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It is shown that a field is a free field as soon as the states generated by the Heisenberg field and the incoming
field operators operating on the vacuum coincide [ statement (i)]. Several conclusions are drawn from state-
ment (i) concerning the strong convergence of the field for ¢ tending to infinity [statement (ii)], the useless-
ness of the local clothed particle representation [statement (iii)], and the diagonalization of the Hamiltonian
[statement (iv)], as well as the time behavior of the mathematical vacuum [statement (v)].

I. INTRODUCTION

N this note we prove [statement (i)], under pretty
weak conditions, that a field is a free field satisfying
canonical commutation relations provided that the
states generated by the field operator and the incoming
field operator operating on the vacuum coincide. We
use throughout the formalism of Lehmann, Symanzik,
and Zimmermann. Our statement (i) is closely related
to that made recently by Federbush and Johnson.!
They gave a rigorous proof of it using powerful mathe-
matical tools. Our proof is an elementary one although
not so general as theirs (e.g., we assume the asymptotic
conditions to be valid). Qur argument is applicable also
to some nonrelativistic field theories. Our statement is
also related to the work of Greenberg? on clothed
particle representation in relativistic field theories as
well as to the theorem due to Haag.?

From the basic statement (i) some conclusions can be
drawn. It follows for instance that, for each physically
reasonable theory, the field renormalization constant
must be necessarily different from one [statement (it) ].
It follows also [statement (ii1) ] that the concept of local

* This work was supported by the National Sciences Foundation
while the author was a temporary member at the Institute.

t On leave of absence from the Institute of Theoretical Physics,
University of Wroclaw, Wroclaw, Poland.

1P, G. Federbush and K. A. Johnson, Phys. Rev. 120, 1926
(1960). See also R. Jost, Proc. Kiev Conference 1959, as well as
B. Schroer, unpublished thesis, Hamburg, 1958.

2 0. W. Greenberg, Phys. Rev. 115, 706 (1959).

3R. Haag, Kgl. Danske. Videnskab. Selskab, Mat-fys. Medd.
29, No. 12 (1955).

clothing operation (for definition see Sec. IIT B)
becomes useless in the relativistic theory even if one
uses the nonorthogonal set of asymptotic stationary
states (for definition see Van Hove!). We show also
[statement (iv)] that it may be sometimes sufficient
to find the vacuum and one particle eigenstates of the
Hamiltonian expressed in terms of the Heisenberg
operators at £=0 (in the Schrédinger picture) to achieve
complete diagonalization of this Hamiltonian. This
diagonalization of the Hamiltonian has, however, a
kinematic significance only, it does not solve the
dynamics of the problem. Finally we show [statement
(v)] that in a physically reasonable theory with inter-
action the mathematical (bare) vacuum for finite
time ¢ belongs to a different Hilbert space than the
physical vacuum.

II. THE BASIC STATEMENT

Let us consider a relativistic real scalar renormalized
field A (x) given by the formula®

1 P
1= [ eatn et tha)

— An(@)— f ai(s—y) i)y, (1)

4 L. Van Hove, Physica 21, 901 (1955); 22, 343 (1956).
5 We assume Z; ! to be finite in

(0[[a(k,xo), a* (k') 10) = (1/Z:)5 (k—K’).
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where
D= AP @) A= [
m X in X Y=
(2m3J (2Rt
X {e**am (k) +eamt (k)  (2)
with

[ain(k),aimt (k') ]=8(k—k’), otherwise 0.
ko=+ (kK2+m2)?;  krx=kx— koo
The operator j(y) accounts for the interaction of the

field 4 (x) with itself or with another field.
We assume$

Li(y:1),4(x,£)]=0. )

We assume in addition that a(k,f) converges” weakly to
ain(k) for {— — oo and that

ain+(k). . 'ain+(kn)|0>E Ikl, .. .k2>’ n=0, 1,2, -

form a complete set of eigenfunctions of the energy
momentum four-vector P, H. The normalizable physical
vacuum state |0) is defined by

aim(k)|0)=0. (4)

We assume that the physical vacuum and the one
particle states are not degenerate. The metric is positive
definite.

