the work of Birkhoffl and has been used to justify the 
use of the grand canonical distribution for subsystems 
of such a system when they are weakly interacting.2•3 

We shall not assume weakly interacting subsystems 
here but shall take, instead, an isolated system made up 
of a fluid composed of atoms of one kind whose interac­
tions are pairwise. Although it is not clear that this 
system can be broken up into weakly interacting 
subsystems, many quantities, such as the radial distri­
bution function, depend only upon the probability 
distribution of particles in a small region of the fluid. 
It is the purpose of this paper to develop a method for 
obtaining this probability distribution function for a 
given small region which will be referred to as the 
"inner region" with volume Ti. The remainder of the 
volume of the fluid will be called the "outer region" 
with volume T. 

Since the particles of the fluid can move between the 
two regions, the probability distribution that we shall 
obtain corresponds to the grand canonical distribution 
for weakly interacting systems. The procedure for 
obtaining it must involve an integration over the 
positions and momenta of all the N particles in the 
outer region for each given number M in the inner 
region where the total number Nt=M+N is fixed. 
Methods for carrying out such integrations have been 
developed from the theory of collective coordinates 
proposed by Pines and Bohm.4 Such a method was 
worked out by the author" in connection with the 
problem of obtaining the probability distribution of 
electric fields on ions in a plasma. The procedure we 
shall use here is not identical to the one used there6 but 

* This work was supported in part by the National Science 
Foundation. 

1 A. I. Kinchin, M atkematical Foundations of Statistical M eckan­
ics (Dover Publications, Inc., New York, 1949), pp. 28-29. 

2 Terrell L. Hill, Statistical Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1956). 

3 D. J. Candlin, Nuovo cimento 15, 856 (1960). 
4 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952). 
5 A. A. Broyles, Z. Physik 151, 187 (1958). 

is similar enough so that some of the results of that 
paper indicate what we might expect for calculations 
using the method described here. It will become 
apparent later that the theory presented here reduces 
to that of Debye and Huckel for electrolytes in the 
Coulomb case and in the proper limit. 

It is necessary for this treatment to assume that any 
singularity in the pair interaction potential is integrable. 
The Coulomb potential, of course, satisfies this criterion. 
The Lennard-Jones and hard sphere potentials do 
not. Where unallowable singularities occur, they must 
be eliminated by an artificial cutoff or by a procedure of 
separation into long and short range interactions such 
as that in reference 5. 

With integrable pair interaction potentials, a small 
constant or integrable function of the order of T-I 

can be subtracted to make the integral of the pair 
potential over the whole volume be zero. This is often 
done in the case of Coulomb particles by providing a 
uniform background charge of opposite sign to that of 
the particles. It will be assumed that something of this 
sort has been done for all pair potentials. 

At the end of the derivation presented here the 
limit should be taken such that the total numb~r of 
particles and the total volume of the system approaches 
infinity with the average number per unit volume 
remaining constant. 

II. NOTATION 

A=matrix in second degree term in expansion of 
fin Eq. (28). 

a=column submatrix of A in Eq. (II-2). 
B= submatrix of A in Eq. (II-3). 
b=column matrix involving Lj=IMW(R-Rj) 

described following Eg. (10). 
bu=column matrix involving Lj=1M U*(R- Rj ) 

in Eq. (46). 
C=arbitrary square matrix. 
E= energy of the entire system. 
f=lne of the integrand of J defined in Eq. (17). 
g=definition in Eq. (1S). 

go= g at the point of steepest descents. 
Ho=Hamiltonian for the outer region. 
HI = Hamiltonian for the inner region. 

HOI = interaction energy between inner and outer 
regions. 

848 
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HoI' = effective interaction energy in Eq. (60). 
I = integral over outer region in Eq. (4). 

It=integral over whole volume in Eq. (5). 
i = subscript indicating inner region. 
J = integral in Eq. (14). 
k= Fourier transform variable. 
l= Fourier transform variable. 

M = number of particles in the inner region. 
m= mass of particles in the fluid. 
N = number of particles in the outer region. 
Nt=number of particles in the entire system. 
n r = number of particles in cell centered at r. 
0= order of t and C. 

Pj=momentum of particle j. 
P(RI,P1, .. ,RM,PM)= probability distribution in phase 

space of the inner region. 
Q=position vector in configuration space. 

Ql· .. Q9= quantities defined in Eq. (II-4). 
q = center of a cell in configuration space. 
R=position vector in configuration space. 
r= center of a cell in configuration space. 
s=go. 
t= arbitrary matrix. 
t= subscript referring to total volume. 

V=shielded potential in Eq. (42). 
V*= same as V except e-cP is omitted from Eq. (42). 
Vt = shielded potential defined over the whole 

volume in Eq. (43). 
VA = same as V with (N / T) reduced by a factor A. 
W = matrix obtained from w by averaging over 

cells and setting diagonal elements equal to 
zero. 

W= pair potential energy. 
y=column matrix defined in Eq. (25). 
{3=i times the value of l at the point of steepest 

descents. 
-y=coefficient of Min P in Eq. (59). 

a (x) = Dirac delta function. 
o (N,M) = Kronecker delta. 

E=E-HI • 

€= size of elementary cell. 
A=parameter in Eq. (II-29). 

p(R) = function defined in Eq. (49). 
T= volume of the outer region. 

Ti=volume of the inner region. 
;= shielded potential given by Eq. (24). 

00= differential operation defined in Eq. (27). 

A dot over a letter indicates a diagonal matrix. 
See footnote 7. 

III. MATHEMATICAL DEVELOPMENT 

We shall assume that the entire fluid is confined to 
an energy shell of energy E in phase space and that its 
representative point is equally likely to be found at an!, 
point in this shell. 6 The total energy of the system is 

6 For a discussion of the reasonableness of this assumption, see 
Richard C. Tolman, The Principles of Statistic?-i. Mechanics 
(Oxford University Press, New York, 1938), first editIon, Sec. 26. 

equal to the Hamiltonian which we shall split into three 
parts, namely 

M 

H I = L (PN2m)+ L w(R i - R j ), (1) 
j=1 l(i<j(M 

M+N 

Ho= L (PN2m)+ L w(R;- Rj ), (2) 
j~MH M<i<j(M+N 

and 
N+M 

L W(Ri-Rj), (3) 
;=1 j~M+I 

where w(R i - Rj ) is the potential energy of the interac­
tion between particles i and j. Here, HI is the energy 
of the particles in the inner region, H 0 is the energy of 
those in the outer region, and HOI is the interaction 
between the two. 

We would like to obtain the probability distribution, 
P(RI,P1,··· RMPM), that there will be M particles in 
the inner region at the positions R1, ... , RM and 
momenta PI, ... , PM. We do not care which particle 
is at each position but only that some particle is there. 
To obtain this probability, it is necessary to evaluate the 
integrals, 

and 
f f 

N+M 

= ... a(E-Ho-HOI) II dR,-dPj 
j=MH 

where E is defined by 

(4) 

(5) 

(6) 

The delta functions are those used by Dirac and the 
subscript t indicates that the R integrations are to be 
taken over the entire volume of the system. No sub­
scripts means the R integrations are to be taken only 
over the outer region. The integration over each 
component of the P's extends from minus infinity to 
plus infinity. . 

The ratio J(R1,PI·· . RM PM)IL= 1M dRjdPj/lt is the 
fraction of the total volume of the energy shell allowed 
to the system when particles 1 through M are specified 
to lie in the elements of volume and momentum around 
RI, PI to RMPM. 

Since we are not concerned with which particle lies 
at each position, we must permute these M particles 
among the M positions and add the volumes in phase 
space. This is equivalent to mUltiplying the above 
ratio by M! to obtain the volume fraction. Exchanging 
particles between the inner and outer regions increases 
the fraction of the shell volume allowed by a factor 
(N + M) !/ (N!) (M I). Since N is very large, Sterling's 
approximation may be used to replace (N + M) !/ N ! 



                                                                                                                                    

850 A. A. BROYLES 

by NM. This fraction of the shell volume allowed is the must make the identifications, 
required probability, so we have 

t= (il)!n (12) 
P(R1,P1,"·· RMPM) = NMI(R1,P1," .. RJI[,PJI[)/Ie. (7) and 

Instead of evaluating the constant Ie, we shall determine 
the dependence of P on the R's, P's, and M and leave 
the normalization to be done in connection with any 
specific problem. 

If we replace the Dirac delta function in Eq. (4) by 
its Fourier transform, we have 

JI[+N 

X II dPJ-dRjdl. (8) 
i~JI[+l 

The integration over momenta may be performed in 
Eq. (8). If we also divide all space into cells of volume 
E, Eq. (8) becomes 

1= (27r )-1 (27rm/i) 3NI2 lim j""l-3NI2eilE 
..... 0 

-00 

X £. exp{ -ilC!fiWn+bn]} 
In} =0 

where 

E
2Wrq = f f w(R-Q)dQdR 

r q 

-or.qf f w(R-Q)dQdR, (10) 
r r 

r specifies the center of each cell, n is a column matrix 
whose components nr are the number of particles in the 
cell, W is a matrix whose components W rq are the averages 
of the potential energy w(R-Q) of a particle in cell r 
over the cell and a particle in cell q over that cell except 
that the diagonal elements are zero, b is a column matrix 
whose element br is the average of R in Lj~lJl[ w(R - Rj) 
over the cell whose center is at r, and the delta is the 
Kronecker delta. The diagonal elements of Ware zero 
to account for the i= j term omission in Eq. (2). The 
symbol {n} under the summation sign in Eq. (9) means 
that the summation is a multiple one over all possible 
values of the nt's. Each nr can vary from zero to infinity. 

The multiple sum in Eq. (9) would separate into a 
product of sums if the exponent were linear in n. A 
Fourier transform will linearize it with the help of the 
equation 

exp( -!lC-1t) 

=(27r)-O/2I CI1/2j"' ... j exp(ilk-!kCk)dk. (11) 
-00 

Here t, k, and C are matrices of order 0 and I CI is 
the determinant of C. To apply this to Eq. (9), we 

(13) 

Now the order 0 of these matrices is T/e since this is 
the number of cells in the outside region, and the matrix 
multiplications in Eq. (9) involve summations only 
over cells in this region. 

If we substitute Eqs. (11)-(13) into (9), the mUltiple 
sum factors and Eq. (9) becomes 

1= (27r ) (3NI2J-(TI2.Hi-3NI2m3NI2 I W I-! lim eN J, (14) 
' .... 0 

where 

and 
(15) 

IV. STEEPEST DESCENTS APPROXIMATION 

The integral J may be approximately evaluated by 
the method of steepest descents. To apply this method, 
we write J in the form, 

J= j f··· f e1dkdl, (16) 

where 

f= - (3N/2) In (l)+i1E-!kW-1k+N In(g), (17) 

and expand f in a Taylor's series around the point of 
steepest descents. This point is located in the usual 
manner by setting the first partial derivatives equal to 
zero. In this way, we obtain the equations 

( a
f

) =-(3,V/2lo)+iE+(N/go)(ag) =0, (18) 
al 0 al 0 

( a
f

) = _ W-1ko+(N/go)(a
g

) =0. (19) 
ak 0 ak 0 

Here a/ak is a column matrix operator with elements 
a/akr • 

It is useful at this point to introduce new quantities 
to replace 10 and ko• They are 

/3=ilo, (20) 

go=s, (21) 

and 
; = i10b - i !to !ko. (22) 

We shall see later that /3 corresponds to (kT)-l and ; 
is a shielded interaction which, for example, becomes, 
in certain limits, the solution to the nonlinear equation 
for the potential of mean force (multiplied by (3) in 
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the Debye-Huckel theory for particles interacting with 
a Coulomb force. 

Eliminating Io and ko from Eqs. (18) and (19) with 
the aid of Eqs. (20)-(22) leaves us with7 

(3N /2(3)-E+ (N/2{3s)({3b+~)e-<f>=0 (23) 
and 

(24) 

where the derivatives of g have been obtained and 
substituted. (See Appendix 1.) The matrix e-<f> has 
elements e--<t>r. 

It is convenient at this point to define a column 
matrix y with (r/~)+l elements with the relations 

Yr=kr-kor, 

YI=I-lo. 
(25) 

The Taylor's expansion of j around the point of 
steepest descent now becomes 

f= exp(YOo)j(lo,ko), (26) 

where Do is the column matrix 
defined by the relations 

of order (r/~)+l 

OOr = a / akor, 

OOI=a/alo. 
(27) 

The first degree terms in the Taylor's expansion of f 
must vanish because we are expanding around the 
point of steepest descents. The second degree term may 
be more easily written with the aid of the matrix A 
defined as the negative of the direct product of two 
Do's operating on f, 

A= -OoXOof(lo,ko). (28) 

Expanding the exponential operator in Eq. (26) and 
substituting into Eq. (16), we have 

J = exp{f(lo,ko)} 

X f"'· .. f exp{ '&3 (j !)-l(yOo)i f(lo,ko)} 

-00 Xexp(-tYAy)dy. (29) 

The first two operations by Do on f in Eq. (29) will 
yield - A according to Eq. (28). We can write, therefore, 

<Xl 

L (j!)-l(YOo)if(lo,ko) 
i~3 

<Xl 

= - L (j!)-l(YOo)HyAy. (30) 
i~3 

The last exponential under the integral in Eq. (29) 
is symmetric with respect to the simultaneous change of 

7 A function of a column or row matrix is here defined to be a 
column or row matrix whose elements are the function of the 
corresponding elements of the argument. Thus we have (e-~)r 
=e-tPr• 

sign of all components of y. If the preceding exponential 
is expanded in series, only terms having an even number 
of y's will survive the integrations. Such terms can be 
obtained by differentiating the last exponential with 
respect to components of the matrix A. Thus 

a 
YrYq exp(-tyAy)= -2- exp(-tyAy). (31) 

aA ra 

If we substitute Eqs. (30) arid (31) into (29), we 
find the equation 

J = exp{f(lo,ko)} 

xexp { -£ (-2)i/2(Do~00)(i-2)/2Tr(Ao~)} 
i~3 j! aA aA 

X (2,71'-) (T/2,)H I AI-!, (32) 

where Eq. (11) has been used to write the results of 
the integration over y. Here a/aA is a square matrix 
with components 

(33) 

In Eq. (32), Do's operate only on Ao and a/a A's 
operate only on I A I. 

The steepest descents approximation is obtained from 
Eq. (32) by replacing the second exponential by unity. 
Eliminating to and ko and s in Eq. (17) by using Eqs. 
(20)-(22) we obtain 

f(lo,ko) = (3N /2) In(i) - (3N /2) 1n{3+{3~ 
+ (2{3)-1(~-{3b)W-l(9-{3b)+ N In(s) (34) 

with 

s= Lr e-<f>r= (r/ ~)[1- (~/ r)Lr (1-e-<f>r)]. (35) 

The expression, ~W-19 appearing in Eq. (34) may 
be rewritten with the aid of Eq. (24) to give 

~W-19={3~W-lb+ (If/ s){3~e--<t>. (36) 

Substituting s and ~W-19 from Eqs. (35) and (36) 
into fin Eq. (34), f in turn into Eg. (32), and finally J 
into I with the aid of Eq. (14) gives 

N-NI = (21T)-![(21Tm/{3)!(r/N)JN lim (I WII Al )-l 
,--->0 

X exp{{3E- t~W-lb+t{3bW-lb 

+N In[l- (~/r)Lr (l-e-<f>r)] 

+tCN/s)~e-<f>}. (37) 

Equation (24) for 9 may be used to obtain the relation 

tbW-19 = t{3bW-1b+t (N / s ){3be-<f>. (38) 

Equation (38) together with Eqs. (6) and (1) for E may 
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be used to reduce Eq. (37) to 

M 

Xexp{fjE-fj 1: (P//2m)-fj 1: W(Ri-Rj) 
i=l i<j~M 

-HN/s)fjbe-4>+N In[l- (E/T)1:r (l-e-4>r)J 

+HN/s)¢e--<l>}. (39) 

In Eq. (39), a form like that given by the usual grand 
canonical ensemble theory is becoming apparent. The 
third term in the exponential contains the usual pair 
interaction energy while the fourth term contains the 
shielding by the particles in the outer region. The last 
two terms will reduce, in the case of fluids, to surface 
terms which can be neglected in the limit as Ti becomes 
large. The parameter fj occurs where we would expect 
to see 1/kT, where k is the Boltzmann constant, and 
T is the temperature. Further evidence that fj is l/kT 
comes from solving Eqs. (6) and (23) to obtain 

E= (3N/2{:J)+H 1+ (N 12fjs) (fjb+(i,)e-4>. (40) 

If the interaction between particles vanishes, Eq. (24) 
shows that cp will vanish so that Eq. (40) reduces to 

M 

E --. (3N 12{:J)+ 1: P//2m. (41) 
i=l 

This is just the relation we would expect between E 
and fj for an ideal gas. 

V. SHIELDED PAIR POTENTIALS 

There are pair potentials which are inconvenient to 
use because of a long tail on them. The Coulomb 
potential is a good example of this. For these cases it 
is possible to introduce a shielded potential similar to 
that obtained by Debye and Huckel for the Coulomb 
case. In terms of the matrix notation that we have 
been using, this shielded potential is given by the 
equation, 

U= W[i+(N/s),Be--<l>WJ-l 
=[i+(N/s)fjWIH]-lW, (42) 

where the dot over a symbol indicates a diagonal matrix. 
The matrix i is the unit square matrix and e-</> has the 
same elements as e-4> except that they are arranged 
along the diagonal instead of in a column. A second 
shielded potential U* may be defined by replacing e-4> 
in Eq. (42) by i. 

Since the matrices appearing on the right-hand side 
of Eq. (42) are symmetric, U and U* are symmetric. 

The U defined in Eq. (42) does not reduce to the 
Debye-Huckel shielded potential for the Coulomb case 
if Ti is not zero. It can be found from an equation 

involving such a matrix Ut which is related to W by 

(43) 

where the subscript t on the parenthesis indicates that 
the matrix mUltiplication involves a sum over the 
total volume of the system. The Ut may be used to find 
U from the equation, 

U= Ut+ (NI s)/1(UtU)t- (N Is)fj Ute-</> U. (44) 

The substitution of Ut from Eq. (43) in place of the 
first and last Ue's in Eq. (44) verifies that U satisfies 
Eq. (42). 

Equation (24) for tfo may be rewritten in terms of U 
instead of W to give 

tfo=fjb,,+ (N I s)fjU*[e-</>+ tfoJ, (45) 

where b .. is a column matrix given by 

b,,= [i+ (NIs)fjWJ-1b. 

VI. THE LIMIT AS E APPROACHES ZERO 

(46) 

At this point it is convenient to examine the above 
equations in the limit as E approaches zero. In this limit 
the matrix W reduces to the pair potential w except for 
the diagonal elements omitted from W. Thus we may 
write 

Wr'l--'w(R-Q)-~(R-Q) 

Xlim[ E-1f f w(R,Q)dRdQ 1 (47) 

cell 

where the integrations are over the cells centered at r 
and q and where the Dirac delta function is recognized 
to be related to the Kronecker delta by 

o(R-Q)= lim ~rq/E. 
<-+0 

(48) 

The coefficient of the Dirac delta function in Eq. (47) 
will vanish as E vanishes so that, for most cases, this 
term can be ignored. 

Also, in this limit Eq. (35) reduces to 

(35') 

where 
p(R)= l-exp{ -cp(R)}. (49) 

It will become clear later on [see discussion following 
Eq. (54)J that these terms in cp(R), whose magnitudes 
are of the order TO, behave like short ranged shielded 
potentials. There are, in general, terms of order 1'-1 

also present in cp(R). We shall also see that cp(R) in the 
outer region is large near the surface between the two 
regions but falls off to a negligible value in a distance 
the order of the average interparticle spacing. Since 
peR) will behave in a similar manner, the integral in 
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Eq. (35') will have a magnitude the order of the area 
of the inter-region surface measured in units of the 
average interparticle spacing. Since T is the volume of 
the outer region and is very large, we may neglect the 
second term in the bracket in Eq. (35') altogether. 

Substituting only the first term of Eq. (35') into 
Eq. (43) for U t and taking the limit gives 

Ut(R-Q)=w(R-Q)- (N/T){3 f Ut(R- R') 

Xw(R'-Q)dR'. (50) 

For the Coulomb case, the solution to Eq. (SO) is the 
Debye shielded potential. We expect, in general, that the 
term in Ut whose magnitude is of order TO will behave 
like a short range shielded potentiaL 

Equation (44) becomes, in this limit, 

U(R,Q)=Ut (R-Q)+(N/r),8 f Ut(R-R') 
, 

XU(R',Q)dR'+(N/T),8 f Ut(R-R') 

Xp(R')U(R',Q)dR'. (51) 

We have already seen that Ut(R-Q) is likely to have a 
short range (the Debye length for the Coulomb case). 
The second term on the right-hand side (rhs) of Eq. (51) 
must become small if R is very far from the inner region 
because Ut(R- R') will vanish. It will become clear 
in the next paragraph that cp(R) must become small if 
R is very far from the inner region. Since Ut(R- R') is 
small if R is very far from R', the last term on the rhs 
of Eq. (51) must vanish if R is very far from the inner 
region. Since U(R,Q) is symmetric in Rand Q, the 
above statements must also hold for Q. We conclude, 
then that U(R,Q) becomes equal to Ut(R-Q) for R 
or Q very far from the inner region. It therefore has a 
range the order of unity when compared to T! if it is 
correct to assume that cp(R) has a short range. Integrat­
ing R in Eq. (SO) over the total volume of the system 
gives 

f Ut(R-Q)dR=O 
t 

(52) 

because the integral of w has been assumed to vanish. 
The same integration may be performed in Eq. (51) 
to show that the corresponding integral for U will also 
vanish. 

Equation (45) for tfo becomes, in the limit as € ---+ 0, 

.p(R) =,8 El U*(R,Rj )+(N/r){3 f U*(R,Q) 

X [e-q,+cp(Q)]dQ, (53) 

where the definition of br following Eq. (10) has been 

used together with Eq. (42). Equation (52) may now 
be used to rewrite Eq. (53) as 

cp(R)={3[ fl U*(R- Rj )- (N/r) f U*(R,Q)dQ] 

+ (N/T),8 f U*(R,Q)[cp(Q)-p(Q)]dQ. (54) 

The arguments made above for the short range nature 
of other functions may now be made for cp in Eq. (54), 
and it is clear that the assumption of the short range 
nature of cp is consistent with this equation. In the outer 
region, cp(R) falls off to a very small value in some 
distance corresponding to a few times the Debye 
length in a Coulomb system. 

We are now in a position to show that cp satisfies the 
Debye-Huckel-Poisson-Boltzmann equationS in the 
Coulomb problem where the particles of the system all 
have like charges of magnitude z, but move in a uniform 
background charge of the opposite sign so that the 
whole system is neutraL This can most easily be done 
starting from Eq. (24) which becomes 

cp(R) =,8 ~l w(R- R j )- (N/T){3 f w(R-Q)p(Q)dQ 

- (N/r){3 f w(R-Q)dQ. (55) 
, 

The pair potential satisfies Poisson's equation 

V2w(R-Q)= -41rzo(R-Q)+41rZ/T. (56) 

Operating on Eq. (55) with ~2 gives 

]I{ 

V2cp(R)= -4'lrz L o(R- R j )+41rz(N/T){3p(R) (57) 
i-l 

if R is in the outer region and terms of order T-l are 
neglected. In the inner region, the second term on the 
rhs has unity in place of peR). When M is unity, 
Eq. (57) reduces to the Debye-Huckel-Poisson­
Boltzmann equation. This makes it even more reason­
able to believe that cp is a shielded potential falling off 
rapidly as we depart from the surface of the inner 
region. 

Since the integral of U* over the entire volume of the 
system vanishes, the same integral of cp must also vanish. 
This can be proved by integrating both sides of Eq. (53) 
over the entire volume. 

VIT. THE GRAND CANONICAL DISTRIBUTION 
FUNCTION 

SO far the question of evaluating the determinants 
I WI! A \ appearing in Eq. (39) has been avoided. The 

8 R. H. Fowler and E. A. Gugenheim, Stntistical Thermody­
namics (The Macmillan Company, New York, 1939), 1st ed., 
p. 390, Eq. (910,6). 
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procedure for dealing with it is so tedious that it seems 
wise to relegate it to Appendix II. From Eq. (II-33), 
we obtain, 

i Wil A 1= ,V (5j4{12) exp { - (Njr)2{12 ~\.\ 

xJ J Ua.(R-Q)w(Q-R)dQdRdA}, (58) 

where Un. is tiven by Eq. (50) except that (N/T) is 
replaced by AOV/T). 

The most interesting factors in .y-N 1 are those 
depending upon the positions and momenta of particles 
in the inner region and the number of particles M in 
this region. The other factors may be omitted and the 
normalization determined later by integration. In this 
sense Eqs. (7) and (39) reduce to 

P(RI,Pl,·· . RMPM) ex exp { -,,(M -{1H I -{1Ho/ 

- (.Yt!r) f [1-e-<I>-t<pe-<I>]dR}, (59) 

"( = In( (21rm/iJ)!T/Nt)+ (Nt! T )(12 

X i\ f Ua.(R)w(R)dRdA, (60) 

Here, use has been made of the fact that the total 
number of particles in the system "Vt is a constant of 
the order of T and that ~V=iVt-M. Substitutions have 
also been made from Eqs. (1) and (58). 

Equation (59) gives the desired probability distribu­
tion corresponding to that given by the grand canonical 
ensemble except for additional terms involving integrals 
over functions of <p and w. These terms are important if 
the inner region is small. In particular, the term H 0/ 
adds shielding to the pair potentials due to the particles 
in the outer region. 

It is interesting to see if Eq. (59) reduces to that 
given by the grand canonical ensemble in the limit of 
a large inner region. Equation (54) shows that ..p(R) will 
depend only on the positions of particles in the inner 
region that lie within the range of U from R. Thus all 
those integrals in Eq. (59), depending upon particle 
positions through ..p alone, can only be affected by 
particles within a distance, of the order of the range of 
U, from the surface of the inner region. Thus, if the 
inner region is increased in size, this number of particles 
will increase like the surface area while other terms in 
Eq. (59) will involve all the particles throughout the 
volume of the inner region. Furthermore, <p(R) has a 

short range so that the integrands of these integrals 
extend into the outer region for only a short distance. 
Thus the value of the integrals will only increase as the 
surface area of the inner region, while other terms of 
Eq. (59) are proportional to the volume of the inner 
region. 

These arguments do not apply so readily to HOI' in 
Eq. (60) unless w is a short ranged function. If, on the 
other hand, w is a Coulomb potential, the integral in 
HOI' is analogous to the potential acting on a particle 
due to a charge, proportional to p(R)-l, distributed 
through the outer region. If the inner region is spher­
ically symmetric, this potential could be expected to be 
roughly constant for those particles far from the 
surface of the inner region. Retaining this shielding 
term but dropping those discussed in the previous 
paragraph, we can write for P in the limit of a large 
inner region. 

This has almost the same form as Hill's2 equation (6.6) 
for the grand canonical ensemble if allowance is made 
for differences in notation. 

VIII. THE RADIAL DISTRIBUTION FUNCTION 

An expression for the radial (or pair) distribution 
function may be obtained by choosing the inner region 
to be a long tube of infinitesimal cross section containing 
two particles. From Eqs. (59) and (60) it is possible 
to obtain the relation, 

p(RI,PI,Rz,Pz) 

ex exp { -(1 t [(pl/2m) 
1=1 

-t(Nt/T) J w(R-Rj)p(R)dR ]-(1w(RI-R2) 

- (Nt!T) J [1-e-<I>-t<pe-<I>]dR}. (62) 

The integrations in Eq. (62) now extend over almost 
the entire volume of the system. 

In analogy with Eq. (55), we may define <PI by 

<PI (Rz- R 1) = (1w(R2 - R 1) 

where 
(64) 

which is a shielded potential function at Rz due to 
the particle at R I . Because of symmetry we can write 

(65) 
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With the aid of this function r/>l, Eq. (62) becomes 

P(R1,Pl,R2,P2) 

ex exp{ -{3Z~.2 (PH2m)-r/>1(R2- R1) 

- (Njr) f (l-e-<t>-tr/>e-<t»dR}. (66) 

It has already been shown in Eqs. (55)-(57) that r/>l 
is the solution to the Poisson-Boltzmann equation 
used by Debye and Huckel. 

In the Debye-Huckel theory, the exponential e-<t> is 
expanded and all terms beyond the fIrst two are 
neglected. In Eq. (53) for r/>, this is equivalent to 
neglecting the integral on the rhs. Under this approxi­
mation, r/> is given by 

r/>(R)""'f3 L U*(R,R j ), (67) 
i~1.2 

where U* is the Debye-Huckel shielded potential. In 
the case where w is a Coulomb potential, 

U*Coulomb(R)= WCoulombe- R1\ (68) 

where A is the Debye shielding length. 
If the exponentials in the integrand of the last term 

in the exponent in Eq. (66) are expanded to the second 
degree in r/>, the integral vanishes since the integral 
over r/> vanishes. 

Thus Eq. (66) gives a radial distribution function 
identical to that obtained by Debye and Huckel. 

IX. SUMMARY AND CONCLUSIONS 

With the mathematical techniques presented here, 
we have derived an approximation to the probability 
distribution of particles in a region of a classical fluid 
of monatomic particles in thermal equilibrium. This 
distribution is given by Eq. (59) where p, U, r/>, and 'Y 
are given by Eqs. (49)-(51), (55), and (60). 

We have seen that this probability distribution 
reduces, in the limit of a large inner region, to Eq. (61) 
which is that given by the grand canonical ensemble. 
The additional term which represents shielding of the 
inner particles by the particles outside the region 
surely becomes negligible for short ranged pair poten­
tials, and it seems quite likely that it is negligible when 
the interactions are Coulomb in the limit of large volume. 

From this probability distribution we have derived 
the radial distribution function obtained by Debye and 
Huckel with a correction as shown in Eq. (66). 

Since the probability distribution given in Eq. (59) 
is an approximate one, it is worthwhile considering how 
correction terms for it might be obtained. These 
correction terms are available from the exponential 
operator in Eq. (32) by expanding it in a power series 
where it is understood that terms where (a/aA) occur 
to a nonintegral power must be set equal to zero. The 
first term in this expansion leads to Eq. (59). 

Higher terms in Eq. (32) must bear some similarity 
to those evaluated in reference 5. Figure 5 of that 
reference presents information that indicates that 
higher terms increase in magnitude as the temperature 
and size of the inner region are decreased. 

APPENDIX I-DERIVATIVES OF 9 

The quantity s is defined in Eq. (25) and related to 
g through Eq. (21). To obtain the derivatives of s 
entering Eqs. (18), (19), and (32), it is convenient to 
use the relations 

a a{3 a ar/>r a 
-=--+Lr-­
at at a{3 at ar/>r 

=i[~+ (2{3)-1 (cf;+f3b)~] 
a{3 a9 

and 

(1-1) 

(1-2) 

The derivatives of f3 and r/> in the above equations have 
been obtained from Eqs. (20) and (22). Herea/a9 has 
components a/iJr/>r. 

Using these relations, we obtain for the first deriva­
tives of s, 

and 
(1-4) 

where Eq. (35) has been used for s. 
Applying Eqs. (I-i) and (1-2) a second time gives 

a2s/al2= (4{32)-1{ -cf;+{3b+ (cf;+{3b) (4)+{3b )}e-<t>, (1-5) 

(a/al) (a/ak)s= (2{3t)-1(cb+f3b- i)e-<t>, (1-6) 
and 

(a/ak) X (a/ak)s= -{3e-<t>. (1-7) 

APPENDIX II-DETERMINANT OF A 

The matrix A is defined in Eq. (28). To compute its 
elements, we need the second derivatives of f. The first 
derivatives have already been written as Eqs. (18) and 
(19). From these we obtain, by differentiation, 

(II-l) 

(II -2) 

+NgO-2(a
g

) x(ag
) , 

ak 0 ak 0 

(II-3) 

where the element Br,q is Ar,q and ar=A 1r • 
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We may now use Eqs. (20) and (21) to eliminate 10 From Eqs. (II-4) and (II-13), we obtain 
and go and the formulas in Appendix I to evaluate the 
derivatives. The results may be more conveniently TrK=Ql(1-Ql)-I. (II-16) 
written in terms of the nine quantities, 

and 

Ql = Nf3s-2e-4>Ue-4>, 

Q2=s-I«(iJ+f3b)e-<I>-1, 

Q3= s-1«(iJ-f3b)e-4>, 

Q4= S-1 «(iJ+f3b) (4)+(3b)e-<I>, 

Q6=N(3s-2e-<I>U(4>+(3b)e-4>, 

Q6= Nf3s-2e-<I> (4)+f3b) U (4)+(3b)e-4>, 

Q7= (N2/4(3s3)e-<I>Ue-2<1>Ue-<I>, 

Q8= (N2/4f3s3) e-<I> U(4)+(3b)e-2<1>Ue-<I>, 

(II-4) 

Q9= (N2/4(3s3)e-4> U (4)+f3b )2e-2<1> Ue-4>, 

where U is defined by Eq. (42). We can now write, 

A ll= }N,s-2+ (N /4(32)[Q4-Q3- (Q2+ 1)2J, (II-S) 

a= - (N/2f3is) (4)+(3b+Q2i)e-<I>, (II-6) 

Thus we have finally, from Eqs. (II-12) and (II-14)­
(II-16), 

(II-17) 

To write out I A I, we still must find iiBa- Tr (d2 B-1). 
The second term subtracts those elements of the first 
term involving the diagonal elements of B-1. Thus, 
if we define U" to be the same as U except that its 
diagonal elements are zero, we may write, 

iiB-la - Tr(d2B-I) = iiU"a+ N(3s-2(1-Ql)-1 
X [(iiUe-<I»Le-4>U/i2Ue-<I>J (II-18) 

where Eqs. (II-12) and (II-13) have been used. 
Taking a from Eq. (II-6), we obtain 

and where the x subscripts indicate that U" replaces U. 
B= W-l+Ns-l(3e-4>-N(3s-2e-4>Xe-4>. (II-7) Similarly we find 

By expanding I A I in terms of the elements of the 
first column and their cofactors, we have, 

I AI = I BI[A ll -iiB-la+Tr(d2B-l)J, (II-8) 
where 

Br,q-I= I B I-I X cofactor of Br,q (II-9) 

has been used. 
From Eq. (42), it is clear that the first two terms of 

Eq. (II-7) combine to give 

(II-lO) 

If we factor U-l from the expression on the right of 
Eq. (II-10) and take the reciprocal, we obtain 

B-1 = [i - N(3s-2(Ue-<I» Xe-4>J-IU. (II-H) 

Expanding the bracket in a power series and multiplying 
by the U gives 

B-1 = U(i+K), 
where 

K= N(3s-2(1-Ql)-le-<I> X (Ue-4». 

To obtain I B-1 I , we use the expression 

00 

Inli+KI=- ~ j-1Tr(-K)i 
i~1 

(II-12) 

(II-13) 

(II-14) 

which can be obtained from the equations on page 121 
of reference 9. Raising K to the jth power gives 

Ki= [N(3s-2(1-Ql)-I]ie-<I>X (e-<I>Ue-<I»i-lUe-<I> 
= KQli-l(1-Ql)-i+l • (II-1S) 

(II-20) 

and 

Collecting the expressions in Eqs. (II-S) , (II-17), 
(II-18), (II-19), (II-20), and (II-21) and substituting 
them into Eq. (II-8) we have, 

I AI = (N/4(32) I UI-l(1_QI){6+[Q4-Q3- (Q2+ 1)2J 
- (Ql"Q22+2Q6:l:Q2+Q6,,)- (1-Ql)-1 
X[(Q6+QIQ2)2 

- 4s-1(33 ( Q7Q22+ 2Q2Q8+ Q9) J} . (II -22) 

The expression in Eq. (II-22) is very long. To reduce 
it, let us consider the order of the terms between the 
braces under the assumption that U and cP are shielded 
potentials of ranges not far different from the average 
interparticle spacing. Let us further assume that the 
interparticle spacing is of order unity in the units we 
have taken and that the inner region is only a few 
interparticle spacings across. Thus we shall consider an 
integral over U, cP, or p= 1-e-<I> to be of order unity. 

In the limit as E approaches zero, the expression for 
Ql in Eq. (II-4) becomes 

Ql=(3Nr-2f f [l-p(R)J 

X U(R,Q)[1- p(Q)JdRdQ. (II-23) 

9 W. V. Lovitt, Linear Integral Equations (Dover Publications, 
Inc., New York, 1950). Since the integral of U over the entire volume of the 
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system is zero, Eq. (II-23) may be rewritten as 

QI=/3 (N/T)T- 1
{ f f U(R,Q)dRdQ 

+2 Jp(R) f U(R,Q)dRdQ 
, 

+ J J p(R)U(R,Q)p(Q)dRdQ}. (II-24) 

Each of these integrals must be of order unity since 
peR) becomes negligible within a range of order unity 
of the surface of the inner region. Thus QI is of order 
T-1• By this same procedure it is possible to prove that 
Q2+ 1 and Qa through Q9 in Eq. (II-4) are of order T-1. 

In order to prove that some of the above quantities 
are of order T-l, it was necessary to assume that w 
becomes negligible in a distance the order of unity. 
This is not true for the Coulomb potential. In this case 
integrals, assumed to be of order unity, may be of 
order Tl but this will not alter the evaluation of I A I 
that will be made below. 

Some of the Q's appearing in Eq. (II-22) have the 
subscript x indicating that U x replaces U. Since we know 

U xrq= U rq - UrqOr,q, (II-25) 

in the limit as f approaches zero, we must have 

Ux(R,Q)= U(R,Q)-fU(R,Q)o(R-Q). (II-26) 

Thus, in any integration of U x(R1,R2) over RI or R2, 

we will obtain one integral involving U(R1,R2) and a 
second one mUltiplied by f which vanishes. We can, 
for this reason, drop the x subscripts in Eq. (II-22). 

We are now in a position to eliminate several terms 
in Eq. (II-22). Since we have been taking S-l to be 
(fiT), the term containing it in Eq. (II-22) will vanish 
as f approaches zero. Keeping only terms of lowest 
order in T-I, we may write, 

(II-27) 

To determine I VI-I in Eq. (II-27), we use Eq. (42) 
to obtain 

I VI-I= IWI-II i+ (NIs)/3We-<I>I. (II-28) 

The second determinant on the rhs may be evaluated 
with the aid of a matrix Vx given by 

(II-29) 

This determinant may be written as 

Equation (II-30) may be checked by iterating Eq. 
(II-29) to obtain a series very much like Eq. (II-14). 

Substituting Vx from Eq. (II-29) into the trace in 
Eq. (II-30) gives 

Tr(Vxe-<I» = -X (NIs)/3 Tr(Vxe-<I>We-<I». (II-31) 

The first term on the rhs of Eq. (II-29) contributes 
nothing since the diagonal elements of Ware zero. In 
the limit as f approaches zero, Eq. (II-30) becomes, 
substituting from Eq. (II-31), 

lim lnl i + (N /s)/3W e-<I> I 
.-+0 

= (Nfr)2/32f\ J J Ux(R,Q)W(Q-R)dRdQ 
o 

-2(N/T)2/32f\\ f f Ux(R,Q)p(Q)W(Q-R)dRdQ 
o 

- (;V/T)2/32f\ f J Ux(R,Q)p(Q) 
o 

XW(Q- R)p(R)dRdQ. (II-32) 

The last two terms in Eq. (II-32) are smaller by a 
factor the order of T-1 than the other terms since p(Q) 
becomes negligible if Q is far from the inner region. 
We will neglect them for this reason. 

Equation (II-29) for Vx can be obtained from Eq. (42) 
for V except for the X multiplying (N/s). Thus Vx is 
identical to V if the number of particles is reduced by 
the factor X. A function UtX can be defined as the solution 
to Eq. (SO) with N reduced by X and Eq. (51) may be 
used to relate Ux and Utx, Equation (51) can be used to 
justify using UtX in Eq. (II-32) in place of Ux since all 
but a negligible part of the integration occurs in a 
region where there is essentially no difference between 
them. 

With the aid of Eqs. (II-28) and (II-32), it is possible 
to rewrite Eq. (II-27), omitting terms of higher order 
in T-1, as 

xI I UtxCR-Q)W(Q-R)dQdRdA}. (II-33) 

Note added in proof: The author is indebted to H. L. 
Sahlin for pointing out several errors in the original 
manuscript. 
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Note on the Albertoni-Bocchieri-Loinger Theorem of Classical 
Statistical Mechanics 

]. S. LaMONT 
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The A-B-L theorem states that for almost all density functions the time-averaged probability of a system 
being in a region R of an energy shell in phase space is mR/m, where m is the volume of the energy shell 
and mR is the volume of R. In the present note a stronger form of the A-B-L theorem is proved. It is proved 
that for almost all density functions, the probability of the system being in R is mR/m. In particular, it 
is proved that the time averaging of the original A-B-L theorem is unnecessary. 

I. INTRODUCTION 

ONE approach to classical equilibrium statistical 
mechanics is via ergodic theory. The object of 

ergodic theory is to relate observable time averages 
of phase functions to calculable phase averages 
of phase functions. The possibility of making this 
connection depends on a knowledge of the "metric 
indecomposability" of phase space, and since this 
knowledge is usually lacking, the ergodic approach is 
unsatisfactory. 

Albertoni, Bocchieri, and Loinger1 attempted to 
remedy this situation by giving a new kind of averaging 
theorem. They introduced an average over a function 
space, the space of density functions. The probability 
PR(t) of a system being in a certain region R of phase 
space at a certain time can be expressed in terms of 
the density function. Let R be a subset of volume mR 
of the energy shell of volume m. The A-B-L theorem 
says that the functional average of the time average 
of [PR(t)- (mR/m)]2 is zero. In other words, for 
"almost all" density functions the time-averaged 
probability of the system being in R is mR/ m. This is 
also the probability when the density function is a 
constant. 

The object of this note is to show that the time 
averaging of the A-B-L theorem is irrelevant and 
unnecessary; i.e., that the functional average of 
[PR(t)- (mn/m)]2 is zero. In other words, at all times, 
and for almost all density functions, the probability of 
the system being in R is mR/ m. Thus the theorem of 
this note is stronger than the A-B-L theorem. 

Since no time average is involved, the use of this 
theorem in place of ergodic theory becomes rather 
unclear. 

II. THE A-B-L AVERAGING PROCESS 

The A-B-L averaging process will first be described 
in a slightly more general context than is necessary.2 

Suppose we are given a space on which integration 
is defined (e.g., a real finite-dimensional Euclidean 

1 S. Albertoni, P. Bocchieri, and A. Loinger, ]. Math. Phys. 1, 
244 (1960). 

2 A similar integration process was discussed by K. O. 
Friedrichs, "Integration of functionals" (Notes, New York 
University, 1957). 

space), and that S is a subset of finite, nonzero volume 
m which can be partitioned into any finite number of 
subsets of equal volume. Let C be the class of all real 
nonnegative, integrable, point functions f on S which 
have 

J>=1. (2.1) 

Let II be a partition of S into iV subsets of equal 
volume, and let ~i be the characteristic function3 of 
the ith subset. Then the function 

N 

g= L a.-1>i, (2.2) 
i=l 

where 
N 

L ai=N/m ai~O (2.3) 
i=l 

is in class C. The functions g belonging to a given 
partition II form a class C(ll). 