Under these assumptions we have

Statement (1) : If

A(%)]0)= A (x)|0), ®)

then A (x)=A4;.(x), i.e., the field under consideration
is a free field.
Proof: From

A(2)]0)=A1a(x) | 0)— f A (=) (5) | 0)dy
and (5) it follows that
i@]0)=0. (6)

On account of (3) and (5) we have
Ay, (x,8)|0)= 7 (x,5) Ain(y,2) | 0)

which vanishes because of (6). We insert now for
Ain(y,8) the expression (2) and taking into account (4)
we get

1
f dxk(zk(,)f"“‘" 9 (%) asm (k) [0)=0.

The Fourier transform with respect to y must vanish

too, viz.,
Jj(@)aut(k)|0)=j(x) | k)=0. ()

¢ Notice that if
[4 (x,2),4 (v,)1=[4 (x,6),4 () ]=0

and [4 (x %) A(y,t)] is independent of ¢, then (3) follows.

7To be more ni()rous we should consider the convergence of
integrals over the k space involving test functions and linear in
the a(k,f) rather than a(k,?) itself.
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From

A) | K)= A (@) | K)— f At (x—3) 7 (3) [ K)dy

and (7) it follows that

A (@) [k)=An ()| k). (8)
Using (3) and (8) as well as (7) we get
Ax1)jy0 k)= jy){4n® x)+4a" (%0} [k)=0.

The term A;,™|k) is either the vacuum state or it
vanishes; so we recall (6) and we are left with

)4 (x,0) | k)=0.

The Fourier transform with respect to x yields

i e k)=
Proceeding in this way we are able to show that

j(y)|k1, .- .k">=() n:l’ 2, ce
Since the set is complete it follows that:
i)=0
and the proof is accomplished on account of (1).
III. CONCLUSIONS

The following few conclusions can be drawn from
statement (i). From now on we confine ourselves to the
case of the interaction of the field with itself. The
results can be easily extended to more complexYcases.

A. The Case of Strong Convergence
Statement (i1):

Let a(k,?) and at(k,?) converge strongly to aw(k) and
am*(k), respectively, then the theory is a free field
theory.

Proof: The assumption implies

Z3=1; (9)
where?
—1—1+f c@dD); o()>0.  (10)
From (9) and (10),
o(3)=0 (11)

follows, which is equivalent with (5) or (6). From here
the statement (i) follows in virtue of statement (7).

Thus the renormalization of the field operators is
an essential feature of each physically reasonable
theory. In other words the theory becomes trivial if the
cloud effects of virtual quanta are absent.

8 H. Lehmann, Nuovo cimento 2, 342 (1954); H. Umezawa and
S. Kamefuchi, Progr. Theoret. Phys (Kyoto) 6, 543 (1951); see
also G. Kallen Helv. Phys. Acta 25, 417 (1952) and H, Lehmann
Nuovo cimento 11, 342 (1954).
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B. Uselessness of the Local Clothing Operation

The clothing operation consists in finding (in addition
to the physical vacuum) such operators® ¢*(k,0) and
¢(k,0) which operating on the physical vacuum
generate the physical one-particle states

Hct(k,0) | 0)=Fkect(k,0)|0) (12)
and destroy the vacuum
¢(k,0)|0)=0 respectively.! (13)

They satisfy also

Lt (k,0),¢+(q,0) 1= [¢c(k,0),c(q,0) ]=0.

All this is performed using the Schrédinger picture
(i.e., t=0). In addition ¢+(k,?) has to converge weakly
to ain (k) for 1— F . It is clear that the states

out

ct(k0)-- e+ (k,,0)|0) n=2,3, - (14)
do not have to be eigenfunctions of the Hamiltonian
and even do not have to be orthogonal; at least it is so
for each finite 2.4

Statement (i) discloses the trivial nature of a certain
class of the clothed particle representations, called here
for convenience the local one.! The local clothed field
is supposed to satisfy the locality condition (3). After
we replace the A field by the C field in (3) as well
as in other formulas (mulatis mutandis) we have

Statement (i1i)

Let us assume that the clothed particle field satisfies
the assumptions listed at the beginning of this note,
in particular (3), then the clothed particle field is a
free field. In other words: a physically reasonable
theory of a clothed field cannot satisfy canonical
commutation relations; moreover, it cannot be local
[in the sense of (3)] for finite time .12

C. Diagonalization of the Hamiltonian

We are going now to present a statement slightly
different from (iii), viz.,

Statement (1v):

Let us assume that the field C satisfies assumptions
listed at the beginning of this note, [in particular (3)]

9 From now on we reserve the letter 4 and ¢ for the Heisenberg
field which represent really the physical situation and which
secures the connection between Ain and Aoy fields. We call this
A field the physical field.

1, Van Hove, see reference 4; O. W. Greenberg and S. S.
Schweber, Nuovo cimento 8, 378 (1958); J. Lopuszanski, Physica
25, 745 (1959).

1t The name “local clothed field” is somewhat confusing. We
chose this word because we could not find any better name.

ta M, A, Braun and Yu. V. Novozhilov, [ J. Exptl. Theor. Phys.
39, 1317 (1960)] arrived at a similar conclusion. I am obliged to
Dr. Schweber for calling it to my attention.
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and let the field ¢(k,0) and ¢*(k,0) satisfy the relation

¢(k,0)c*(K',0)[0)= Ziﬁ (k—K')[0), (15)

and assume that the interaction Hamiltonian affects
neither the vacuum nor the one-particle states, then
the theory is a free field theory.

Proof: In Schrédinger picture the Hamiltonian reads

H{c(0)}=Z:Ho{c(0)}+H1{c(0)} = Ho{cin}.

Because of our assumption, we have

Z3Ho{c(0)}[0)=0 (16)
Z3Ho{c(0))cint (k)| 0) = Eocin* (k)| 0). )

On the other hand, from (15) it follows that
Z:Hotc(0) )t (k,0)[0)=koct(k,0) | 0). (18)

Taking into account that the one-particle spectrum is
not degenerate and Egs. (17) and (18), we get

Cin+(k) I 0>= C+(k;0) I 0) (193')
and from (16) it follows that
¢(k,0)[0)=cin(k)|0); (19b)
since
ekt (k 1y =eHict(k,0)eHt  (f-finite) (20

holds it follows from (19) that
C@)[0)=Cin(x)]0); (5)

then statement (iv) follows from statement (i) [pro-
vided that (3) holds .

Let us exhibit a certain aspect of the statement (iv).
Let us assume that we start working with the Hamil-
tonian in the Schrédinger picture expressed in terms of
the Heisenberg physical field a(k,f). The physical field
must not necessarily satisfy the canonical commutation
rules for equal time. Let us further assume that we
succeed in finding the physical vacuum and the one
particle state. This allows us to diagonalize the Hamil-
tonian in the sector of Hilbert space containing the
vacuum and the one particle states. Let us then con-
struct in a reasonable but otherwise arbitrary manner
a complete orthonormal set |ky,- - -ka,t). in the Hilbert
space in such a way that the vacuum and one particle
states are the constituants of this set. After this is
accomplished we are able to define the creation and
destruction operators ¢t(k,0) and ¢(k,0), respectively,
which in the | ). representation have the form

0 0 0 :)(0 41 0 O
1 0 0 -ll0 0 vZ 0
0 VI 0 0 0 0 3 1)
4] 0 V3 e
We have then |ki,-- kut).=combinatorial factor

X ct(ky,t) - - -ct(kn,t)|0). Since the states |). are ortho-
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normal the operators ¢t and ¢ will satisfy the canonical
commutation relations.

Statement (iv) may enable us to diagonalize the
Hamiltonian without having found ¢ explicitly. After
we found the vacuum and one particle states we just
construct on their basis the complete orthonormal set.
In terms of this set the Hamiltonian may be diagonal—
this depends on whether the C field satisfies (3). This
does not mean, however, that the scattering problem
is also solved.

To make it clear we should like to emphasize the
following: the Heisenberg ¢ field is weakly convergent
to a certain incoming field a;, (k) for £ — — . Although

(k)| 0)=c*(k,0)|0), (22)

it is not necessarily true that
amt (k)= c*(k,0).

The fields in x space built up from the a¢;n and ¢
operators, respectively, are both free fields. Both
operators generate two complete sets of eigenfunctions
of the Hamiltonian, in general, independent from each
other. They are related by an unitary transformation;
say D{amj=D{c(0)}:

it (k)= D1c(k,0)D.

D accounts for the degeneracy of the spectrum of H
for more than one particle. For instance, the scattering
operator S is an example of the D transformation.

D. On the Time Behavior of the
Mathematical Vacuum??

The statement we are going to display in this para-
graph is closely related to that of Haag,'® more precisely
to the first part of Haag’s theorem concerning the
vacuum.

We shall show that the time behavior of the vacuum
determines whether the field is free or not. To show it
we do not have to assume either that the field (Z;)}4 (x)
is related to the free field by a unitary transformation
or that both of them satisfy canonical commutation
relations for a fixed time.