If F[j] is any functional defined on C, then 

(2.4) 

An average of F over C (II) can now be defined. If T is 
the section of the hyperplane 

N 

L ai=N/m 
i=l 

in iV-dimensional a space determined by 

ai~O (i=1,2," ',N), 

(2.5) 

(2.6) 

and if dT is the Euclidean volume element of T, then 
the A-B-L average of F over C(II) is 

(2.7) 

if the integral exists. The A-B-L average of F over C is 

31>, = 1 on the ith subset, = 0 elsewhere. 

858 
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defined by 

B[F]= lim B(ul[F] 
N-->oo 

i drr: (al,a2, ... ,aN) 
T 

=lim----
N---"" 

if the limit exists.4 
It may be noted that B[cF]=cB[F] if c is a constant, 

and B[F1+F2]=B[F1]+B[F2]. Also if F[fJ=l then 
B[F]=1. 

Hence, 

B[F]=~ fhif>R 
m s 

(3.8) 

when F has the form (3.5). 
Now let 

(3.9) 

We have 

rr:(al,a2,' .. ,aN) =F[g] 

= {f. ai f h<i>R<i>; }2. (3.10) 

III. CALCULATION OF A-B-L AVERAGES Let 
t=l J s 

It was shown by A-B-V that 

f N! (N)N---l 
dT= -

T (.V-1)! m ' 
(3.1) 

i dTai 
T 1 

, (3.2) 

i dT 
m 

T 

i dTai~ 
T N2 2 

(3.3) 

i dT 
T 

1 
(3.4) 

i dT 
T 

N(N+1) m2 

Let R be any subset of S, let <i>R be the characteristic 
function of R, and let h be a bounded (I hi:::; h), complex, 
function on S with integrable real and imaginary parts. 
We shall now evaluate the A-B-L average of the 
functional 

F[fJ= f hif>RJ. (3.5) 
s 

We have 

rr:(al,a2,' .. ,aN) =F[g]= E ai i hif>Rif>i (3.6) 

so 

(3.7) 

• It should be noted that there may be many partitions belonging 
to a given N and that 5' depends on II as well as on N. 

(3.11) 

(3.12) 

Then 

so 

rr:(al,a2," ',aN)=2 L: aiajhR,hRj+L: aZhRi2, (3.13) 
i>i 

= N(::1) ~2(i h~R Y 
N2 1 

+ -:E hRi2• (3.14) 
iY(N+1) m2 i 

If h is an upper bound of h then 

Hence, 

(3.16) 

Thus the last term of (3.14) vanishes in the limit, and 
we see that when F has the form (3.9) 
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IV. THE A-B-L ENSEMBLE THEOREM 

We shall now let the space be a finite-dimensional 
phase space (of a conservative classical system of 
point masses), and the subset S be an energy shell in 
the phase space. The class C will be the class of density 
functions at t=O, and R will be a subset of the energy 
shell with positive volume. We shall assume the 
existence of a unitary operator U (t) which describes 
the evolution of the system with time, and which 
operates in the Hilbert space of square integrable 
functions on the phase space. 

The probability PR(t) of a system being in R at 
time t is 

(4.1) 

If we now consider PR(t) as a functional of p(O) and 
apply the A-B-L averaging process we have by (3.8) 
[letting h= U-l(t)Cf>R, and replacing Cf>R in (3.8) by Cf>, 

the characteristic function of S] 

B[PR(t)]=~ f Cf>U-l(t)Cf>R 
m s 

=~ f Cf>RU(t)Cf>. (4.2) 
m s 

Since5 

we have 
U (t)Cf>=Cf>, 

B[PR(t)]=mR/m, 

(4.3) 

(4.4) 

where mR is the volume of R. Similarly6 (using 3.17), 

B[PR2 (t)]=B[ (~p(O)U-l(t)Cf>R YJ 
= (mR/m)2. (4.5) 

Hence, we have the result 

(4.6) 

Thus PR(t)=mR/m for almost all initial density 
functions at all times. This is the strong form of the 
A-B-L theorem. 

6 Every function of the energy is an invariant eigenfunction 
of U(t). 

6 If h= U-l(t)<PR is not bounded the derivation of (3.17) can 
be altered slightly to take advantage of the properties of Hilbert 
space. Then 

I hR;i = I (h I <PRif>.) I ::; IIhllll<PRif>dl = IIhllmRi::; IIhllm/N. 
Then Ii is replaced by IIlzll and the proof goes through as before. 
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A Lattice with an Unusual Frequency Spectrum 
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National Bureau of Standards, Washington, D. C. 
(Received April 11, 1961) 

The lattice is a special rooted Cayley tree, generated by N successive m-fold branchings. With each point 
of the tree are associated a mass M and a position coordinate Xi. All end points are held fixed at x;=O. 
The potential energy is V =! 2:i .; K,;(x,-x;)', where Ki;=K if i andj are connected neighbors and neither 
is an end point, K i ; =aK if i and j are connected neighbors and either is a branch tip point, and K i ; = 0 
if i and j are not connected neighbors. The allowed frequencies of vibration are obtained for two different 
cases: In the first case all springs are identical (a= 1), and in the second case the springs connecting interior 
points to the branch tips are cut (a=O). In the case in which all force constants are the same, the allowed 
frequencies of vibration, in the limit of infinite N, are given by w (r) = (K/M)'[m+ 1-2m' cosr1r ]', where 
r is any rational number between zero and one. The fraction of all normal modes having precisely the value 
w(r) isp[w(r)]= (m-1)'/(mQ-1), whereris expressed as the ratio r= p/qof relatively prime integers p and q. 
The frequency spectrum is dense within the interval (m'-1, m'+1); and pew] is discontinuous at every w 
for which it does not vanish. 

PERHAPS the readers of this journal will be 
interested in some curious results we have obtained 

concerning the frequencies of small vibration of a 
number of mass points connected by springs as in a 
special rooted Cayley tree.l An example is shown III 

Fig. 1. 
The Cayley tree that we are concerned with is 

made by starting with the trunk connecting the root 
point 0 to the point h, and adding m branches to the 
point 11 to produce m new branch tip points 1121, 
1122, "', 112m. Then m branches are added to each of 
these branch tips to produce the m2 new points 112131, 
.. " h213m, h2 231, .. " h2m3m ; and so on. This branch­
ing process, when repeated N times, results in an Nth­
order tree whose mN branch tip points are labeled 
h2i'" (N+1)j. We shall refer to m as the branching 
number. Figure 1 shows a fourth-order tree with a 
branching number of two. Weare concerned especially 
with an Nth-order tree with a branching number 
m"22 as N becomes indefinitely large. 

The root point 0 and the points at the branch tips 
are called end points, and the others are interior points. 
Each end point is connected to one neighboring point, 
and each interior point is connected to m+ 1 neighbors. 
Thus m+ 1 is the coordination number of the lattice. 

It is interesting to note that an Nth-order tree has 
(mN -1)/(m-1) interior points and mN +1 end points. 
For large N, the fraction of points on the surface of 
the tree, i.e., branch tip points, is (m-1)/m. 

With each point of the tree we associate a mass M 
and a position coordinate Xi. All end points are held 
fixed to the values Xi = O. We suppose the potential 
energy of interaction of the mass points to be 

V=! L L Kij(Xi- Xj)2 
ir'j 

=! L L A (i,j)XiXj. 
i i 

(1) 

1 This sort of lattice was brought to the attention of RJR by 
Dr. Michael Fisher. It is of interest in the study of cooperative 
phenomena and has been called a Bethe lattice by C. Domb, 
Phil. Mag. Suppl. 9, 149 (1960). 

The coefficients Kij are 

1 
K, if i and j are neighbors, and neither is a 

branch tip; 
Kii= aX, if i and j are neighbors, and either is a 

branch tip; 
0, if i and j are not neighbors. 

The coefficients A (i,j) are determined by these Kif' 
By setting 0: equal to zero, the interior points are 

entirely disconnected from the branch tips, and the 
Nth-order tree with fixed tips becomes an (N -1)th­
order tree with free tips. When 0: equals one, the 
interaction of interior points with branch tips is the 
same as the interaction of interior points with each 
other. 

Our principal results, concerning the frequency 
spectrum of the tree in the case 0:= 1, are the following. 

The allowed frequencies of vibration of the tree, in 
the limit of indefinitely large N, are given by 

w(r)= (K/M)t{m+1-2mt cosrll"}t, (2) 

where r is any rational number greater than zero and 
less than one. The frequency spectrum is dense within 
the interval 

The fraction of all normal modes having precisely 
the frequency w(r) is 

p[w(r)J= (m-1)2/(m Q-1), m"22, (4) 

FIG. 1. A fourth-order 
tree with a branching num­
ber of two. 

o 
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FIG. 2. The general 
structure of the secular 
determinant DN(Z). 

"j:IO 1 0 1 [~ 
where we have supposed r to be expressed as the ratio 

r=p/q (5) 

of relatively prime integers p and q. Within the stated 
interval, p[w(r)] vanishes for irrational r, and is 
discontinuous at every rational r. 

We proceed now to the derivation of the frequency 
spectrum. The allowed frequencies of vibration of 
coupled oscillators can be found by solving for the 
roots of a secular equation. This equation, for an "Vth­
order tree, is 

(6) 

The order of the determinant DN is (mN-1)/(m-1) 
X (mN -1)/ (m-1). The potential energy matrix A (i,j) 
is positive definite; therefore, the secular equation has 
(mN-1)/(m-1) positive roots, here denoted by w2. 

For convenience we shall suppose that K and Mare 
equal to one; this amounts to measuring frequency in 
units of (K/M)!. 

The general structure of the secular determinant is 
shown in Fig. 2. The Z in the upper left corner is 

z=m+1-w2; (7) 

the entry A(h,h)=m+1 contains the contribution of 
the m+ 1 springs attached to the first branching point 
11. This point is connected to h21, "', h2m, (and to 
no other points), by A (h,h21) = ... = A (h,112m) = -1. 
These elements comprise the nonzero entries in the 
top row and left column of DN(Z) in Fig. 2. 

In the secular determinant, the points 1121, .. " h2m 
now may be regarded as the first branching points of 
m independent trees of order N -1. Thus DN(Z) is 
filled in, on the diagonal, with m smaller determinants 
DN_I(z). Each DN_I has the same general structure as 
DN , including D 2, 

Z -1 -1 -1 -1 
-1 DI 0 0 0 

D2= 
-1 0 DI 0 0 (8) 
-1 0 0 DI 0 

1-1 0 0 DI 

The determinant DI consists of the single element 

DI= 1+ma-w2 • (9) 

If the springs leading to the branch tips are identical 
with the springs connecting interior points, then DI = Z. 

By Laplace's expansion, one may easily verify that, 
for N>2, 

DN(Z) = zDN_Im(Z) -mDN_Im-l(z)DN_2m(Z). (10) 

The recurrence formula (10) is correct for N = 2 also, 
provided we define Do(z) to be identically one. 

It is noteworthy that in the special case m= 1, 
i.e., for the familiar one-dimensional chain, the 
recurrence formula reduces to the well-known linear 
form, DN(Z)=zDN_I(Z)-DN_2(Z). 

The general recurrence formula or difference equation 
(10), although nonlinear, turns out to have a remark­
ably simple solution. We observe first that, by its 
definition, DN(Z) is a polynomial in z. From the 
recurrence formula we obtain 

DN(Z)/DN_Im-I(Z)=zDN_I(z)-mDN_2m(Z); (11) 

DN(z)/DN_Im-l(z) is also a polynomial in z. But if this 
is a polynomial, then so is DN_I(Z)/DN_2m-l(z). Thus, 

DN(Z)/[DN_I(Z)DN_2(Z)]m-l 
= zDN_1(Z)/ DN_2m-l(z) - mDN_2(z) (12) 

is a polynomial; and so forth. 
The preceding observation suggests the substitution 

DN(Z) = {D I(z)D2(z)· .. DN_I(z) }m-IPN(Z), (13) 

where PN(Z) is a polynomial of the Nth degree in z. 
Substituting (13) into the recurrence formula (10), 
once for DN, once for DN- 1, and once for DN- 2, we find 

{D1D2·· ·DN_dm-1PN 
=zDN_Im-l{DID2·· ·DN_2}m-1PN_1 

-mDN_lm-1DN_2m-l{DID2" ·DN_a}m-1PN_2. (14) 

Evidently, {DID2··· DN_I}m-1 can be factored from 
each term, leaving the linear recurrence formula 

Using the known values of Do and D1, we observe that 
the P sequence can be started with 

Po=Do= 1, 

Pl=DI=z-m(l-a). 
(16) 

The structure of the recurrence formula for PN 

suggests that a solution may be found by means of 
Tchebycheff polynomials. We have done so; the 
solution, easily verified by substitution, is 

{
Sin(n+1)O Sinn8} 

P n (z)=m n /
2 m!(l-a)-. - , 

sin8 sm8 
(17) 

where 8 is defined by 

z=2m! cos8=m+1-w2• (18) 

The relation between the determinant DN and the 
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polynomials PN can be found by repeated application 
of (13) j it is 

N-1 

DN(z)=PN(z) II {Pr(Z)} (m-l)mN - r-
l
• (6') 

,-1 

This relation, together with (17) and (18), provides 
an exact evaluation of the secular determinant. (Even 
the linear case, m= 1, in which the product over r in 
(6') reduces to unity, is included here.) 

The problem of finding the distribution of the 
frequencies of vibration of the tree (for m? 2) is now 
reduced to (1) locating the zeros of the polynomials 
P n, n= 1, 2, "', N, and (2) accounting for the multi­
plicity of these zeros, considered as roots of DN • We 
shall first treat the case a= 1, in which the branch tip 
springs are identical with the other springs. Then we 
shall consider what modifications are called for when 
a=O, in which case the interior points are completely 
detached from the branch tips. 

When a= 1, the expression for P n is simply 

P n =mn/2 sin(n+ 1)8/sin8. (19) 

The n zeros of P n are located at 

It follows that the frequencies of vibration obtained 
from (18) 

w= {m+1-2m~ cos8k(n)}l, 1::;k::;n, 

1::;n::;N, 
(20) 

fill the interval m!-1 <w < m!+ 1 in the limit of large N. 
Now we consider the distribution of frequencies 

within this interval. In the limit N - 00, there is a 
frequency associated with every rational multiple of 7r, 

w(r) = {m+ 1-2m! cosr7r}!, (20') 

where O<r<1. By writing 8=r7r as 8q- 1(p)=P7r/q, 
where p and q are relatively prime integers, it is clear 
that 8q_l(p)~r7r is a root of Pq- 1, P 2q- 1, "', P nq- l, .... 
Since the total number of roots of DN is 
(mN -1)/ (m-1), the fraction of all frequencies having 
precisely the value w(r) is 

(mN-l)-l 
p[w(r) j ~Y]= -­

m-1 

X{ (m-1)mN-q+(m-1)mN-2q+ ... }. (21) 

In the limit N - 00, the value of p[w(r) j N] is 

p[w(r)]= lim p[w(r) j N] 
N-->oo 

= (m-1)2f(mq-1)j m?2. (22) 

We shall refer to p[w(r)] as the fractional multiplicity 
of the frequency w(r). 

The numerical value of p[w(r)] is independent of p, 
except that p must be less than q and relatively prime 
to q. Then we also have p[w(r)]=p[w(1-r)]j the two 
frequencies w(r) = (m+1-2ml cosr7r)! and w(1-r) 
= (m+1+2mlcosr7r)1 have the same fractional multi­
plicity. The frequency w(t)= (m+1)1, which is also 
the frequency of a tree of order one (and a = 1) has 
the largest multiplicity, namely 

p[w(t)] = (m-1)/(m+1). (23) 

Thus there is a band of allowed frequencies of 
vibration, specified by 

ml-1<w<m!+1, 

such that the frequency w(r)= (m+1-2m! cosr7r)i 
within the band has a fractional multiplicity 

p[w(r)] 

{

(m-1)2f(mq-1), if 0<r<1 is rational and equal 
to p/q where p and q are 

= relatively prime integers, p<qj 
0, if 0<r<1 is irrational. 

We now consider the case a= 0, in which the interior 
points are not attached to the branch tips. The resulting 
transcendental equation for the roots of P n is 

{ 
sin(n+ 1)8 sinnO} 

P n=mn /2 --.---mi-. - =0, m?2. 
sm8 sm8 

(24) 

Although we have not been able to find explicit ex­
pressions for all the roots of all the P n'S defined by 
(24), we can nevertheless draw certain qualitative 
conclusions. 

First, according to (16), we observe that P 1=D1= 
1-w2, or w= 1 is a root of DN. 

Second, with one exception, it can be verified that 
for n? 2, P n in (24) has n-1 real roots, 8nk, and one 
imaginary root icf>n (see Appendix for details). The 
single exception occurs for P2 when m= 2, in which 
case P 2 has two real roots 821 and 822 • The frequencies 
corresponding to the real roots fill the same open 
interval as before, m!-1<w<m!+1, in the limit of 
large N. The imaginary root icf>n of (24), which is 
determined conveniently from the equivalent expression 

e2n", = (mLe-"')/(mLe"') 

(1;orresponds to a frequency 

W(cf>n) = (m+ 1-2m! coshcf>n)t. 

(24') 

This frequency lies in the interval ° <w(cf» <mt-1, 
n?2. 

From examination of (24'), it can be seen that the 
root cf>n is such that 1::;e"'n<mt. The cf>n's are distinct, 
with cf>n>cf>m for n>mj and as n_ 00, e"'n_mt. The 
frequency associated with this limiting value is 
w(cf>oo) =0. 
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In this way we find, in the case a=O, that the 
frequency spectrum consists of: (1) a band of fre­
quencies in the interval m l -1<w<m1+1, and (2) a 
discrete spectrum in the gap interval O<w<m1-1. 
The frequency W=O is a limit point of the discrete 
spectrum. For m~ 5, the frequency w = 1 obtained 
from P1=O lies in the gap interval, and constitutes an 
upper bound for the discrete spectrum. 

We have not been able to determine the fractional 
multiplicity of the frequencies in the band (for a=O), 
i.e., to account for possible coincidences of the real 
roots of different P ,,'so However, the fractional multi­
plicity of the frequencies in the discrete spectrum can 
be obtained easily. It is 

(m-1)mN- 1- n (m-1)2 
p[w (q,,,) ] = lim n~2. 

N->oo (mN -1)/ (m-1) m"+l 

It follows also that the fraction 17 of all frequencies 
lying in the open interval O<w<ml-1 is 

17= {(m-1)/m2, m= 2, 3, 4 

(m-1)/m, m~S. 

APPENDIX 
The roots of 

P,,(I:1)=mn /2{sin(n+l)l:1/sinl:1-m! sinni:1/sinl:1} for m~2, 

where 2m1cosl:1=m+1-w2• 

P" (1:1) is a polynomial in w2 possessing n real roots 
W nk2• The expression for m-n /2P ,,(1:1) is the difference of 
two Tchebycheff polynomials, sin (n+ 1)1:1/ sinl:1 and 
sinni:1/sinl:1. Because the n-1 roots of sinni:1/sinl:1 
(in the interval 0 <1:1 < 11") interlace the n roots of 
sin(n+ 1)1:1/sinl:1, the difference polynomial, 

sin(n+ 1)1:1/sinl:1-ml sinni:1/sinl:1, 

has a real zero between every adjacent pair of zeros of 
sin(n+ 1)I:1/sinl:1. Thus there is a total of n-1 of these 
real roots I:1 nk • With one exception, the last or nth root 
of P n (l:1) is obtained from Eq. (24') 

e2n',,= (mLe-<I»/(m!-e<P), 

where iq,=I:1. The exception can be traced to the fact 
that for f«1/n, sin(n+1)f/sinf<m! sinnf/sinf save in 
the case n=2, m=2. For m=2, the roots of P 2 are 
1:121 = 711"/12 and 1:1 22 =11"/12. 
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The general constitutive equations for galvanomagnetic effects in isotropic materials are applied to 
the study of electrical conduction in rods. It is shown that, in general, rectilinear current flow is not possible, 
unless the rod has a circular cross section or is an infinite parallel-sided slab. 

1. INTRODUCTION 

I N a previous paperl the constitutive equations for 
galvanomagnetic effects in isotropic materials were 

derived from an initial assumption that the electric 
current density J and the magnetic field H are functions 
of the electric field E and the magnetic induction B. 
We now consider the flow of current in an infinitely 
long cylindrical rod of such material when a constant 
potential difference is maintained between its ends. 
It will be shown that rectilinear flow of current is not, 
in general, possible. 

It is natural to assume that the current in a long 
cylindrical conductor will flow in straight lines parallel 
to the axis of the cylinder, producing a magnetic field 
which has no component in the axial direction. However, 
in materials of the type considered, the assumption of 
rectilinear flow leads to a system of three partial 
differential equations for the two nonzero components 
of the magnetic field. These three equations are 
independent unless the conducting material is of a 
certain special type. This special class of materials 
includes, of course, those which obey the classical 
Ohm's law. 

It is found that if the three equations are independ­
ent, the magnetic field inside the conductor must form 
concentric circles or parallel straight lines. On the other 
hand, the external field is of the usual solenoidal and 
irrotational type. Presumably, the internal and external 
fields cannot be joined properly at the conductor 
boundary unless the boundary has a special shape, and 
therefore rectilinear flow is not generally possible. 
We show, in the case when the material and surrounding 
dielectric have equal, constant permeabilities, that recti­
linear current flow is possible only in circular rods and 
tubes and in infinite slabs. This result is probably also 
true in general, when the permeabilities are not equal. 

The present problem is somewhat similar to that of 
the flow of non-Newtonian fluids through tubes. 
Ericksen2 pointed out that unless the fluid is of a 
special type, or the tube has a special cross-sectional 
shape, rectilinear motion is not possible. For sufficiently 
small deviations from rectilinear flow, Green and 
Rivlina have shown that the fluid then flows with a 
helical motion. In the present case, we expect a similar 

1 A. C. Pipkin and R. S. Rivlin, J. Math. Phys. 1, 542 (1960). 
2 J. L. Ericksen, Quart. J. Appl. Math. 14,318 (1956). 
3 A. E. Green and R. S. Rivlin, Quart. J. Appl. Math. 14, 299 

(1956). 

result; that the electrical current will flow in a helical 
path when rectilinear flow is not possible. 

2. CONSTITUTIVE EQUATIONS 

It has been shownl that the constitutive equations 
describing galvanomagnetic effects in holohedral iso­
tropic materials must be expressible in the forms 

J=aIE+(a2E· B)B+aaEXB (2.1) 
and 

H='YIB+E· B('Y2E+yaExB), (2.2) 

where the coefficients aI, a2, .. " 'Ya are functions of 

E· E, B· B, and (E· B)2. (2.3) 

For the purposes of the present paper, It IS more 
convenient to use the inverse equations in which E and 
B are given in terms of J and H. These may be obtained, 
by an argument analogous to that employed in obtain­
ing Eqs. (2.1) and (2.2), as 

E= alJ+ (a2J· H)H+aaJXH (2.4) 
and 

where aI, a2, "', Ca are functions of 

J.J, H·H, and (J·H)2. (2.6) 

Equations of the forms (2.4) and (2.5) can also be 
obtained by solving (2.1) and (2.2) for E and B in 
the manner described in the Appendix. 

3. RECTILINEAR CURRENT WITH NO 
AXIAL MAGNETIC FIELD 

We consider a straight cylindrical rod of arbitrary, 
but uniform, cross-section lying parallel to the z axis of 
a rectangular Cartesian coordinate system x, y, z. The 
rod is composed of a homogeneous, isotropic conducting 
material for which the constitutive equations (2.4) and 
(2.5) are valid. The medium surrounding the rod is a 
perfect insulator of infinite extent, so that in it 

(3.1) 

where Jl. is a constant. 
If the flow of current in the rod is steady, then 

Maxwell's equations, which are valid everywhere, take 

865 
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the form 
vXH=J, 

v·B=O, 

vXE=O. 

(3.2) 

(3.3) 

(3.4) 

The tangential component of H and the normal 
component of B are continuous across the boundary of 
the conductor. At points in the insulator sufficiently 
distant from the conductor, H=O(l/r), where r is the 
distance of the point considered from the conductor. 

We might expect that if a uniform electric field is 
applied to the rod in the direction of the z axis, the 
resulting current will be in the same direction and 
produce a magnetic field for which the z component is 
zero, so that 

(3.5) 

We will show that if the validity of (3.5) is assumed, 
the resulting mathematical problem for the determina­
tion of the distribution of current and magnetic field 
is overdetermined and, in general, does not possess a 
solution. 

From (3.5) and (3.2), it follows that J and Hare 
independent of z. We may therefore write 

Jz=J(x,y). (3.6) 

From (2.5) and (3.1), it follows that B is independent of 
z everywhere and from (2.4) it follows that E is in­
dependent of z inside the rod. With a Ejaz = 0, Eq. (3.4) 
implies that Ez is a constant E (say): 

We note that Eqs. (3.11)-(3.15), with J=O in the 
insulator, provide three equations valid in the conductor 
and three valid in the insulator. It appears that, together 
with the boundary conditions on the surface of the con­
ductor and at infinity mentioned earlier, they should be 
sufficient for the determination of H x, H y, and J. 
However, Eq. (3.15) is not the only consequence of 
Eq. (3.4). By using (3.8) in (3.4), we also obtain 

v· (Ja3H) =0. (3.16) 

We shall show that solutions of (3.11)-(3.15) cannot 
also satisfy Eq. (3.16) unless certain restrictions are 
imposed on the constitutive equations which are valid 
for the material of the rod or on its cross-sectional shape. 

4. DEGENERATE MATERIALS 

We may regard Eq. (3.15) as determining J as a 
function of H2. With J = J(H2), the coefficients C1 and 
Ja3 in Eqs. (3.11) and (3.16) can also be regarded as 
functions of H2. Equations (3.11) and (3.16) can then 
be written in the forms 

and 

dC1 
c1v·H+--H·VH2=0 

d(H2) 
(4.1) 

d(Ja3) 
Ja3v·H+--H·VH2=0. (4.2) 

d(H2) 

Together, these equations imply that either 

Ez=E. (3.7) and 
v·H=O, 

(4.3) 

(4.4) 
With (3.5), Eqs. (2.4) yield 

and Eqs. (2.5) yield 

Bx=cdlx, B y =c1H y , Bz=O, (3.9) 

where, from (2.6), a1, a3, and C1 are functions of 

J.J=]2, H·H=Hx2+Hi=H2 (say) 
and (J·H)2=0. (3.10) 

By using Eqs. (3.1) and (3.9) in (3.3), we obtain 

V'(C1H)=0 (conductor) 
and 

,uv·H=O (insulator). 

(3.11) 

(3.12) 

Since J and H are independent of z, Eq. (3.2) yields 

aHy _ aHx = {J (conductor) 

ax ay ° (insulator). 

(3.13) 

(3.14) 

Equation (3.7), with the last of equations (3.8), yields 

(3.15) 

or 
d(Ja3) dC1 
C1---=Ja3-~. 

d(fl2) d(H2) 
(4.5) 

In the degenerate class of materials for which (4.5) is 
satisfied, Eqs. (4.1) and (4.2) are compatible and the 
problem is presumably not overdetermined. For 
example, if the material obeys Ohm's law, then a3=0 
and Eq. (4.5) is satisfied. 

s.OVERDETERMINATION 

If Eq. (4.5) is not satisfied for the material considered, 
then the magnetic field inside the conductor must 
satisfy the independent equations (4.3), (4.4), and 
(3.13). In (3.13), J is regarded as a known function of 
H2, obtained from (3.15). We thus have three equations 
for the two unknowns H x and H y. 

Let t and n denote unit vectors, tangential and 
normal, respectively, to the lines of flux and so oriented 
that n, t, and the direction of the z axis form a right­
handed triad at each point. Then, 

and 
(t· V)t= -n/r and (t· v)n= tlr, 

(n·v)n= -tip and (n·v)t=nlp, 

(5.1) 

(5.2) 
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where rand p are the radii of curvature to the line of 
flux and to the orthogonal trajectory of the lines of 
flux at the point considered. From (5.1) and (5.2), it 
can be shown, bearing in mind that t and n are unit 
vectors, that 

(n·V)(t·V)+r-l(t·V)= (t·V)(n·V)+p-l(n·V). (5.3) 

Bearing in mind that H=Ht, we can now rewrite 
Eqs. (4.3), (4.4), and (3.13) as 

Ht·VH2=0, (5.4) 

V·(Ht)=t·VH+H/p=O, (5.5) 
and 

V· (Hn)=n· V H+H/r=f(H2). (5.6) 

Denoting by s distance measured along a line of flux, 
Eq. (5.4) may be rewritten as 

(5.7) 

It follows that either H=O or aH/as=O. If H=O, it 
follows from (5.5) that aH/as=O. Hence, H is constant 
along each line of flux. 

From (5.5), with aH/as=O, we see that if H,eO, then 
1/ p = o. The orthogonal trajectories of the lines of 
flux are therefore straight lines and the lines of flux 
are a family of involutes. 

By operating on Eq. (5.6) with t· V, we obtain 

(t·v)(n· V)H+r-It· V H-Hr-2t· Vr= t· V f(W). (5.8) 

By using Eq. (5.3) to interchange the order of the 
operators t·V and n·V in (5.8), we obtain 

(n· V) (t· V)H + 2r-It· V H - p-In · V H - Hr-2t· Vr 
=t·Vf(H2). (5.9) 

Since t·vH=aH/as=O and 1/p=O, Eq. (5.9) yields 

H Har 
-t·V'r=--=O. (5.10) 
r2 r2 as 

If H,eO, then either l/r=O or ar/as=o. A line of flux 
for which l/r= 0 is a straight line. A line of flux for 
which ar/as=o is a circle. Thus, the lines of flux are 
circles of finite or infinite radius. 

A family of circular involutes is a family of concentric 
circles, or degenerately a family of parallel straight 
lines. In (5.6), n· V may now be replaced by d/ dr and 
we obtain 

dH/dr+H/r=f(H2). (5.11) 

We conclude that the lines of flux inside the conductor 
are concentric circular arcs. The magnitude of H is 
constant along each line of flux and satisfies Eq. (5.11), 
where r is the radius of the line of flux passing through 
the point considered. 

It is clear that if H is determined both inside and 
outside the conductor by using Eqs. (3.11)-(3.15) and 
the appropriate boundary conditions, the lines of flux 
inside the conductor will not generally be concentric 

circles. This contradicts the results of this section, 
obtained by using Eq. (3.16) as well. In the cases in 
which this contradiction arises, our initial assumption 
expressed by Eq. (3.5) must be incorrect. 

6. DEGENERATE CROSS-SECTIONAL SHAPES 

For materials for which Eq. (4.5) is not valid, we 
have shown that if there exists a solution of the system 
of equations (3.11) to (3.16), the lines of flux inside the 
conductor are concentric circles and the magnitude of 
H is constant along each line of flux. It is apparent that 
these conditions cannot be satisfied in a conducting 
rod of arbitrary cross-sectional shape. However, if 
the cross section of the rod is bounded by a circle or 
by a set of concentric circles, then we may expect the 
lines of flux to be circular. We wish to show that these 
are the only possible exceptions. In order to do this, 
we must show that the solution of Eqs. (3.11)-(3.16) 
for the interior of the rod, which has already been 
constructed, cannot be continued into the exterior 
region, unless the cross-section is circular. 

Let the common center of the flux circles in the rod 
be used as the origin of coordinates. Let the curve C 
bounding the conductor be given parametrically in 
terms of the arc length s by x=x(s), y=y(s). Inside C, 
H is given by 

Hx= -H(r)y/r, Hy=H(r)x/r, 
where 

and where H(r) satisfies Eq. (5.11). 

(6.1) 

(6.2) 

By using (6.1) in the condition that the tangential 
component of H is continuous across C, we obtain 

Hxx'(s)+Hyy'(s) = (H/r) [ -yx'(s)+xy'(s)], (6.3) 

where H x and H yare now the components of the 
external field, evaluated on C. Similarly, since B=cIH 
inside C and B=JLH outside C, continuity of the normal 
component of B requires that on C, 

JL[ -Hxy'(s)+Hyx'(s)]= (cIH/r)[yy'(s)+xx'(s)]' (6.4) 

The boundary values on C of H x and H y, to be used in 
determining the field outside the rod are obtained from 
(6.3) and (6.4) as 

H x= (H/r) [x' (xy' -yx')- (CI/ JL)Y' (xx'+yy')], (6.5) 

and 

H y= (H/r)[y'(xy' -yx')+ (CI/ JL)x'(xx'+yy')]. (6.6) 

Outside C, H satisfies Eqs. (3.12) and (3.14). From 
them it follows that Hx-iHy is an analytic function of 
z=x+iy, so that 

Hx-iHy=w(z) (say). (6.7) 

The condition that Hx and Hy are O(1/r) at infinity 
implies that zw(z) is regular at infinity. The conditions 
(6.5) and (6.6) can be combined, by using zz=r2 and 
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dzdz= (dS)2, to yield 

Since (6.8) determines both the real and imaginary parts 
of w(z) on C, the problem is, in general, overdetermined. 

In the particular case when Cl is a constant and equal 
to J.L, it is easy to show that (6.8) can be satisfied only if 
the cross-section of the rod is circular. Introducing 
Cl = J.L into (6.8), we obtain 

zw(z) = -irH on C. (6.9) 

Since <R(zw)=O on C and is regular outside C and at 
infinity, <R(zw)=O outside C. Therefore, 8'(zw)=con­
stant outside C. On C, 8'(zw) = -rHo Hence, H=A/r, 
where A is a constant, on C. Let ro be the radial distance 
from the origin to the nearest point of the boundary. 
Then, inside C, for r~ro, we have H=A/r. By using 
this result in Eq. (5.11), we obtain J=O, for r>ro. 
This implies that r=ro is the boundary of the conductor. 
If the cross section of the conductor is not simply 
connected, then Eq. (6.9) also holds on each interior 
boundary and by analogous reasoning it can be seen 
that each interior boundary is also a circle with center 
at the origin. 

In the more general case when Cl is a function of H2, 
which in tum is a function of r, we have so far not 
succeeded in proving rigorously that (6.8) can be 
satisfied only if C is circular. However, if C is the 
circle \z\ =ro, then dz/ds= -iro/z on C and (6.8) 
becomes 

where 

and 

131 = al'Ya- a a'Y2, 

!32=a2'Ya(E· B)2-aa'YI, 

(7.2) 

(7.3) 

!3a=al'Y1-a2'Y2(E· B)2. (7.4) 

Equations (2.1), (2.2), and (7.1) are linear equations 
for E, B, and EXB in terms of J, H, and JXH, with 
scalar coefficients. Solving them, we obtain 

E= (AI/ £1)J- (A 2/ £1) (E· B)H+ (132/ £1)JXH (7.5) 

and 

B= (A a/ £1)H- E· B[(A4/ £1)J+ (131/ £1)JXH], (7.6) 

where 
A l='Yti3a+'Ya(!3lE· E+!32) (E· B)2, (7.7) 

A2=a2i3a+aa(!3lE· E+!32) , (7.8) 

Aa=ati3a-aa[,BI(E· B)2+!32B· B], (7.9) 

A4='Y2i3a-'Ya[,Bl(E· B)2+!32B· B], (7.10) 
and 

£1= \!3l(E. B)E+!32B\2+!3l. (7.11) 

If £1=0, then E, B, J, and H are all in the same direction 
and the inverse equations are nonunique. 

From (2.1) and (2.2), we also obtain 

J·H=A 6E·B, 

A6=a1'Yl+al'Y2E· E+a2'YIB· B+a2'Y2(E· B)2 
+am[(E· E) (B· B)- (E· B)2]. (7.12) 

By using (7.12) in (7.5) and (7.6), we obtain 

E= (A 1/ £1)J - (Ad A 6£1)(J· H)H+ (!3d £1)JXH (7.13) 

zw(z) = -iroH(ro). (6.10) and 

This boundary condition implies directly its own 
analytic continuation into the region outside C. 
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APPENDIX. INVERSION OF CONSTITUTIVE 
EQUATIONS 

In this section, we show how Eqs. (2.4) and (2.5) 
may be obtained directly from (2.1) and (2.2). From 
(2.1) and (2.2) we obtain 

JXH=[,Bl(E· B)2+!32B· B]E 
- (!3lE· E+!32) (E· B)B+!3aEXB, (7.1) 

B= (As/ £1)H-J· H[(A4/ A6£1)J 
+ (131/ A6£1)JXH]. (7.14) 

Equations (7.13) and (7.14) are of the forms (2.4) 
and (2.5), respectively, except that the scalar coeffi­
cients in (7.13) and (7.14) are functions of the invariants 
(2.3) rather than of the invariants (2.6). It is necessary 
to find expressions for the quantities (2.6) in terms of 
the quantities (2.3). The equations to be used are 
(7.12) and the following, obtained from (2.1) and (2.2): 

J ·J=aI2E· E+a22(E· B)2B· B+aa2[(E· E)(B· B) 
- (E· B)2]+2ala2(E· B)2, (7.15) 

H· H='Y12B· B+'Y22(E· B)2E· E+'Ya2(E· B)2 
X[(E· E)(B· B)- (E· B)2] 

+2'Y1'Y2(E· B)2. (7.16) 

The inversion cannot be completed until the forms of 
aI, a2, ... , 'Ya have been specified. 
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Method for Defining Principal Modes of Nonlinear Systems Utilizing 
Infinite Determinants 
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A method for calculation of "principal modes" of linear or nonlinear systems is discussed. The physical 
definition of "principal modes" is formulated mathematically in t.wo ways. The trial solution.of the di!fe~en­
tial equation of the motion of the system is taken in an appropnate s~ructure. The calculatlOn of prmclpal 
modes leads to infinite determinants of Hill's and von Koch's type, which are analyzed. The above method 
yields the possibility of getting the "principal modes" in the form of a series, all the coefficients of which 
can be calculated. 

1. INTRODUCTION 

T HE concept of "principal modes" plays the 
predominant role in the analysis of the oscillatory 

systems, no matter what field the systems occur in. 
The principal modes of linear systems are, by defini­

tion the fundamental set of solutions of which a linear 
combination gives the general solution of the linear 
differential equations, which govern the motion of the 
linear system. This means that any kind of oscillations 
in linear systems can be discussed in terms of some 
special modes of oscillation of the system, the "principal 
modes" of the system. 

This definition of "principal modes" is meaningless 
in nonlinear systems, since the "principle of superposi­
tion" does not hold in those systems. 

The study of the principal modes of systems, either 
linear or nonlinear, may be made by using two defini­
tions, namely the "proportionality definition" of prin­
cipal modes and their definition as solutions of "initial 
value problems" of special type. Calculations, based on 
these definitions, are shown for a nonlinear "dual-mode" 
system. If the solution of the differential equations of 
this system is taken as an exponential series with com­
plex coefficients, the calculation of the frequency wand 
the coefficients of the series leads to a recursion formula, 
which gives rise to "infinite determinants" of special 
type. The analysis of the infinite determinants involved, 
and the solution in its final form is discussed. The non­
unit elements of the determinants contain the coefficient 
of the nonlinearity as a common factor, and, for a weak 
nonlinearity, we can get an expansion of these deter­
minants in powers of the coefficient, then an appropriate 
approximation of them. Thus the "frequency equation," 
in an infinite determinantal form, is reduced to a 
quartic in w2, and the ratio of the determinants of the 
coefficients of the series to unit. 

published in the Proceedings of National Academy of 
Sciences.h,b 

2. THE DEFINITION OF PRINCIPAL MODES, ITS 
APPLICATION TO A FREE NONLINEAR SYS­

TEM OF TWO DEGREES OF FREEDOM, 
AND THE RECURSION FORMULA 

FOR THE SOLUTION 

By using the terminology of mechanical systems with 
s degrees of freedom, the principal modes of oscillations 
of the system are defined as those oscillations of the 
system for which the nonzero amplitudes of the funda­
mental and the corresponding harmonics of the dis­
placements of any two of the oscillating masses have, 
separately, a constant ratio. For such motions, the 
masses all oscillate about their equilibrium positions, 
where they pass at the same time. Their common 
frequency is the "principal frequency" of the system. 

If Xi, i = 1, 2, '" s are the displacements of the 
masses mi, i= 1,2, ... s from their equilibrium positions, 
and Xin, Xi'n the corresponding amplitudes of the nth 
harmonic of the displacements Xi, Xi', of the two masses 
mi, mi', and if there exist constants Cn such that the 
conditions 

i=l=i'; i, i'=l, 2, .. 's, cn¥O,oo (1) 

are satisfied, then these motions are, by definition, the 
"principal modes" of the system. 

We restrict ourselves, without loss of generality, to a 
two-degrees-of -freedom nonlinear system; namely, we 
get-as a mechanical model-the "two-masses-three­
springs" system with one of the anchor springs nonlinear 
and such that the corresponding restoring force is an 
odd-cubic function of the distance, or-as an electrical 
model-the "two-inductances-three-capacitances" sys­
tem with one capacitance variable and the others 
constant, Fig. 1 (a), (b). _ 

If ml and m2 are the oscillating masses, Kl = Kl+~x2, 
Ka and K2 the stiffnesses of the first and second anchor 
springs and of the coupling, ~ a constant which charac­
terizes the nonlinearity, and X and y the displacements 
of ml and m2 from their equilibrium positions, the equa-

The solution given is in accordance with both defini­
tions of "principal modes," and imposes a relation 
between the initial displacements of the masses, and 
this relation and the condition for the initial velocities 
to be zero distinguished the special initial value 
problems appropriate for the "principal modes." 

1 (a) D. G. Magiros, Proc. Nat!. Acad. Sci. U. S., Dec. (1960). 
been (b) D. G. Magiros, Proc. Nat!. Acad. Sci. U. S., June (1961). A brief discussion of the present paper has 
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(a) (b) 

FIG. 1. (a) The mechanical model. (b) The electrical model. 

tions of motion of this sytem are: 

X+WI2X+AIX3- AzY=0, 

Y+W22Y- A3X=0, 

where 

K I+K2 K 2+K3 

W12 = , wz2=---
ml m2 

J.I. K2 
AI=-, A2=-, 

ml ml 

(2) 

K2 
A3=-. (2a) 

m2 

We proceed to find the solutions x(t) and yet) of 
(2) with one fundamental frequency w for both oscil­
lators by imposing a certain organic structure for the 
functions x(t) and yet). Assume solutions of (2) of 
the form 

0() 0() 

x(t)= L aneinwt, y(t)= L Aneinwt. (3) 
n=-oo n=-oo 

The coefficients an and An are complex, then they 
include the phase angle. 