We have

Statement (v):
If the state |0(#)) defined by

a(k,)|0(2))=0 (23)

exists for each finite £ and has the properties that it is (a)
invariant with respect to 3-dimensional space trans-

12 This paragraph is based on the suggestion made by Dr.
Friedrichs in a conversation.

13 See reference 3.

1 D. Hall and A. S. Wightman, Mat. fys.-Medd. Dan. Vidselsk
31, No. 5 (1957). L. Van Hove, Physica 18, 145 (1952).
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lations, and that (b)

k- ko |O()Z0 2=0,1,2, -+  (24a)

as well as
0<{0@®)|0()< o

hold, then the theory is a free field theory.

Proof: Assumption (b) means that [0(2)) is a vector
of the Hilbert space spanned on the incoming eigen-
states of the energy-momentum 4-vector. There exists
at least one operator V(¢) which transforms |0) into
|0(?)); the matrix elements of V({), e.g.,

do not vanish identically [by assumption (b)].
Assumption (a) implies that
Plo())=0. (25)
But the physical vacuum is also an eigenstate of the
vanishing 3-momentum; it is well known that there

do not exist other normalizable eigenstates of vanishing
3-momentum. Because of (24b) and (25) it must be

[0®)=N()|0) N()is a finite ¢ number, 0.

(24b)

From (23) we get
a(k,?)|0)=0.

So far all this is well known [see, e.g., reference 3.
From (1) and (2) it follows that

a(k,) [0)= ain (k) | 0)—[4/ (2m)} (2k0)*]

(26)

X f dyi(3)8(—yo)e9[0). (27)

In view of (4), (26) and (27) we get

12
f dyqeHovo f dyj(y)e=*|0)=0.

—0
We differentiate with respect to ¢ and get

f Byj(y,)e-iv[0)=0 (28)

or taking the Fourier transform of (28)
i»|0)=0. (©)

Thus we succeeded in reducing the problem to the
problem considered in statement (i) and this ac-
complishes the proof.

Conclusion

The necessary condition for a field theory with
interaction to be a physically reasonable one is that the
mathematical vacuum for finite time ¢ shall be ortho-
gonal to all physical incoming states including the
physical vacuum. The same is true for all mathematical
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states (provided that Z; is finite). In other words, the
mathematical vacuum has to belong to a different
Hilbert space than that of incoming states, both
Hilbert spaces belonging to a larger inseparable Hilbert
space. No restrictions, however, are imposed on the
field (Z3)%A4(x) to satisfy canonical commutation
relations for fixed ¢; we have to use, at any rate, a
myriotic representative of the commutation relations.

To carry through the proof of statement (v) we do
not need as much relativistic invariance of the theory.
What we need is that all quantities appearing in the
theory are functions of A(x); then the a(kz) and
at(k,t) operators appear symmetrically in the theory
mutatis mutandis. In the nonrelativistic model theories
like Lee’s or Ruijgrok-Van Hove’s model the pair
production is not taken into account which causes that
the theory is not a free field theory although [0(2))=|0).
In the first mentioned model there is in addition a lack
on crossing symmetry.

Note added in proof. A different, elegant proof of
statement (v) was suggested to me by Haag. The out-
line of the proof is as follows. One starts with

e—ik:c

a(k,)= koj;)st ———————(2”)% T %A (%)%

e A (x)
+i f dx.
zo=t (27)3(2ko)t O
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Because of (26) and
04 (x)/0xo=i[H,4 (x)]
we get
cro [ — a0
>£o=t (2m)#(2k0)? @10 .
e—zkz
—H — A (x)d3x| 0).
j;o:t (2m)4(2ko)t @10

Since the one particle states are supposed not to be
degenerate the vector

e—ikx
£0=¢ —B(Z‘/r)%(%;;A (w)d®x]0)

is a one particle eigenstate with momentum —k. Since
(5) holds we can apply statement (i).
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The problem of mapping certain domains in the space of complex four-vectors onto the space of their
inner products is solved by a novel method. The “primitive’” domains of regularity of the three and four
point Wightman functions are determined. The domains whose X-space characterization was obtained by
Streater, for the holomorphy envelope of the union of several primitive domains (both for the three and
four point function) are also determined. The corresponding problem in perturbation theory is examined,
and the analytic form of the perturbation theory boundary of the three and four point functions is obtained
by the same method. The problem of the four-point function is reduced to constructing the holomorphy
envelope of the union of three domains. It is shown that the boundary of the domain of four-point singular-
itites in perturbation theory bears no resemblance to any part of the boundary of the primitive domains,

or the domains found or conjectured by Streater.