For the reality of the solution, one takes an=a_n , 

An = A-n, where an and A n are conjugates of an and An. 
Also assume tha t 

0() 0() 

L lanl<oo, L IAnl<w, 
n=-oo n=--OO 

0() 0() 

L n2Ianl<w, L nZIAnl<oo. 
n=-oo n=-oo 

The first two of these inequalities guarantee the conver­
gence of the series (3), while the second ones the 
existence of the second derivatives X, y. 

By using the first of (3), x3 is given by 

'" 0() 0() 

x3= L L L aPlap2G:P3ei (Pl+P2+P3)wl, 
pI =-00 P2=-oo P3=-OO 

which can be written as follows: 

x 3 = L L L aplap2G:n -PI _P2e inwt. 
n pI P2 

(3a) 

Inserting (3) and (3a) into (2), the following system 

results: 

(WI2_n2w2_~_3 -)an+ 
wz2-n2w2 

Al L L aplap2an-Pl-P2=0, (4a) 
pI P2 

(4b) 

where n, PI, P2 are integers. This nonlinear system 
consists of infinitely many nonlinear (AI +0) homo­
geneous equations for the infinitely many unknown 
coefficients an and An. 

The equation (4b) expresses the definition of principal 
modes applied to the above dual-mode system, and by 
(4b) the calculation of A n is deduced from an, then the 
calculation of principal modes of the system is deduced 
from an, by using (4a). If al is the dominant coefficient 
of the sequence {an}, then the approximate value of the 
double series of (4a), see Appendix I, is given by 

(5) 

with an error o(aj2). 
Inserting the expression (5) into the place of the 

double series of (4a), we can get the following recursion 
formula: 

(6) 
where 

kn =WI2-n2W 2- (6a) 
w22-n2w2 

It is the recursion formula (6) which will be used for 
the calculation of the "principal frequency" wand the 
coefficients an of the solution (3). We notice here that 
for the convergence of the series (3) it is necessary, 
according to (4b), that (w22-n2w2) is neither zero nor 
very small, i.e., w must not be either a submultiple Wz 

or very close to a submultiple of W2. 

3. CALCULATION OF THE PRINCIPAL 
FREQUENCY w 

The recursion formula (6) gives infinitely many 
homogeneous equations for the infinitely many un­
knowns an. The corresponding infinite matrix of the 
coefficients of these equations is 

[
r > :~: . ~: X i ~~~ .~" · 0 •...•. ] 

: : : : : : : : : .. ? .. ~~ .. ~ .. ~ ... ~ ... q.l .. ~: :: . 

For nonzero unknowns an, the corresponding infinite 
determinant must be zero. This doubly infinite deter­
minant, by taking n arbitrary integer, becomes one­
sided infinite determinant, and we can write 

A(n,w)=O, (7) 
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where the infinite determinant ~(n, <Xl) is given by the limit 

1 0 qn 0 0 0 0 
0 1 0 qn+l 0 0 0 

lim~(n,m)= Pn+2 0 1 0 qn+2 0 0 
n= fixed integer 
m=O, 1,2,3, 

............................................... (8) 

m ---t <Xl 
o 
o 
o 

o 
o 
o 

Consider a weak nonlinearity, i.e., }'ll x1 3«W12 1 xl, or 
l\ix2«(K1+K2)/ml' From the first of (3) we get 

o qn+m-2 
1 0 
o 1 

The principal frequency w can be determined from (7) 
by using (10). 

Then, if we confine ourselves to the first term of the 
series in (10) and put n= 1, the principal frequency w 
is approximately a root of 

and since al is considered as dominant element of that of or root of 
the sequence {an}, when max x2=2al2, then 

(9a) 

For a weak nonlinearity we can write 

3a12 18a 1
2

1a ll 2 

qn=Al---l\i2----+ .... 
kn kn

2 

All the elements not in the main diagonal of the 
determinant (8) have the small coefficient Al as a 
common factor. Then, by applying formula (B) of 
Appendix II, and taking the first terms of Pn and q n 

from formulas (9), the determinant (8) can be written 
approximately as 

00 1 
~(n,<Xl)=1-9A12IalI4L +0(A13). (10) 

m9J kn+mkn+m+2 

kn, given by (6a), is an even function of ii. To examine 
the convergence of the series in (10) we confine ourselves 
to non-negative integers ii. Since {I k" I} is a sequence 
with positive terms monotonically increasing with ii, 
and I k" I ---t <Xl, as ii ---t <Xl, the series in (10) converges. 
Convergence requirements of the series in (10) neces­
sitates the w2 must not be a zero of k,,(w2

); hence 

(12) 

which is quartic in w2
• Formula (12) gives the principal 

frequency w of order O(A12). For values of the principal 
frequency of order higher than O(A12), we find in the 
expansion of ~(n, <Xl) terms of order higher than 
O(A12),2 and continue in the same way to find the 
corresponding algebraic equation. 

4. CALCULATION OF THE COEFFICIENTS 

To calculate the coefficients an, we use in the recursion 
formula (6) the notation 

when we can get 

Pn 
un=-----, 

1+qnUn+2 

which leads to the infinite continued fraction 

an Pn 

a n-2 Pn+2qn 
1---

Pn+4qn+2 
1----

1- ... 

(13) 

(14) 

where the p's and q's are given by (9). The formula 
(14) is written as 

(is) 

2 W. Magnus, "Infinite determinants in the theory of Mathieu's 
and Hill's equations," Research Report No. BR-l, Mathematical 
Research Group, Washington Square College of Arts and Science, 
New York University, 1953. 
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z 

~-----+~--------~y 

x 
FIG. 2. The domain D in the X, Y, Z space is the appropriate 

one for the convergence of the continued fraction (16). 

where 
1 

Xn,l 
1+--

X n ,2 

1+--. 
1+ .. · 

Xn,m= -Pn+2mqn+2(m-l), 

n=fixed integer, m=I,2,3,···. 

1 -1 0 
-Pn+2qn 1 -1 

o - Pn+4q,,+2 1 

(16) 

(16a) 

Since the elements X",m of (16) are functions of the 
real variable w, the regions E, Y, V, defined in Appendix 
III, are segments of lines, and according to von Koch's3 
and Worpitzky's theorems, as stated in Appendix III, 

Y: 0< Yn,m= L /Xn,m/ <1, (17) 
m=2 

Consider a Cartesian coordinate system in space, and 
let us take the region element on the X axis, the series 
region on the Y axis, and the value region on the Z 
axis. The inequalities (17) correspond then to the 
interior of the orthogonal parallelepiped D, Fig. 2, 
which is an open domain. 
The domain 

is the appropriate one for the continued fraction (16). 
To evaluate the continued fraction (16) we apply 

the theory of Appendix III. The denominator of the 
ratio, which gives the mth approximant Zm of the 
continued fraction (16) is 

o 
o 
o 

o 
o 
o 

o 
o 
o 

Bn,m-l= .................................................................... (18) 

o 
o 

0 .. · 
0 .. · 

The numerator An,m-l of the ratio can be obtained 
from (18) if we omit its first row and first column. 
Taking the limit as m ---7 00, we obtain 

where 

an 
--=-pn 
a n_2 

.1(n, 00 )= lim Bn,m-l, 
m-->oo 

.1(n+2, 00) 

.1(n,oo) , 
(19) 

.1(n+2, 00)= lim An,m-l. (19a) 

The determinants of (19) are of von Koch's type and 
they converge by von Koch's rule, that is, when the 
series Ln / Pnqn-2/ converges, which happens here, as 
was pointed out at the discussion of the convergence of 
the series of (10). 

Since an=an, we may restrict ourselves to non­
negative integers for the calculation of the coefficients 

-Pn+2(m-l)qn+2(m-2) 1 -1 
o - Pn+2mqn+2( m--l) 1 

an. Formula (19) suggests starting with n= 2; then ao 
and al are arbitrary. The induction procedure applied 
to (19) for the coefficients with even index gives 

.1(2n+2, 00) 
a2n=(-I)naoPzP4'''P2n _ , 

.1(2,00) 

n= 1,2,3···. (20) 

For the determination of the coefficients with odd 
index, we first calculate the coefficient a3. This, accord­
ing to Appendix I, is an exception. 

If, according to Appendix I, we take al3 instead of 
the double series of the formula (4a) , and we apply 
this formula for n=3, there results 

(21) 
where 

k3=W12-9w2- [A2Aa/ (w22-9w2)]' (21a) 

3 H. von Koch, Compt. rend., 120, 144 (1895), 
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Now, by applying the induction procedure to (19) 
starting from the coefficient as and using the value 
of a3 given by (21), one can get 

}qa13 X(2n+3, 00) 
0!2n+l = ( - 1) n+1_-P5P7 · .. P2n+l--_----

k3 Ll(S,oo) 

n= 2,3,4· . .. (22) 

By applying formula (B) of Appendix II to the deter­
minants of (20) and (22), there is obtained 

X(2n+S, oc) 

X(S,oo) 

The formulas (21), (20), and (22) give the coefficients 
of the first of the series (3) for any positive n, with 
arbitrary ao and al. For the determination of the coeffi­
cients CL n we use the property a-n=an. The coefficient 
ao is real, and al in general complex, al = I all ei'i'l. If 
we take al real, the solution (3) can be written as 
follows: 

x(t)=ao+2a1 coswt-2a3 cos3wt+2 LaN cosNwt, 
n 

A3 2A3 2A3 
y(t)=-ao+---al coswt- a3 cos3wt (24) 

W2 2 W22- w 2 W22- 32w 2 

where the coefficients a3, aN~2n, aN~2n+1 are given by 
the formulas (21), (20), (22), respectively. The formulas 
(24) give the solution in its final form, and the formulas 
(20)-(23) can be used for the calculation of as many 
coefficients of the solution (24) as we want in terms of 
powers of }\j. 

We can easily see that for the calculation of the co­
efficients, in terms of powers of AI, does not need but 
only the unit as value of the ratios of the determinants 
(23). The first two terms of the solution (24) are 
independent of }\j. For terms of order 0(A1), we take the 
first term of Pn of (9) and combining it with (20) for 

n= 1 we get the 2nd harmonic, which, with (21), gives 

(2S) 

If we take the terms of pn of (9) up to the order 0(A12), 
and combine them with (22) for n = 2 we obtain the 
4th harmonic terms of order o (A12) : 

aoa14 

18A12-- cos4wt, 
k2k4 

aoa14A3 
18A12 cos4wt, 

k2k4(W22_42w 2) 

(2Sa) 

of x(t) and yet), respectively. The above procedure 
indicates how we can get higher harmonics in terms of 
higher powers of AI. The solution (24), constructed as 
indicated above, must be convergent and its coefficient 
of the fundamental term must be much larger than any 
other coefficient. These requirements imply that the 
following conditions are satisfied: 

(26) 

For the second condition, the inequality (6a) was taken 
into account. The 4th, Sth, ... harmonic terms are 
of order 0(A12), 0(A13), ... , and the convergence is 
guaranteed. 

Since a1 is much larger compared to ao, the solution 
in the linear case is approximately 

x(t) = 2al coswt, 

As 
x(t) = 2---al coswt, 

W22-w 2 

(2Sb) 

and the motions of the oscillators are "in phase" for 
W2<W, and "180° out of phase" for W2<W. 

s. THE PRINCIPAL MODES AS SOLUTIONS OF 
INITIAL VALUE PROBLEMS 

Another approach for the determination of principal 
modes may be based on the manner in which the system 
is set into motion. This is equivalent to considering the 
principal modes as solutions of special initial value 
problems. 

The differential equations of the "dual-mode" 
system are considered subject to the restriction that the 
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masses are displaced from their equilibrium positions 
either both up, or one up and the other down, by 
amounts Xo and Yo, respectively, and released without 
velocity; i.e., 

X(O)=Xo, y(O)=Yo, x(O)=y(O)=O, (27a) 

x(O)=xo, y(O)= -Yo, x(O)=y(O)=O. (27b) 

If the initial displacements Xo and Yo are appropriately 
related, then each one of these initial conditions gave 
rise to special vibration modes, which are, by defini­
tion, the "principal modes" of the system. To calculate 
the principal modes of our system utilizing infinite 
determinants and using the above definition, assume a 
solution in the form of complex exponential series (3), 
as in the previous case. The calculation of the principal 
frequency and the coefficients of the series has been 
completed throughout the preceding sections and the 
solution is found to be in the form given by (25). 
An approximation of this solution is given by (26), 
associated with the initial conditions 

A3XO 2alA3 
Yo=---=---. 

W2 2-W2 W2 2-W2 
(28) 

Formulas (28) give the relations of the initial dis­
placements required for the solution to be of "principal 
modes" type. These sinusoidal motions are "in phase" 
for the initial conditions (27a) if W<W2' 

Both definitions of principal modes lead to the same 
solution; they have the same physical interpretation 
and they are equivalent. 

The discussion here is based on two definitions of 
principal modes and the final solution found by analyz­
ing the infinite determinants involved. It may be 
mentioned that G. W. Hill, in his Lunar Theory brought 
into notice the infinite determinants, and H. Poincare 
first gave conditions for their convergence. 
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APPENDIX 1. THE DOMINANT SUM OF 
A DOUBLE SERIES 

Suppose in the sequence {an}, n=O, ±1, ±2, 
the complex elements have the property lLn = an. If 
al and a-I are dominant elements in the sequence, then 
it is easily seen that the dominant sum of the double 
series of (4a) is given by 

(A1) 

where n is any integer except n= ± 1, ±3. For these 
exceptions the dominant terms of the double series are 

3ala12 for n= 1, 3ala12 for n= -1, 
a13 for n=3, 0'13 for n= -3. (A2) 

APPENDIX II. APPROXIMATE VALUE OF 
AN INFINITE DETERMINANT 

If in an infinite convergent determinant, 

~= IIBm,nll::::, 
the elements in the main diagonal are equal to unity, 
and all the elements not in the main diagonal have a 
small common factor,4 say EO, i.e., if Bm,m= 1, Bm,n 
= EOBm,n, m=J=n, we may get an expression of the 
determinant in powers of EO. The first term in this 
expression is independent of EO; it is the product of all 
the elements in the main diagonal, that is 1. The next 
terms in the expansion are in E02 and are obtained by 
replacing the product IImBm,m the elements in the 
main diagonal (m,m) and (n,n) by the elements not in 
the main diagonal (m,n) and (n,m). These terms have 
a minus sign, according to the laws of determinants, and 
they are -e2"E.m"E.nBm,nBn,m; the determinant ~ 
can be written in the form 

~= 1- e2 "E. "E. Bm,nBn,m+O(e3). (B) 
m n 

APPENDIX III. A CONTINUED FRACTION AS A 
RATIO OF TWO INFINITE DETERMINANTS 

Given the continued fraction 

1 
Z",=--­

X2 
1+--

Xa 
1+--, 

1+·· . 
(Cl) 

where the complex elements X are subject to specified 
conditions, its mth approximant Zm, obtained by 
stopping with the mth partial quotient, can be estimated 
If the elements X of the sequence {Xm} of (C1) have 
arbitrary values in a region, the "region element" E, 
then the correspondent series "E.:'=2IXml, p=2, 3, 
4, ... has its values in the "series region" Y, and the 
approximants Zm have all their values in the value 
region V. The following theorems give relationships 
between the above regions. 5 

H. von Koch's Theorem 
"If 

p 

Y: "E. IXml<l, p=2,3,4, ... 
m=2 

then: the continued fraction (C1) converges." 

W orpitzky' s Theorem 
"If 

E: IXml :::;t, m=2, 3, 4··· 
then 

V: Iz -AI <1." m 3 _3' 

(C2) 

(C3) 

(C4) 

4 L. Brillouin, Wave Propagation in Periodic Structures (Dover 
Publications, New York, 1953), 2nd ed., pp. 34, 35. 

6 H. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand Company, Inc., Princeton, New Jersey, 1948), pp. 26, 
42, and 51. 
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The mth approximant of (Cl), Zm, can have the form 
of a ratio of two determinants. To show that, one 
associates the continued fraction (Cl) a sequence of 
linear transformations 

Xl(v)=l, X m=l/(l+Xmv), m=2, 3, 4, .... 

If: 
X p9=O, p=2,3,"', m; Xp=O, p>m, 

then the product of m of the above transformations is 

1 XmVAm-2+Am-l 
Zm=X1X 2" ·Xm(v)=--=-----­

X 2 XmVBm-2+Bm_l 
1+-

1+ 

X m_ 1 

+ , 
1+Xm v 

0 -1 0 
X2 1 -1 
0 Xa 1 

(CS) 

0 
0 

-1 

where the A's and B's may be calculated by means of 
the recursion formulas 

Ap=AI'-1+XpAI'-2, Bp=Bp-l+XpBp-2, (C6) 

p=l, 2, 3, .... 

For the above we require the initial values 

The mth approximant of (Cl), Zm, is given by (CS) if 
v=O, then it is equal to the ratio Am-l/Bm-l' 

The recursion formulas (C6) give two systems of 
homogeneous linear equations, one in the variables A, 
the other in the variables B. These systems give rise 
to two determinants, which give the values of the A's 
and B's. The B's are given by the determinant 

o 
o 
o 

Bm-l= ............................................ . (C7) 
o 
o 

m=2,3, .... 

Xm-l 1 
o Xm 

-1 
1 

The determinant for the A's can be obtained from the above determinant by omitting its first row and its first 
column. These determinants are different from zero. 

The value of the continued fraction (Cl) is given, by definition, by the limit limp .... '" (Ap/Bp). 
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Note on the Algebraic Aspect of the Integration of a System of Ordinary 
Linear Differential Equations 
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In this note the Lie algebra generated by the coefficient matrix of a system of ordinary, linear, first-order 
differential equations is considered. A systematic discussion, based on some well-known results in the theory 
of Lie albegras, is given for the reduction of the problem of integration of such a system. For the purposes 
of this note the integration of a system of equations for which the coefficient matrix does not depend on 
the independent variable is regarded as "elementary." It will be shown that the problem of integrating 
any system of linear ordinary differential equations can be reduced to the problem of integrating a set of 
such systems, each one of which has the property that the corresponding Lie algebra is simple, and in such 
a way that the sum of the dimensionalities of the Lie algebras of the reduced systems in the set does not 
exceed the dimensionality of the Lie algebra of the original system. 

The application of the reduction principle to the equations of motion in classical mechanics and in quantum 
mechanics is considered. It is shown that the principle in question applies to a class of Hamiltonian equations 
of motion not customarily regarded as describing linear systems. 

GROUP THEORETICAL INTERPRETATION OF THE 
GENERAL SOLUTION OF A SYSTEM OF ORDINARY 

LINEAR DIFFERENTIAL EQUATIONS 

1 

I N this part we shall define the class of ordinary 
linear differential equations which shall be the 

primary object of our study, and review briefly some 
well-known facts about such equations. 

We consider a system E of linear ordinary differential 
equations. Imagine the system in first-order form; the 
problem of complete integration then consists in finding 
an N-by-:Y matrix U(t) such that 

dU(t)/dt=M(t)U(t), U(O)=I. (E) 

Here, t is the real independent variable, restricted 
to an open interval S, which we take to contain the 
point t=O. The matrix M(t), "the coefficient matrix," 
is defined on S; for simplicity we shall furthermore 
assume M (t) to be continuous on S. This means no 
essential loss of generality in the discussion to be given. 

It is well-known that, under the stated assumptions, 
a unique differentiable U (t) exists on S, satisfying the 
equation and boundary conditions given in (E). 

2 

Let V be the real vector space of matrices, spanned 
by the matrices M(t) as t varies on S. (The matrices 
M(t) need not, of course, be real). Let L(E) be the 
real Lie algebra of matrices generated by the elements 
of V, the Lie product being defined as the commutator. 
Let G(E) be the group of matrices generated by the 
exponentials of the elements of L(E). 

As is well-known, the solution U(t) of the system (E) 
may be interpreted as a parametrization of a continuous 
curve on the group manifold of G(E). To make the 
matter clear, let L(E) be of dimensionality d, and 

* Research supported in part by the National Science 
Foundation. 

Ed be a basis of L(E). We may then 

d 

M(t)= L Bkmk(t), (1) 
k=! 

where the mk(t) are real continuous functions of t on S. 
Let to be any point of S. We define 

Wet; to) = U(t)U-l(tO). 

It follows that W satisfies the equation 

dW(t; to)/dt=M(t)W(t; to); W(to; to)=1 (2) 

for all t in S. 
In some neighborhood ;Vo of to, contained in S, W 

will be sufficiently close to the identity so that 

Wet; to)=exp(F(t; to», (3) 

where F(t; to) is an element of L(E), and a continuous 
(matrix valued) function of t in No, such that 
F(to; to)=O. 

Let us write 
d 

F(t; to) = L Bk!k(t; to). (4) 
k=! 

As shown 'by Magnus,! the functions !k(t; to) are 
uniquely determined in the neighborhood No as par­
ticular solutions of a set of first-order ordinary dif­
ferential equations, which in general are nonlinear. 
These differential equations are determined solely by 
the structure of the Lie algebra L(E), and by the 
expansion coefficients mk(t), through which M (t) is 
expressed with respect to some basis, as in (1). 

We may write U(t)=exp(F(t; to»U(to) when t is in 
No. When t varies on No, the point U(t) in the group 
manifold GCE) traces out a segment of a continuous 
curve. This segment, by (4), is entirely determined by 
the differential equations of Magnus, and hence by the 

1 W. Magnus, Communs. Pure and App!. Math. VII, 649 (1954). 

876 
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structure of L(E) and the expansion coefficients mk(t). 
No other properties of the matrix M(t) enter into 
consideration. 

3 

In view of what has been said, the essence of the 
system (E) is thus the structure of the Lie algebra 
L(E), and the way in which, as in (1), the coefficient 
matrix M(t) is expressed as an element of L(E). 

Consider the Lie algebra of matrices L(E) as a 
faithful representation of an abstract Lie algebra L. 
Let R(L) be any faithful representation of L, such that 
the group GR generated by the exponentials of R(L) 
covers the group G(E). Let 

d 

MR(t) = L: R(Bk)mk(t). 
k=l 

Then the solution U R(t) of the system, (t in S) 

uniquely determines U (t) through the mapping of GR 

onto G(E). The system (5) is thus equivalent to the 
system (E), and this procedure may be used in practice 
to "simplify" the integration of (E). Actually, it is not 
necessary that GR covers G(E) since the curve U(t) on 
G(E) is anyway uniquely determined by the curve 
U R(t) on GR and vice versa, by the conditions that 
both curves be continuous. We may thus solve the 
system (E) by solving the system (5) where R(L) is 
any faithful representation of L. 

REDUCTION PRINCIPLES FOR THE SYSTEM (E) 

4 

In this note the term "reduction" is used in the 
following sense: As before let L(E), or L, be the Lie 
algebra generated by the coefficient matrix M(t) of the 
system (E), and let L be of dimensionality d. Suppose 
that two other systems of differential equations (E') 
and (E") with corresponding Lie algebras L' and L" 
of dimensionalities d'>O and d">O, respectively, 
where d' +d" = d, can be explicitly constructed, such 
that the solution of (E) can be obtained by quadrature 
from the solutions of (E') and (Elf); then we say that 
the problem of integrating the system (E) has been 
reduced to the problem of integrating the systems (E') 
and (E"). The systems (E') and (E") possibly may be 
further reduced. We will, in fact, show that the problem 
of integrating any system of linear ordinary differential 
equations can, in the above sense, be reduced to the 
problem of integrating a set of systems of equations, 
each one of which has the property that the cor­
responding Lie algebra is simple. 

5 

Consider the system (E) and the associated Lie 
algebra L(E). Suppose that L(E) is the direct sum of 
two proper ideals L1 and L2 of L(E). Let L1 and L2 be of 
dimensionality d1 and d2, respectively; hence, d= d1 +d2. 
Let M(t)=M 1(t)+M2(t) such that M 1(t)EL 1 and 
M 2(t)EL2. Ml and M2 are clearly continuous on S. 
Furthermore, for any t', t" in S 

(6) 

Consider the two systems of differential equations 

dU l(t)/ dt= M 1 (t)U let), U 1(0) = 1, 

dU2(t)/dt= M 2(t) U2(t), U2(0) =1. 
(7) 

From (6) it follows that [U1(t'),M2(t")]=0 for all t' 
and t" on S. Hence, U(t)= U1(t)U2(t) is the solution 
of (E). 

Let G1 and Gl be the matrix groups generated by 
the exponentials of the elements of the algebras Ll and 
L 2• The group G(E) is then the direct product of the 
two normal subgroups Gl and G2. Ul(t) and U2(t) are 
continuous curves on the group manifolds of G1 and G2, 

respectively; these curves are the images of U (t) under 
the homomorphisms G(E) ~ G1 and G(E) ~ G2, 
respectively. 

6 

Let us now consider the case when L(E) is the 
semidirect sum of the two Lie algebras Ll and L2. Let 
thus L2 be a proper ideal of L(E) such that the quotient 
algebra L(E)/ L2 is isomorphic to the Lie subalgebra 
Ll of L(E), that is, 

[L2,L(E)]CL2, 

[ L1,L1]CL1. 
(8) 

Again, let M(t)=M 1(t)+M2(t), where M 1(t)EL 1 

and M 2(t)EL2. Let U1(t) be defined by 

dU1(t)/dt=M1(t)U 1(t), U1(0) =1, (9) 

and let U2(t) be defined by U(t)= U1(t)U2(t). 
It follows that 

dU2(t)/dt=M2(t)U2(t), U2(0) =1, (10) 

where 

M 2(t) = Ul-l(t)M2(t)U1 (t). (11) 

Since L2 is an ideal of L(E), it follows that M 2(t)EL2 
for all t in S. 

Let G1 and G2 be the two matrix groups generated 
by the exponentials of Ll and L2. Then U1(t)EG1 and 
U2(t)EG2• The group G(E) is the semidirect product 
of G1 and G2, such that G2 is a normal subgroup of 
G(E), and G1 is a subgroup of G(E) isomorphic to 
G(E)/G2• 

We thus have the result that, if the solution of (9) 
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is known, we may find M2(t); if we then solve (10), we 
have in effect obtained the solution of (E). The two 
equations (9) and (10) have associated with them 
Lie algebras L1 and L 2, which, by our assumption, are 
of lower dimensionalities than L(E). We therefore 
consider the replacement of the original equation (E) 
by Eqs. (9)-(11) a reduction of the system (E). 

7 

We next consider two special cases of the reduction 
principles of Secs. 5 and 6. 

(a) Suppose L(E) is commutative. Then L(E) is the 
direct sum of d one-dimensional Lie algebras. We have 
the well-known solution 

U(t)=exp({ dSM(S»). (12) 

(b) Suppose L(E) is solvable. As is well-known, the 
system (E) is soluble by quadrature in this case too. 
To see this we may employ the procedure of Sec. 6, or, 
much more simply, we may rely on the fact that every 
representation of a solvable Lie algebra is similar to a 
representation by triangular matrices. Hence, without 
loss of generality we may assume that M (t) is triangular 
for all t in S. Such an equation is, however, directly 
soluble by quadrature. 

8 

Consider now the general case of Eq. (E). Let L2 be 
the maximum solvable ideal of L(E). Then, by Levi's 
theorem,2 there exists a Lie sub algebra L1 of L(E) 
which is isomorphic to the quotient algebra L(E)/ L 2, 

i.e., L(E) is the semidirect sum of L1 and L2• 

Furthermore, Ll is semi-simple. 
If L2=L(E), then L1=0, and the discussion of 

Sec. 7(b) applies and the system (E) is soluble by 
quadrature. 

Suppose now that Ll~O and L2~0. The reduction 
principle of Sec. 6 applies. Notice that once the system 
(9) has been solved, the system (10) can be solved by 
quadrature, since the corresponding Lie algebra L 2, 

by the assumption that L2 is the maximum solvable 
ideal of L(E), is solvable. In solving the system (E), 
the essential problem is thus the solution of (9). The 
system (9) is distinguished by the property that the 
corresponding Lie algebra L 1, generated by the 
coefficient matrix, is semi-simple. 

It may, of course, happen that L2=0, in which case 
L(E) is semi-simple. Summarizing, we have. the res,ult 
that, given an arbitrary system (E), the mtegratlOn 
problem is either trivial (if L(E) is solvable) or else 
equivalent to the problem of integrati;n~ an a~al.ogous 
system E' with the property that L(E ) IS semI-SImple, 
and such that dim(L(E'»~dim(L(E». 

2 J. H. C. Whitehead, Proc. Cambridge Phil. Soc. 32, 229 (1936). 

It may, however, be possible to carry the reduction 
a step further. Every semi-simple Lie algebra is the 
direct sum of simple Lie algebras; therefore, if L(E') is 
not simple, we may reduce the system (E') by the 
principles of Sec. 5. We thus have the general result: 

Given an arbitrary system (E) of linear ordinary 
first-order differential equations, unless the Lie algebra 
L(E) is simple, then the problem of integrating (E) 
always can be reduced as follows: (a) If L(E) is solvable, 
then the system (E) is soluble by quadrature. (b) If L(E) 
is not solvable the problem of integrating (E) can be re­
duced to the problem of integrating a set E(l), E(2), .. " 
E(p) of systems of differential equations, each one of 
which has the property that the corresponding Lie alge­
bra L(E(k) is simple, and such thatd1+d2+·· ·+dp~d, 
where dk=dim(L(E(k)), and d=dim(L(E». In the 
particular case that p= 1 we have d1 < d. This means 
that once the solutions of the reduced systems E(k) are 
all known, the solution of (E) may be obtained by 
quadrature. 

DISCUSSION OF THE EQUATIONS OF MOTION IN 
CLASSICAL MECHANICS AND IN 

QUANTUM MECHANICS 

9 

In this part we shall consider the equations of motion 
of physical systems in the light of the theory presented 
in the preceding parts. Our aim is to emphasize a 
certain unifying point of view which is the followi~g: 
Consider a quantum mechanical system, or a claSSIcal 
system within the framework of Hamiltonian mechanics. 
The motion, or time-development, of the quantum 
mechanical system is described by a one-parameter 
family U (t) of unitary transformations defined on the 
Hilbert space of all state vectors of the system, where 
U (0) = I. The transformations U (t) are determined, 
heuristically, by an equation of motion of the for.m (E), 
with the matrix M(t) replaced by (-iH), H bemg the 
Hamiltonian. If H does not depend on the time t ex­
plicitly, we have the case regarded as "trivial" in this 
paper, namely U(t) forms a one-dimensional.continuous 
(Abelian) group such that U(t)=exp( -~tH(O». If, 
however H = H (t) does depend on the time t explicitly, 
the gro~p generated by the transformations U(t) is, 
in general, not one dimensional. It may happen, 
however that the group generated by the trans­
formati;ns U (t) is a finite dimensional Lie group .Gq , 

in which case the motion of the quantum mechamcal 
system is described by a continuous curve on Gq ; to 
every point of Gq corresponds a unique unitary trans­
formation U on the Hilbert space of states. To deter­
mine the curve on Gq we may employ the procedure 
outlined in paragraph 3, according to which we re­
formulate the original equations of motion into Eq. (5), 
where the finite dimensional matrices MR(t) are 
associated with any faithful finite dimensional rep­
resentation of the Lie algebra L of Gq, i.e., with the 
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Lie algebra generated by the operators (-iH(t)) as t 
varies on some interval S. In this manner, we may 
determine the curve on Gq and thus determine U(t) as 
a group element of Gq • The problem of determining 
how this group element acts explicitly on the Hilbert 
space still remains and is "trivial" in about the same 
sense as the solution of the equations of motion is 
"trivial" when H does not depend on the time. 
Nevertheless, something has been gained as we shall 
explain later. 

In the case of a classical Hamiltonian system, we 
have an analogous situation. The motion of the system 
may be thought of as a motion of points in phase-space, 
or as a one-parameter family of contact transformations. 
Let us denote the contact transformations by U (t); it 
is again of interest to consider the case when the 
transformations U(t) generate a finite dimensional Lie 
group Gc• If this is the case, we may, by solving an 
equation like Eq. (5), determine U(t) as a group 
element of Gc after which it remains to determine the 
explicit action of U(t) on the canonical variables, i.e., 
to find the explicit realization of Gc as a group of 
contact transformations. It should be noted that the 
above discussion is not restricted to a linear system, 
i.e., a dynamical system for which the canonical 
variables satisfy linear equations of motion. 

We may express the matter as follows: The equations 
of motion, in classical as well as in quantum mechanics, 
define a certain Lie group. If this group is finite 
dimensional, we may solve the equations of motion in 
the sense that we determine a curve on the group 
manifold by solving an equation like Eq. (5). If the 
problem of determining the explicit realization of the 
groiIp elements as transformations on all dynamical 
variables is regarded as "trivial," the essence of the 
motion is thus the curve on the group manifold. This 
is an old and well-established principle, both in classical 
and quantum mechanics. Since it is a connecting link 
between the two disciplines, we felt it worthwhile to 
state it once more. 

In view of what has been said, it is clear that the 
reduction principles formulated in paragraphs 4-8 are 
applicable to the equations of motion of a dynamical 
system, provided the Lie algebra associated with the 
equations of motion is finite dimensional. 

10 

Let us elaborate further on the equations of motion 
of a system in classical dynamics. 

The equations (E) arise naturally as the actual 
equations of motion when we consider a linear dynami­
cal system with a finite number of degrees of freedom; 
whether the system is described by a Hamiltonian or 
not is immaterial. The equations of motion may, of 
course, be inhomogeneous linear equations; if we then 
adjoin a constant to the dynamical variables we may 
achieve the homogeneous form (E). The well-known 
procedure whereby the complete solution to a system 

of inhomogeneous equations is obtained by quadrature 
in terms of the general solution of the corresponding 
homogeneous system and the "driving forces" is a 
special case of the reduction principle stated in para­
graph 6. In the particular case that the system is 
described by a Hamiltonian function, the group G(E) 
is either a subgroup of a real symplectic group (if H is 
a homogeneous quadratic function of the canonical 
coordinates and momenta), or else a subgroup of the 
semidirect product of the symplectic group with 
the translation group (if H is quadratic but not 
homogeneous) . 

Consider next a dynamical system, described by a 
Hamiltonian, and nonlinear in the sense that the 
canonical variables (qk,h) do not satisfy linear equa­
tions of motion. This does not exclude the possibility 
that we may be able to find a set of dynamical variables, 
X k , k= 1,2, .. " N, which do satisfy linear equations of 
motion. We are, of course, only interested in the case 
when this set can be determined before the Hamiltonian 
equations of motion have been integrated; otherwise 
nothing is gained by studying the variables Xk. 

Let us thus assume that a set ex of linearly in­
dependent dynamical variables X k = Xk(q,p) can be 
found such that the variables X k do not depend 
explicitly on the time t, but oaly depend on t through 
their dependence on the canonical variables (qk,Pk), 
and such that the linear vector space spanned by these 
variables is closed under the Poisson-bracket operation 
with the Hamiltonian H(q,p; t). In actual motion of 
the system, the variables X k= Xk(t) then satisfy the 
equations of motion 

d N 
-Xk(t) = [ -H(t), Xk(t)]'= L Mkn(t)Xn(t), (13) 
dt n=l 

where [, J' denotes the Poisson bracket. These equa­
tions have the solution 

N 

Xk(t)=L Ukn(t)Xn(O), (14) 
n=l 

where the matrix U (t) satisfies the equation 

dU(t)/dt=M(t)U(t); U(O) =1. (15) 

11 

Let us consider an arbitrary classical dynamical 
system described by the Hamiltonian H(q,p; t)=H(t). 
Suppose the system is such that the Lie algebra L 
generated by H(t) as t varies on some interval S, and 
where the Lie product is realized by the Poisson 
bracket, is finite dimensional of dimensionality d. Let 
U(t) denote the contact transformation which relates 
the canonical variables (qk,Pk) at time t to the canonical 
variables at time t= O. U (t) is then a curve on the 
group manifold of the finite dimensional Lie group Gc 

generated by the exponentials of L, and the differential 
equation of the curve is given by Eq. (E), interpreted 
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abstractly, provided we write M(t)= -H(t). To find 
this curve, we may solve the matrix differential 
equation (5) associated with a faithful representation 
of L, exploiting the fact that such a representation 
always exists. 

Let us select a basis Bk= Bk(q,p), k= 1, 2, "', d, of 
L where the dynamical variables Bk do not depend on 
the time t explicitly. We then may write M(t)= -H(t) 
in the form given in Eq. (1). 

A particular representation of L is the adjoint 
representation on L; the dynamical variables Bk form 
a set of variables with the properties of the set ex 
discussed in paragraph 10. By solving the correspond­
ing equations (13), we can thus obtain the time­
dependence in actual motion of the d variables Bk ; all 
()f these need however not be independent and the 
number of constants of motion obtained in this manner 
cannot exceed d but may be smaller. 

Consider again any set ex of linearly independent 
dynamical variables as in paragraph 10. The Lie 
algebra of matrices L generated by the matrices M (t) 
is a representation of the Lie algebra L; precisely 
stated L is isomorphic with the quotient algebra of L 
with respect to the ideal J consisting of all dynamical 
variables in L which have vanishing Poisson brackets 
with all the X k • If J is nonempty, the solution OCt) of 
(15) thus, under no circumstances, can give us the 
complete solution U(t) of the Hamiltonian equations. 
It should be noted, however, that in many applications 
the complete solution is not necessarily desired. 

We may express the matter as follows: We cannot, 
if we wish to obtain the complete solution, avoid 
integrating the system (E). A contact transformation 
which does not involve the time t cannot, of course, 
change the structure of L. Integrating equations like 
(15) for a set of variables ex, in effect, amounts to 
integrating the equations which arise in the reduction 

procedure described in paragraphs 4-8. A time­
dependent contact transformation on the other hand 
naturally changes the structure of L. 

12 

The situation described in paragraph 10 has its 
exact analog in quantum mechanics. The unitary 
transformations U(t) mentioned in paragraph 9 have 
an action by conjugation on all dynamical variables 
(operators); in the Heisenberg picture, U(t) describes 
the time development of the observables. If it happens 
that a finite dimensional real vector space spanned by 
the Hermitean operators Xk(t), k= 1, 2, "', N, IS 

stable under U(t), we have, in analogy with (13) 

d N 

-Xk(t) = [iH(t) , Xk(t)J=:E Mkn(t)Xn(t), (16) 
dt n=l 

which equations are solved by OCt) given by Eq. (15). 
The matrix group generated by 0 (t) is a representation 
of the group Gq generated by U(t). 

In case Gq is finite dimensional, the discussion of 
paragraph 11 applies with minor changes. In particular, 
the method in which the adjoint representation is 
exploited should be noted. This method is employed, 
for instance, when one studies the precession of a 
spinning particle in a time-dependent magnetic field; 
i.e., the solutions are obtained from the solutions of the 
"classical" equations." 
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General Perturbational Solution of the Harmonically Forced van der Pol Equation* 
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Some formal techniques for the study of nonlinear oscillations are illustrated through a development of a 
general perturbational solution of the harmonically forced van der Pol equation. These techniques provide 
for the study of perturbations of nearly linear oscillations in almost complete generality. The intricate reso­
nance problems associated with small divisors, and in this case leading to the entrainment phenomena, are 
treated with unusual ease and serve to illustrate both the versatility and the generality of the techniques. 

1. INTRODUCTION 

I N this paper, a general perturbational solution of the 
van der Pol equation 

d2x dx 
--,u(1-x2)-+x=F cos}..t (1) 
dt2 dt 

* Work sponsored by the U. S. Army Research Office, Durham, 
North Carolina. 

is obtained in the form of an asymptotic series. Typically 
the series takes the form 

x=A cos(t-W)+,uXl+,u2X2+' .. +,uNXN, (2) 

where ,u is treated as a small positive constant. The 
formal solution (2) reveals the well-known charac­
teristics of the nonlinear oscillator for small ,u including 
the entrainment of harmonic, subharmonic, and 
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abstractly, provided we write M(t)= -H(t). To find 
this curve, we may solve the matrix differential 
equation (5) associated with a faithful representation 
of L, exploiting the fact that such a representation 
always exists. 

Let us select a basis Bk= Bk(q,p), k= 1, 2, "', d, of 
L where the dynamical variables Bk do not depend on 
the time t explicitly. We then may write M(t)= -H(t) 
in the form given in Eq. (1). 

A particular representation of L is the adjoint 
representation on L; the dynamical variables Bk form 
a set of variables with the properties of the set ex 
discussed in paragraph 10. By solving the correspond­
ing equations (13), we can thus obtain the time­
dependence in actual motion of the d variables Bk ; all 
()f these need however not be independent and the 
number of constants of motion obtained in this manner 
cannot exceed d but may be smaller. 

Consider again any set ex of linearly independent 
dynamical variables as in paragraph 10. The Lie 
algebra of matrices L generated by the matrices M (t) 
is a representation of the Lie algebra L; precisely 
stated L is isomorphic with the quotient algebra of L 
with respect to the ideal J consisting of all dynamical 
variables in L which have vanishing Poisson brackets 
with all the X k • If J is nonempty, the solution OCt) of 
(15) thus, under no circumstances, can give us the 
complete solution U(t) of the Hamiltonian equations. 
It should be noted, however, that in many applications 
the complete solution is not necessarily desired. 

We may express the matter as follows: We cannot, 
if we wish to obtain the complete solution, avoid 
integrating the system (E). A contact transformation 
which does not involve the time t cannot, of course, 
change the structure of L. Integrating equations like 
(15) for a set of variables ex, in effect, amounts to 
integrating the equations which arise in the reduction 

procedure described in paragraphs 4-8. A time­
dependent contact transformation on the other hand 
naturally changes the structure of L. 

12 

The situation described in paragraph 10 has its 
exact analog in quantum mechanics. The unitary 
transformations U(t) mentioned in paragraph 9 have 
an action by conjugation on all dynamical variables 
(operators); in the Heisenberg picture, U(t) describes 
the time development of the observables. If it happens 
that a finite dimensional real vector space spanned by 
the Hermitean operators Xk(t), k= 1, 2, "', N, IS 

stable under U(t), we have, in analogy with (13) 

d N 

-Xk(t) = [iH(t) , Xk(t)J=:E Mkn(t)Xn(t), (16) 
dt n=l 

which equations are solved by OCt) given by Eq. (15). 
The matrix group generated by 0 (t) is a representation 
of the group Gq generated by U(t). 

In case Gq is finite dimensional, the discussion of 
paragraph 11 applies with minor changes. In particular, 
the method in which the adjoint representation is 
exploited should be noted. This method is employed, 
for instance, when one studies the precession of a 
spinning particle in a time-dependent magnetic field; 
i.e., the solutions are obtained from the solutions of the 
"classical" equations." 
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Some formal techniques for the study of nonlinear oscillations are illustrated through a development of a 
general perturbational solution of the harmonically forced van der Pol equation. These techniques provide 
for the study of perturbations of nearly linear oscillations in almost complete generality. The intricate reso­
nance problems associated with small divisors, and in this case leading to the entrainment phenomena, are 
treated with unusual ease and serve to illustrate both the versatility and the generality of the techniques. 

1. INTRODUCTION 

I N this paper, a general perturbational solution of the 
van der Pol equation 

d2x dx 
--,u(1-x2)-+x=F cos}..t (1) 
dt2 dt 

* Work sponsored by the U. S. Army Research Office, Durham, 
North Carolina. 

is obtained in the form of an asymptotic series. Typically 
the series takes the form 

x=A cos(t-W)+,uXl+,u2X2+' .. +,uNXN, (2) 

where ,u is treated as a small positive constant. The 
formal solution (2) reveals the well-known charac­
teristics of the nonlinear oscillator for small ,u including 
the entrainment of harmonic, subharmonic, and 
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superharmonic responses. In addition, it reveals the 
global operation of the system and the intricate 
interplay of the system parameters. 

The generality of the approach represents a departure 
from previous studiesl which have been devoted mainly 
to the analysis of periodic or almost-periodic solutions 
and their stability characteristics. These special 
solutions are of first importance in applications but 
reveal only a fraction of the total operational behavior 
of a nonlinear system. Aside from their prime im­
portance in applications, they appear to have received 
such overwhelming attention mainly due to the absence 
of any really sound and workable techniques for 
treating other cases. As a result, various formal pro­
cedures2 have been introduced in an effort to exhibit 
some of the intermediate or transient behavior. These 
formal procedures often appear to indicate genuine 
characteristics3 but are limited to what one might call 
"favorable cases". In contrast, the asymptotic method 
illustrated here provides for the study of the pertur­
bational characteristics of nearly linear oscillations in 
almost complete generality. Thus, for example, one 
may now understand the special role played by periodic 
or almost-periodic responses, for these become imbedded 
within the general solutions. The stability charac­
teristics, so important in applications, are revealed and 
all transient and intermediate behavior is exhibited. 
The basic limitation imposed by the method reflects the 
perturbational character of the results which are 
otherwise quite general. 

The techniques employed in this paper were originally 
developed for the study of the motion of artificial 
satellites.4 The application considered here serves to 
illustrate these basic techniques in another important 
area of nonlinear oscillation problems. Since our 
principal purpose is to illustrate these basic techniques, 
we have limited the discussion to those resonance 
aspects already well established. In future papers we 
shall discuss some of the more intricate resonance 
problems associated with almost-periodic forcing, 
multi-dimensional systems and related small divisor 
problems. The study here hinges mainly upon an 

appropriate treatment of the small divisor problem, 
but the situation is relatively simple owing to the 
restriction to a single degree of freedom and to a single 
input frequency. The procedure followed is related to a 
number of well-known approximate methods. However, 
it does not appear to be appropriate nor desirable in 
this preliminary, illustrative work to emphasize these 
relationships. In keeping with this view, we have 
discussed a number of results which may be found 
elsewhere and have made no special effort to single out 
new results. 

II. FREE OSCILLATIONS 

It is instructive to first illustrate some of the features 
of the method as applied to the free oscillations of (1). 
We determine the asymptotic solution (2) by the 
familiar process of successive approximations, with 
certain innovations. For ,u=O, (2) yields the elementary 
general solution x=A cos(t-w), where the amplitude A 
and phase ware arbitrary constants. For ,u~O, we shall 
permit variations in each of A and wand proceed to 
determine these variations successively to increasing 
orders in powers of ,u together with the additive correc­
tions Xl, X2, •• " XN. Thus we employ both the variation 
of parameters technique and a power series expansion 
procedure in one and the same process. There appears 
to be more degrees of freedom in our solution than the 
system (1) warrants, but this turns out to be at the 
very root of the success of the method. The extra 
degrees of freedom are needed to appropriately dis­
tribute the perturbations. The two constants of inte­
gration for the general solution are conveniently 
assigned to the variable parameters A and wand each 
of the additive corrections Xl, X2, "', XN are to be ex­
pressed uniquely in terms of A, w, and the independent 
variable t. The term A cos(t-w) of the expansion (2) 
will be referred to as the principal term. 

With F=O, we write (1) in the form 

d2x dx 
-+x= ,u(1- x2)-. 

dt2 dt 

Then if we substitute (2) in (3), there results 

(3) 

[ 
dw d

2
A (dw)2] [d2W dA dw dA] (d2Xl) 2A-+--A - cos(t-w)+ A-+2---2- sin(t-w)+,u -+Xl 

dt dt2 dt dt2 dt dt dt df2 

{ 
dw ~ ~ ~N} 

X A sin(t-w)-- A sin(t-w)+- cos(t-w)+,u-+ . .. +,uN- . 
& & & & 

(4) 

1 F<;>r recent examples, s~e J. Hale, ~n. Math. 73, 496 (19~1); L. C~sari, Ann. Math. Studies 45, 115 (1960); N. Bogoliubov and 
1. Mltropolsky, :!symptottc Methods tn .the Theo,,! of N onlmear OsctUations, Gas. Izd. Fiz. Mat., Moscow (1958); I. Malkin, 
Some Probll!"'s tn the Theory of Nonlmear OsctUatwns, AEC-Translation 3766 (1956); S. Diliberto and G. Hufford Ann .. 
Math. Studies 36, 207 (1956). ' 

: N. Minorsky, Introduction to Nonlinear Mechanics (Edwards Brothers, Inc., Ann Arbor, Michigan, 1947). 
J. Ford, J. Math. Phys. 2, 387 (1961). 

• R. Struble, Arch. Rational Mech. Anal. 7, 87 (1961). 
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If we consider only the terms through the first power in p" (4) reduces to 

[ 2A
dW + d

2
A -A (dw)2] COS(t_W)+[Ad

2W 
+/A dw _/A] Sin(t_w)+p,(d2Xl+Xl) 

dt dt2 dt dt2 dt dt dt dt2 

P, A3 dw 
= --A (4-A2) sin(t-w)+p,- sin3 (t-w) +p,A sin(t-w)-

4 4 dt 

p, dA p, dA p, dw 
+-(4-3A2) cos(t-W) ___ A2 cos3(t-w)-+-A3 sin3(t-w)-. (5) 

4 dt 4 dt 4 dt 

An examination of the explicit terms in (5) suggests the 
following distribution 

dw d2A (dW)2 p, dA 
2A-+--A - =-(4-3A2)_, 

dt dt2 dt 4 dt 

d2w dA dw dA - p,A dw 
A-+2---2-=--(4-A2)+p,A-, 

dt2 dt dt dt 4 dt 

(6) 

and 

d2Xl A3 (dW) 
-+xl=-sin3(t-w) 1--
dtZ 4 dt 

A2 dA 
-- cos3(t-w)-. (7) 

4 dt 

Equations such as in (6) will be called variational 
equations while an equation such as (7) will be called a 
perturbational equation. At any step of the process the 
variational equations are always to be associated with 
the fundamental harmonic terms cos(t-w) and sin(t-w) 
and the perturbational equation with the remaining 
nonresonant terms. 

Since we seek a solution of Eqs. (6) which is correct 
to first order in p" they may be reduced to 

2A(dw/dt)=0 

2 (dA/dt) = (p,A/4) (4-A2). 
(8) 

Equations (8) yield the well-known first approximations 

w = wo, a constant, 

(9) 

with arbitrary Wo and Ao~O. The perturbational 
equation (7) possesses the (approximate) particular 
integral 

(10) 

which is correct to first order in p" inasmuch as the 
derivatives of A and w are each of at least first order 
in p,. Thus the solution for the free oscillation to first 
mder in p, is given by the expression 

x=A cos(t-W)_p,(A3/32) sin3(t-w), 

where A and ware given by (9). Nontrivial amplitudes 
A always tend to the value 2 as t ~ 00 while A = 2 
corresponds to a stationary solution of the amplitude 
equation in (8). This is the familiar first approximation 
to the amplitude of the unique asymptotically, orbitally 
stable periodic solution of (3). 

Using (10) in (4) and retaining all terms through 
second order in p, leads to the variational system 

dw d2A (dw)2 p,2A5 p,2A (4-3A2) (4-A2) 
2A-+--A - =-+------

dt dt2 dt 128 32 

d2w dA dw dA - p,A 
A-+2---2-=--(4-A2), 

dt2 dt dt dt 4 

and the perturbational equation 

(11) 

(
d2X2 ) 9 dA 5p,2A 5 

p,2 -+X2 =p,_A2- cos3(t-w)+-- cos5(t-w) 
dt2 16 dt 128 

p,2A3 
--(14-5A2) cos3(t-w). (12) 

64 

Using (8), we may reduce the variational system to 

dA P, 
-=-A(4-A2) 
dt 8 

which retains accuracy to second order in p,. The second 
of these is as before while the first may be expressed 
in the form 

Hence 

dw p,2 p, dA 
-=-+-(4-7A2)-. 
dt 16 32A dt 

p,2 P, 7 A2 
w=wo+-t+-lnA-p,-. 

16 8 64 
(14) 

Equation (14) introduces a second-order correction in 
the fundamental frequency of the periodic solution in 
addition to a slowly varying "phase" for the nonperiodic 
solutions. The amplitude A to second order in p, is 



                                                                                                                                    

PER T U R BAT ION A L SOL UTI 0 N 0 F V AND E R POL E QUA T ION 883 

given by (9). Using (8) on the right in (12) yields 

d2x2 SA 5 A3 
-+X2=- COSS(t-W)+_(A2+8) cos3(t-w) (15) 
dt2 128 128 

which in turn leads to the expression 

SAo A3 
X2= -- cosS(t-W) __ (A2+8) cos3(t-w) (16) 

3072 1024 

for the second-order additive correction. The complete 
second-order solution is 

A3 
x=A cos(t-w)-J..'- sin3(t-w) 

32 

J..'2A3 .u2SA5 
__ (A2+8) cos3(t-w)--- cosS(t-w), (17) 

1024 3072 

where A and ware given by (9) and (14), respectively. 
Using (16) in (4) and retaining all terms through 

third order in J..' leads to the variational system 

(18) 

The amplitude of the periodic solution now appears 
as a root of the algebraic equation 

(19) 

Of course, its absolute value is very nearly equal to 2. 
In fact it can be shown5 that for O::;J..'::;O.S, the pertinent 
root A 0 of (19) satisfies the inequalities 

The third-order perturbational equation reduces to 

An 
---[lSA2+280] sinS (t-w) 
(12) (1024) 

7A7 
-- sin7(t-w) (20) 

1536 

oR. Struble and J. Fletcher, ERD-106 Tech. Memo. 7, North 
Carolina State College, Raleigh, North Carolina. 

and yields the third-order additive correction 

_A3 
x3=--[7A2_42A2+16] sin3(t-w) 

8192 

A5 
+ [1SA2+280] sinS (t-w) 

294912 
7A7 

+-- sin7(t-w). (21) 
73728 

Solutions of arbitrary order in J..' can be obtained in 
a similar manner; however, the labor involved soon 
becomes enormous. Clearly we view here an extension, 
to general solutions, of the classical Lindstedt-Poincare, 6 

procedure for the expansion of periodic solutions. In 
this instance, the procedure is equivalent to the method 
of higher approximations of Krylov and Bogoliubov.7 

The certainty with which one may recognize the 
resonant terms is a noteworthy feature of this type of 
application. 

III. FORCED OSCILLATIONS 

We now turn our attention to the forced oscillations. 
The versatility and generality of the asymptotic method 
becomes particularly evident in this type of application. 
We examine first the "soft" forced case, where the 
magnitude of the forcing term is small with J..'. Equation 
(1) is written in the form 

d2x dx 
-+x=J..'(1-x2)-+J..'k cos"At, (22) 
dt2 dt 

where J..', k, and "A are positive constants. Substituting 
the expansion (2) in (22) yields 

[ 
dw d

2
A (dW)2] [d2

W dA 
2A-+--A - cos(t-w)+ A-+2--

dt dt2 dt dt2 dt 

dw dA] (d
2Xl) X--2- sin(t-w)+J..' -+Xl + ... 

dt dt dt2 

.uA3 
X sin(t-w)+- sin3(t-w)+0(J..'2). (23) 

4 

On the right we have anticipated that the derivatives 
dAI dt and dwl dt will be first order in J..'. The distribution 
of the terms in (23) into variational equations and a 
perturbational equation is no longer a straightforward 

6 H. Poincare, Les Methodes Nouvelles de la M ecanique Celeste 
(Gauthier-Villars, Paris, 1892); A. Lindstedt, Mem. Sci. St. 
Petersbourg 31, 4 (1883). 

7 N. Krylov and N. Bogoliubov, Introduction to Nonlinear 
Mechanics (Princeton University Press, Princeton, New Jersey, 
1947). 
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matter. For if A is nearly equal to 1, the forcing term 
p.k cosAt is nearly resonant and would produce either 
a small divisor or a secular term if incorporated into the 
perturbational equation. In this case we write 

/1-k cosXt=/1-k{cos(t-w) cos[(X-1)t+w] 
-sin(t-w) sin[(X-1)t+w]} 

and in this form we may associate these terms with 
the variational equations in an obvious manner. The 
potentially small divisor or secular term is thus avoided. 
The first-order variational system for (22) becomes 

dw d
2
A (dW)2 

2A-+--A - =/1-k cos[(A-1)t+w], 
dt dt2 dt 

d2w dA dw dA 
A-+2---2-

dt2 dt dt dt 

(24) 

and the perturbational equation becomes, as in the 
unforced case, 

d2X l AS 
-+Xl=- sin3(t-w). (2S) 
dt2 4 

Each solution of the following reduced system 

dA A k 
-=/1--(4-A2)+p.- sin[(A-1)t+w], 
dt 8 A+1 

(26) 
dw k 

A-=/1-- cos[(A-1)t+w] 
dt A+1 

will satisfy (24) to first order in /1-. The system (26), 
therefore, is sufficient to depict the first-order variations 
in amplitude A and phase w for the resonant or nearly 
resonant case. We refer to this as the harmonic resonance 
case since resonance occurs with the forcing frequency 
near the frequency of the fundamental harmonic of the 
free oscillation. The perturbational equation (25) 
possesses the approximate particular integral (10). 
Thus the resonant or nearly resonant solution to 
first order in /1- is 

AS 
x=A cos(t-w)-/1-- sin3(t-w), 

32 
(27) 

as in the unforced case, where now, however, A and w 
are determined to within integration constants by (26). 
In Sec. IV we discuss the implications of the system 
(26). In particular, we find the well-known phe­
nomenon of fundamental harmonic frequency entrain­
ment displayed. 

When the forcing frequency A is sufficiently different 
from 1, we need not shift the forcing term to the varia­
tional equations. The perturbational equation is then 
written 

(28) 

and the variational equations, as for the free oscillation, 
reduce to (8). The additive correction 

k AS 
Xl=-- COSAt-- sin3(t-w) (29) 

1-A2 32 

will satisfy (28) to first order in /1- and consequently 
we may accept, as a first-order nonresonant solution, 

AS k 
x=A cos(t-w)-p.- sin3 (t-w) +p.-- COSAI, (30) 

32 1-A2 

where (nontrivial) A and ware given by (9). The 
trivial solution A = 0 of (8) here corresponds to an 
unstable periodic solution of frequency A. The solution 
(30) contains both the forced and natural frequencies 
superimposed as though the system were linear. Since 
nontrivial A -> 2, the free response generally dominates. 

Using (27) and (8) in (22) and retaining terms 
through second order in p. leads again to the variational 
system (13) and to the perturbational equation 

d2x2 SA5 AS 
-+X2=- cos5(t-w)+-(A2+8) cos3(I-w) 
df2 128 128 

Ak 
- (2-A2) sinAl 

2(1-A2) 

A2k(2+A) 
+ sin[(2+A)t-2w] 

4(1-A2) 

A2k(2-X) 
+ sin[(2-X)t-2w], (31) 

4(1-A2) 

provided there are no resonant or nearly resonant terms 
in the latter. We observe that if A is nearly equal to 3, 
however, the last term 

A2/1-k (2-A) 
---- sin[(2-X)t-2w] 

4(1-;\2) 

is nearly resonant and would introduce either a small 
divisor or a secular term in the additive correction X2. 
In Sec. V it is shown that under favorable circumstances 
this leads to the phenomenon of entrainment of the 
free response at the subharmonic frequency ;\/3. For ;\ 
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sufficiently different than 3, the second-order correction 

SA" A3 
X2= --- cos5(t-w)---(A2+8) cos3(t-w) 

3072 1024 

Ak A2k(2+X) 
---(2-A2) sinXt---------
2(1-X2)2 4(1-X)(1+X)2(X+3) 

A2k(2-X) 
Xsin[(2+X)t-2wJ--------

4(1-A)2(1+X)(X-3) 

Xsin[ (2- X)t- 2wJ 

may be accepted since it satisfies (31) to zero order in J.I.. 
Repeated iterations which determine higher-order 
approximate solutions will reveal, at each step, new 
resonant or nearly resonant possibilities. However, 
increasing orders of the coefficients tend to decrease the 
practical importance of these phenomena inasmuch 

as the resonant ranges become correspondingly, 
increasingly small. The magnitudes of the effects, 
however, at or sufficiently near resonance may be 
significant. If the magnitude of the forcing term is 
large, some of the resonance phenomena appear m 
earlier iterations. If we write (22) in the form 

dlx dx 
-+x=J.I.(1-x2)-+F cosXt, (32) 
dt2 dt 

where the coefficient of the forcing term may not be 
small, the asymptotic series takes the form 

Of course we must except values of X near 1 here. 
Using (33) in (32) results in the equation 

[
2A

dW 
+d2A -A (dW)2] COS(t_W)+[2Ad

2W
+/

A 
dw _/A] Sin(t_w)+J.I.(d2Xl+Xl)+" '+J.l.N(d

2
XN +XN) 

at at2 dt dt2 at at dt dt2 df2 

J.I. A3 X X 
= --A [2 (2- F 02) - A 2J sin (t-w )+J.I.- sin3 (t-w) +J.I.-F o[F 02- 2 (2- A2) J sinXt+J.l.F 03- sin3Xt 
444 4 

A A A2 
+J.I.-F02(1+2X) sin[(1+2X)t-wJ+J.I.-F02(1-2X) sin[(1-2X)t-wJ+J.l.Fo-(2+X) sin[(2+X)t-2wJ 
444 

where Fo=F/(1-X2). In this expansion, we observe 
three potentially resonant possibilities: X near 3, X near l 
and X near O. The first of these possibilities occurred in 
(31) while the other two did not. (They are encountered 
at a later stage of the development in the soft forced 
case.) We discuss these resonant possibilities in Sees. 
V, VI, and VII. 

H resonance is not a problem in (34), one obtains 
the variational system 

dA p,A 
-=-[2(2-F02)-A2J, dw/dt=O 
dt 8 

which possess the nontrivial solution 

or 

with w= constant. It also possesses the trivial solution 

A2 
+J.l.Fo-(2-X) sin[(2-X)t-2wJ+0(p,2), (34) 

4 

A = O. Thus if F 02> 2, A 2 tends to zero as t ---+ 00, while 
if F02<2, A2 tends to 2(2- F02) as t ---+ 00. In the former 
case the impressed force drives out the free response 
portion and the steady state is always periodic with 
frequency X, while in the latter case, the free response 
portion persists into the steady state along with the 
forced response. The steady state is then termed a 
combination oscillation. 
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FIG. 2. Unstable focus. 

IV. HARMONIC RESONANCE 

The variational system (26) may be re-expressed 
in the autonomous form 

with 

and 

da p. 
-=-(4-A2)a- (X-l)b 
dt 8 

db p. p.k 
-=-(4-A2)b+(X-l)a+-
dt 8 X+l 

a=A cos[(X-l)t+wJ 

b=A sin[(X-l)t+w]. 

(36) 

This system was originally derived by van der Pols and 
has been discussed in detail by Andronow and Witt.9 

b 

0. 

/ 

FIG. 3. Stable focus. 

8 B. van der Pol, Phil. Mag. 3, 6S (1927). 
9 A. Andronow and A. Witt, Arch. Electrotech. 24, 99 (1930). 

However, the forms treated by these investigators 
limited the application to small values of the detuning 
!(X-l)/p.!. Here Eqs. (36) apply for both large and 
small values of the detuning, though for large values, 
it is best to re-express the results in the nonresonant 
form (30). Critical points of the system (36) depict 
stationary oscillations of (22). These are periodic 
solutions of frequency X. In fact, with "(X-l)t+w" 
constant, the frequency of the fundamental term 
A cos(t-w) becomes 1- (dw/dt)=X. A critical point 
(ao,b o) satisfies the algebraic system 

i(4- Ae2)ao- [(X-l)/ p.Jbo= 0 

i(4- A o2)bo+ [ (X -1)/ p.Jao+k/ (X+ 1) = 0 

and is conveniently expressed in the form 

ao= [(1-X2)Ao2J/ p.k 

bo= [(1- X2) (4- A o2)A o2J/8p.k, 

FIG. 4. Stable node. 

where Ao2 is a positive root of the equation 

(37) 

(38) 

.. 

(39) 

The nature of a critical point is generally characterized 
by the Jacobian matrix 

( 

i(4- A o2_2ao2) 

i-X aobo 

4 4 

1:' _ a~" 1 

i(4-.U-2bo2) I 
) 

with determinant 

1 (X-l)2 A=-(4-Ao2)(4-3Ao2)+ -
64 p. 

and trace 
(40) 
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The locus ~=o is an ellipse in the [A02, (>'-l)/,uJ 
plane, interior to which, ~<o and exterior to which, 
~>o. Thus interior to the ellipse ~=o, a critical point 
is always a saddle point while exterior to the ellipse 
~=o, a critical point is a stable node or focus if n<o 
or an unstable node or focus if n>o. The stability 
characteristics of a critical point of (36) reflect the 
orbital stability characteristics of the corresponding 
periodic solution of (22). Figure 1 illustrates some of the 
well-known response curves corresponding to harmonic 
resonance. Figures 2-10 depict a variety of the possi­
bilitiesJo In Fig. 2, there is a single critical point which 
is an unstable focus. In such a case, a unique, asymp­
totically stable limit cycle forms about the critical point 
and the corresponding steady-state response of (22) 
is a combination oscillation. In Fig. 3, the single critical 
point is a stable focus and the corresponding steady­
state response depicts harmonic entrainment. In Fig. 

FIG. 5. Saddle point-stable node-unstable node. 

4, harmonic entrainment is reflected in a stable node. 
Figure 5 depicts the circumstance wherein Eq. (39) 
possesses three real roots. One critical point is a saddle 
point, one is a stable node and one is an unstable node. 
In Fig. 6, the saddle point and stable node have 
coalesced to form an interesting unstable, asymptotically 
stable critical point. In Fig. 7, the saddle point and 
unstable node have coalesced to form an unstable 
critical point. In Fig. 8, one sees a saddle point, a 
stable node and an unstable focus. In Fig. 9, the focus 
has become stable. In the latter case, there are two 
possible steady-state responses, both depicting harmonic 
entrainment. In Fig. 10, there are two stable nodes and 
a saddle point. Again there are two possible steady­
state responses depicting harmonic entrainment. 

The second-order (harmonic) resonant equations are 
obtained by substituting the first-order solution (27) 
in (22) and using (26) to evaluate the second-order 
terms involving the derivatives dA/dt, dw/dt, d2A/dfl 

10 See also reference 9. 

FIG. 6. Unstable, asymptotically stable point-unstable node. 

and d2W/dt2. Here A is assumed to be very nearly unity 
so that A -1 is treated as a first order term in ,u. When 
the terms are appropriately distributed, one obtains the 
second-order variational system 

dA ,uA ,uk ,uk(X-1) 
-=-(4-A2)+- sin<l> sin<l> 
dt 8 2 4 

,u2k 
+-(4-A2) cos<l> 

16 
( 41) 

d<l> ,uk cos<I> ,u2 A r; ,u2 A 
A-=A(X-1)+--+-+-(4-3A2)(4-A2) 

dt 2 256 128 

,u2k2 ,u2k ,uk 
+-+-(4-3A 2) sin<l>- - (X -1) cos<l> 

16A 16 4 

,u2k? ,u2k2 

--- sin2<1>+-- cos2<1>, 
16A 16A 

FIG. 7. Stable node-unstable critical point. 
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b 

FIG. 8. Saddle point-stable node-unstable focus. 

where cI>= (A -1)t+w. Of course for I-' small, the near 
solutions of (41) are qualitatively similar to those of 
the first-order system. The second-order perturbational 
equation already contains a multitude of terms and so 
we choose not to exhibit it here. The higher-order 
resonant systems may be obtained though the compu­
tational work soon becomes enormous. 

I t is, perhaps, of some interest to consider the transi­
tion from nearly resonant to nonresonant operation. 
As the detuning I (A-1)/1-'I becomes large, the opera­
tion of the system is reflected in the response curves 
of Fig. 1 which are far removed from the A02 axis. 
Unless the forcing amplitude factor k becomes corre­
spondingly large, Eq. (39) possesses a single root which 
depicts an unstable focus, very near the origin in the 
ab plane. In such a case, the stable limit cycle which 
forms about this root (see Fig. 2) expands out to, and 
becomes almost coincident with, the circle a2+b2=4. 
The period of this limit cycle is no longer large. In 
fact, the fundamental frequency is approximately A-I. 
The resulting steady-state operation given by (27) is a 
combination oscillation which is equivalent, to first 
order in 1-', to that given by (30). Of course, the phase 
variable w is markedly different in these two formu­
lations. It is readily shown that the stability 
demarcation given by (40), which is the determining 
factor in producing a steady-state combination oscil­
lation, leads, as (A-1)/.u becomes large, to that 
obtained previously for the hard forced case at the end 
of Sec. III. 

V. SUBHARMONIC RESONANCE 

Subharmonic resonance occurs for A near 3. In such 
a case, the term 

I-'Fo (A 2/4) (2-A) sin[(2-A)t-2w] 

on the right in (34) is nearly resonant. It may be 

expressed in the form 

I-'Fo(A2/4) (2-A){COS[(A-3)t+3wJ sin(t-w) 
+sin[(A-3)t+3w] cos(t-w)} 

and so introduced into the variational system. To first 
order in 1-', the latter may be reduced to 

dcI>/dt=A-3+!I-'{3FoA sincI> 

dA/dt=I-'/8[2(2-Fo2)- A2]A - il-'{3FoA2 sincI>, 
(42) 

where {3= (A-2)/(A-1) and cI>= (A-3)t+3w. With 
a=A coscI> and b=A sincI>, the system (42) may be 

b 

FIG. 9. Saddle point-stable node-stable focus. 

expressed in the form 

& I-' I-' 
-=-[2(2- F02)- A2]a- (A -3)b--{3Fo(3b2+a2) 
& 8 4 

~ I-' I-' 
-=-[2(2- Fo2)- A2]b+ (A -3)a+-/3Foab. 
& 8 2 

(43) 

Singular solutions of (42) depict stationary oscil­
lations of (32). We find them to be t subharmonic 
responses since cI>= (A-3)t+3w is constant and hence 
1-(dw/dt)=A/3. These correspond to the nontrivial 
critical points of (43). In addition (43) possesses a 
critical point at the origin. This also depicts a stationary 
oscillation of (32) but one which is a harmonic response. 
The singular solutions of (42) are given by 

where 

ao= (2/3Fo)-lC2(2-F;)-Ao2] 

bo= - (4/3/3Fo)[(A-3)/I-'], 
(44) 

(45) 
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provided 
16 (A-3)2 fJ2Fo2 __ - -- +2(2-Fo2) 

9fJ2Fo2 P. 

is positive. Thus, subharmonic entrainment may occur 
for A near 3 only if 

(46) 
-----~~~~~ 

p. 3p. 
--aobo- (A-3)--fJFobo 

4 2 

with determinant 

p.2 p.2 
~=-(2-Fo2_Ao)2_-Ao2 

16 64 

+p.2fJF{ 2(A:3 )bo2-~aoAo2] 
+p.2fJ2Fo2[boL tAo2J+ (A-3)2 (49) 

and trace 
(50) 

b 

FIG. 10. Saddle point-stable node-stable node. 

In addition, one readily obtains the equation 

d(A2)/dt= - (p.A2/4)[A2_2(2-Fo2)+2fJFoaJ (51) 

which guarantees that for A 2 large, the trajectories 
are necessarily directed inward. Thus the index of a 
large circle about the origin is necessarily + 1. Now the 
trivial solution a=b=O of (43) corresponds to the 
circums tances 

~= p.2U6 (2- F 02)2+ ((A - 3)/ p.)2] and 12= (p./2) (2- F02) , 

where 122-4d= - (A-3)2/4::;0. Thus, except for de-

and 

(47) 

The nature of a critical point (ao,bo) of the system (43), 
is generally characterized by the Jacobian matrix 

p. p. 
- -aobo+ A - 3 +-fJF obo 

4 2 

generate cases, the origin is always a focus which is 
stable for F02>2 and unstable for Fo2<2. This is in 
agreement with the conclusions drawn at the end of 
Sec. III in regard to the harmonic periodic solutions. 
The sum of the indices of the remaining critical points 
of (43) necessarily vanishes. Thus if (44) and (45) 
define two nontrivial critical points, one is a saddle 
point and one is a node or a focus. The latter turns out to 
be a stable node. Of course, the origin will be the only 
critical point if either of the inequalities (46) or (47) 
is violated. Figures 11-14 depict the various possi­
bilities. In Fig. 11, the origin is unstable and there is a 
saddle point and the stable node. The latter depicts 
subharmonic entrainment at the subharmonic A/3. In 
Fig. 12, the saddle point and node have coalesced to 
form an unstable critical point. Note that every 
nontrivial trajectory has for its positive limit set this 
unstable, asymptotically stable critical point. In this 
case the system would not exhibit a stable sub harmonic 
but the subharmonic would appear to depart and recur 
sporadically. In Fig. 13, the saddle point has coalesced 
with the origin to form an unstable critical point. 
Subharmonic entrainment is depicted by the remaining 
stable node. In Fig. 14, the saddle point has moved to 
an intermediate position between the other two singu-

b 

FIG. 11. Saddle point-stable node-unstable origin. 
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1-----'''''-;: 

FIG. 12. Unstable, asymptotically stable point-unstable origin. 

larities with the latter then stable. This depicts the 
very interesting circumstances wherein both stable sub­
harmonic and stable harmonic entrainment takes place. 
Which steady state results, of course, depends upon 
the initial values. 

Higher-order subharmonic resonance equations may 
be derived much as in the harmonic resonance case, 
but once again the computational work becomes 
enormous. 

VI. SUPERHARMONIC RESONANCE 

Superharmonic resonance occurs for X near i. In 
such a case, the term 

on the right in (34) is nearly resonant. It may be 
expressed in the form 

I-'F03(X/4){cos[(3X-l)t+w] sin (t-w) 

+sin[(3X-l)t+w] cos(t-w)} 

and so introduced into the variational system. To first 
order in 1-', the latter may be reduced to 

dw F03X 
A-=I-' sin[(3X-l)t+w] 

dt 4(3X+l) 
(52) 

F 03X 
-I-' cos[(3X-l)t+w]. 

2(3X+l) 
With 

a=A cos[(3X-l)t+w] 
and 

b=A sin[(3X-l)t+w], 

(52) may be expressed in the form 

da I-' F 03X 
-=-[2(2-F02)-A2]a- (3X-l)b-I-"--­
dt 8 4(3X+l) 

db I-' 
-= -[2 (2- F 02) - A 2]b+ (3X -1)a. 
dt 8 

(53) 

For F02<2, this system possesses exactly the same 
structure as the harmonic resonant system (36). In 
fact, a critical point (aG,bo) of (53) satisfies the algebraic 
equations 

(54) 
I-' 
-[2(2- F 02) - A 2]bo+ (3X -1)ao= 0, 
8 

and from these we obtain the response equation 

(55) 

To each positive root A02 of (55) there corresponds a 
critical point of the system (53) given by the expressions 

bo= - [4A 02 (9XL 1)]/I-'XF03 
and (56) 

These formulas parallel those of the harmonic resonance 
case. A critical point of (53) corresponds to a stationary 
oscillation of (32). However, the frequency in this case 
is readily found to be the superharmonic 3X. The 
stability of the superharmonic response is generally 

FIG. 13. Stable node-unstable origin. 
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\ 

FIG. 14. Saddle point-stable node-stable origin. 

reflected in the Jacobian matrix 

r t[2 (2 - F 0')'-A;-2bi) 
3;\-1 aobo 

J.L 4 

l 3;\-1 aobo 

4 

with determinant 

and trace 

The locus of saddle points is the interior of the ellipse 

and if Z_F02<A02 for any other critical point, it is 
certain to be stable. 

For F02>Z, the system (53) possesses exactly one 

stable critical point. In this circumstance, the free 
response portion is always entrained at the frequency 3;\. 

VII. OTHER RESONANCE PHENOMENA 

When the input frequency ;\ is small, the two terms 

(J.LAF02/4) (1+2;\) sin[(1+Z;\)t-w] 
and 

(J.LAFN4) (1-2;\) sin[(1-Z;\)t-w] 

on the right in (34) become nearly resonant. If their 
sum is expressed in the form 

(J.LAFN2) [cos2;\t sin(t-w)+Z;\ sin2;\t cos(t-w)] 

and introduced into the variational equations, the 
reduced system becomes 

dA/dt=J.L/8A[2(Z-F02)-A2]- (J.LAF02/4o) cosZ;\t (57) 

dw/ dt= (J.LF 02;\/20) sinZ;\t, 

where u=1-2;\2 and 0= (1_Z;\2)/(1-;\2). It is readily 
verified that the formulas 

A2=A.2[1- (J.LFN4;\u) sin2;\t] 
and 

w=wo- (J.LF02/40) cosZ;\t, 

where A.2 is the amplitude variation given in (35), 
yield a solution of the system (57) which is accurate 
to first order in J.L. 

In seeking higher order solutions, either in the hard 
forced case or the soft forced case, other subharmonic 
and superharmonic resonance cases are disclosed. 
These may be investigated along similar lines. In 
addition, higher-order solutions for each of the resonant 
cases encountered may be obtained. The explicit 
calculations considered in this paper cover those cases 
of practical interest and are, perhaps, a sufficient 
indication of the general procedure to be followed. 

The phase-plane solutions illustrated in the figures 
have been obtained with the aid of an analog computer. 
Except for Figs. 7-10, where the separation of the 
critical points is exaggerated, these illustrations are 
tracings of the machine drawn curves. 
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Transient Response of a Dipole Antenna * 
TAl TsuN Wu 

Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 
(Received May 11, 1961) 

The current distributed for a dipole antenna driven by a step-function voltage is found shortly after 
the switch-on of the voltage. 

A LTHOUGH many approximate methods have been 
devised to deal with the dipole antenna of finite 

length, no case has been solved exactly in a form 
appropriate for computation insofar as the author is 
aware. In this paper, the initial behavior of the transient 
response of a model of the dipole antenna is considered. 
If h is the half-length of the antenna, then for xo=ct<h 
the dipole behaves as though it were infinitely long and 
the problem can be solved exactly. The model of the 
dipole antenna which we shall adopt is a perfectly 
conducting, infinitely thin tube located at r=a, in 
our cylindrical coordinate system r, 0, x. The external 
voltage is applied at r=a, x=O: 

{
O(X) t>O, 

E ext_ 

:r; - ° t<O. 
(1) 

On the other hand, it follows from (1) that for r= a, 
A satisfies 

(a2jax2-a2jax02)A·x= -c-1o(x)0(xo). (4) 

Since G is explicitly given by 

G(r,xo) = (47rXo)-lco(r-xo), (5) 

(3) and (4) lead to the integral equation for I 

(a 2jaxL a2jaxo2) f"'dX' J"'dxo'I(X',xo') 
-00 -00 

XK(x-x', xo-xo')= -47rto-1o (x)o (xo), (6) 

where to is the characteristic impedance of free space, 
and the kernel K is 

The problem is rotationally symmetrical with respect K(x,xo) = (27rXo)-li:dOo([x2+(2asinOj2F]!-xo). (7) 
to O. " 

Let G be the retarded Green's function for the scalar 
wave equation 

(IlL a2jax02)G(r,xo) = -co(r)o(xo), (2) 

then the total current xI(x,xo) on the dipole induces 
the vector potential 

A (r,xo) = JLoi f"'dx' f"'dt' I(x',xo') (27[-)-1 

-00 -'" r2?1" 
X J

o 
de'(r-r', Xo-Xo'). 

ko - Plane 

THE CONTOUR 

FIG. 1. Projection of Co on ko plane. 

* This work was supported in part by contract. 

(3) 

Equation (6) may be solved exactly by a Fourier 
transformation with respect to both variables. In 
general, it is very hard to compute numerically the 
value of a double Fourier transform. However, in the 
present case, the double Fourier transform may be 
reduced to a single integral due to the invariance of 
(6) under the formal one-dimensional orthochronous 
Lorentz transformation 

£x=x cosh</>+xo sinh</>, 

£xo=x sinh</>+xo cosh</>. 
(8) 

To make use of this invariance, introduce a formal 
"photon mass" m>O, and consider (6) to be the limit 
as m--+ 0+ of 

(a 2jax2-a2jax02-m2) f'" dx' J"'dxo'I(X',Xo') 
-00 -00 

The Green's function g for the one-dimensional Klein­
Gordon equation 

(a2jaxLa2jaxoLm2)g(x,XO) = -o(x)o(xo) (10) 

has the representation 

g(x,Xo) = - (27r)-2 r dkdko(k02-k2-m2)-1 
J So 

Xexp[i(kx-koxo)]. (11) 
892 
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It is desired to choose the complex surface of integration 
So so that g of (11) is the retarded Green's function and 
also that So is invarient under the formal Lorentz 
transformation in the momentum space. 

£k=k coshc/>+ko sinhc/>, 

£ko=k sinhc/>+ko coshc/>. 
(12) 

Let Co be a contour where k=O and ko ranges from - 00 

to 00 with detours near ko= ±m as shown in Fig. 1. 
Note that Co is required to go through the origin in ko. 
Then a possible choice for So is: 

So: k, ko both real if \k\ > \ko\ 

So=£Co if \ko\ > \k\. 
The kernel K has the presentation 

K (x,xo) = (2'11)-2 fOO dk fOO dkoL(k ,ko) 
-00 -00 

Xexp[i(kx-koxo)], (13) 

20 r..--::; 30 
~ 

40 o 10 

a 

FIG. 2. Current distribution as a function of (X02 - x2) 1/ a. 

where 
7riHo(1)[a (koL k2)i]1 0[a(koL k2)t], 

for ko> \k\, 

50 

-7riH 0(2![a(koL k2)!]1 0[a(k02-k2)t], (14) 
L(k,ko) = for ko<- \k\, 

2K o[a(k2- k02)!]lo[a(k2-k02)!], 

for \ ko \ < \ k \ . 

Thus the solution of (9) is 

I(x,xo) = (27r)-lf dkdkoJ(k,ko) exp[i(kx-koXo)], (15) 
So 

where 

0 

0 0 0 0 0 
0 0 '2 0 ~ 0 5l N "' N <t . . ,2 . 

I 

U ~ ~ ~ 
o 10 20 30 

'/0 
40 50 

FIG. 3. Current distribution as a function of x for fixed Xo. 

As shown in the Appendix, (15) may be reduced to, 
in the limit m ~ 0+, 

for xo>x and is zero otherwise. For the purpose of 
numerical computation it may be advantageous to 
use the alternative form 

I(x,xo) 

foo dr Ko[r(x02-x2)!/a]Io(r) 

= 27r
rO-

l
Jo 7 Ko(r){[Ko(r)]2+7r2[Iocn]2}' (18) 

It is seen from (17) that, as X02_X2~ 0+, 

(19) 

For x=O, the singularity at xo=O is XO-l. This is not 
integrable and is responsible for the logarithmic 
singularity previously found for harmonic time depend­
ence at x=O.l On the other hand, in the limit X02_X2 

~ 00, various approximate techniques may be tried. 
The behavior of the integral on the right-hand side 

of (18) is shown in Fig. 2. This curve contains all the 
information about the current distribution. In partic­
ular, it is straightforward to read off the dependence of 
1 on x for various fixed values of xo. This is shown in 
Fig. 3. 

Two remarks may be added. First, the transient 
response of the dipole as found is very different from 
that of a lossy transmission line excited in the same 
manner. Secondly, the response to a rectangular pulse 
may be obtained by superimposing two oppositely 
directed step functions separated by a finite interval 
of time. 

1 T. T. Wu and R. W. P. King, J. Appl. Phys. 30, 74 (1959). 
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APPENDIX 

In order to derive (17) from (15), let the <:llrface So 
be divided into four pieces: 

(1) Reko>\k\i (2) k>\ko\i 

(3) -Reko> \k\ i and (4) -k> \ko\. 

Let h i= 1· . ·4, be the contribution to 1 of (15) from 
these four regions, respectively. With the variable 
(k02-k2)l, it may be verified that 

I.i(X,XO) = - (7rfo)-lifdf[(f2-m2) 

X 7riHo(1) (af)J o (af)J-IF i (x,xo ; f). (Al) 

In (Al), the four contours are as follows: C1 is from 0 
to 00 along the positive real axis except for an upward 
detour near f = m; C 2 and C. are both from i 00 to 0 
along the positive imaginary axis; and Ca is from 0 to 
- 00 along the negative real axis except for an upward 
detour near f= -m. The functions Fi are explicitly 

-riHO(2)[f(X02-x2)!J, 

for xo> lxi, 

F 1(x,xo; f)= 
2Ko[f(X2_X02)tJ, for x> !xo\, 
7riH 0(1) [f(X02- x2)lJ, (A2) 

for -xo>\x\, 

2Ko[fCxLX02)!J, for -x> \xo\, 

r 7riHo(I)[f(X02_X2)!J, 

for xo> lxi, 

2Ko[f(xLX02)!J+27ri10[f(x2-X02)!J, 

F2(x,xo; f)= for x> \xo\, (A3) 

7riHo(I)[f (X02_X2) tJ, 

for -xo> lxi, 

2Ko[f(x2-x02)lJ, for -x>\xo\, 

7riH 0(1) [f (X02 - x2)l J+ 27riJ o[f (X02 - ;(,..2) t], 
for xo> \x\, 

2Ko[f~x2-x02)1]+27ril 0[f(XL x02)tJ, 

for x> \xo\, 
Fa(x,xo; f)= (A4) 

7riHo(l) [f (x02- X2)!], 

for -xo>\x\, 

2K o[f (x2 - X02)t J+ 27rilo[f (x2 - x02)l J, 
for -x> \xo\, 

and r 7riHo(1)[f(x02-x2)IJ, 
for 

2Ko[f(x2-x02)!J, for 

F • (x,xo ; f) = 7riHo(l) [{" (X02_X2) tJ, 

xo> lxi, 

x> Ixo\, 

for -xo> \ x\, 
(AS) 

2Ko[f(xL X02)'J+ 27rilo[f(xL x02)lJ, 

for -x> \xol. 

From (A2)-(AS) it is seen that 11+1.=12+la=0 for 
xo<x and 11+12=la+14=0 for xo<-x. Thus 1=0 
unless xo> I x I. For xo> I x \, (A2)-(AS) give 

I (x,xo) = 2 (7rfo)-1ffdf(f2-m2)-1J o[f(xoL X2) 1] 
X [Ho(l) (af)Jo(af)J-l (A6) 

where the contour of integration is that of Fig. 1. 
Equation (17) now follows readily. 
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