INTRODUCTION

N this paper we solve the algebraic problems of
mapping certain domains in the space of #» complex
four vectors onto the complex space of their invariant
inner products. The background for this problem is,
very briefly, the following.

A theory of quantized fields A(Vy), B(Y3),---,
satisfying a set of fundamental postulates (positive
energy, causality, unitarity, relativistic invariance) is
completely specified by the vacuum expectation values
of products of field operators,! The latter are invariant
functions of coordinates and are called Wightman
functions, and the fundamental postulates reduce to
postulated properties of these functions. Consider the
three-point function

ABC=(A(Y1)B(Y5)C(Y3)),

and its Fourier transform
ABC:fg—i(p1X1+mX2)ABCd4X1d4X2,

with X#=V#—V#41. The postulates of positive
energy and relativistic invariance imply? that ABC is
the limit of a function of the inner products (X,X)),
regular when X is in the “extended tube” 7”. This is
defined as follows. Let X#*&T mean that ImX# is
in the forward lightcone. Then X#&T” if there exists a
complex Lorentz transformation A such that (AX,)*€ 7.
Similarly, the permuted function ACB is the limit of a
function regular in a permuted domain. The con-
sequence of causality (local commutativity of the
field operators) is that ABC and ACB are limits of
the same analytic function.! Hence the function 4BC
may be continued into the union of the two domains.
The envelope of holomorphy of these two domains may
then be computed.

* Present address: University of California, Los Angeles,
California.

! A. Wightman, Phys. Rev. 101, 860 (1956).

2 This is the Bargman-Hall-Wightman theorem. D, Hall and
A. Wightman, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
31, No. 5 (1957).

Streater’s® theorem gives this holomorphy envelope
in X space. In the first part of this paper we explain
our method in detail by deriving the boundary, in the
space of the invariants, of both the primitive domain
and Streaters holomorphy envelope.

In the case of the three-point function it turned out*
that perturbation theory examples gave a useful clue
to the problem of finding the holomorphy envelope.
We therefore rederive the form of the three-point
boundary manifolds in perturbation theory. Perturba-
tion theory leads to integral representations for the
Wightman functions. We shall assume that the reader
is familiar with these, since solving the perturbation
theory problem is not our main task. Any background
that may be needed may be found in reference 5.

In the second part of this paper we apply our methods
to the four point function. Our methods may be used
to obtain, in a simple way, the mapping in the space
of invariants of all the domains which have been
discussed in the literature. The holomorphy envelope of
the union of 4 primitive domains (not related by TCP)
is discussed in a preliminary way. It turns out that our
methods are well suited to decide whether the manifolds
thus obtained bear any resemblance to the perturbation
theory boundary. Thus, the conjecture® that the
perturbation theory boundary might be related through
simple changes of sign to the primitive boundary is
disproved. (This result has no bearing on the possibility
of a similarity of the perturbation theory boundary to
the complete 4-point function domain.)

I THE THREE-POINT FUNCTION

"In the following, a rather detailed derivation of the
domain of analyticity of the three-point function is
given. By so doing we shall be able to put the subsequent
discussion of the four-point function in a better relief.

3 R. F. Streater, Proc. Roy. Soc. (London) A256, 39 (1960).

4G. Killén and A. Wightman, Danske Videnskab Selskab,
Mat.-fys. Skr. 1, No. 6 (1958). This paper gives the first derivation
of the holomorphy envelope of the union of the three primitive
domains.

6 A, Chi-Tai Wu, University of Maryland, Physics Department
Technical Report No. 186 (July, 1960).
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The field theoretical primitive domain is derived*
in Sec. A, and extended by means of Streater’s theorem®
in B. The perturbation theory boundary manifolds are
found® in Sec. C, and compared with the field theoretical
results in D.

As parts of the following discussion are applicable
without added complication to the four-point function
(and to the five-point function) as well, it is sometimes
convenient to refrain from specialization.

A. The Primitive Domain

The algebraic problem may be described as follows.
Let X# i=1, .-+, n—1, be —1 complex four-vectors,
and a#, b# the real and imaginary parts. That is

X#=ap+1b¢#, i=1, ---, n—1. 1
The forward tube 7 is the domain defined by
Xeq, if 5220, 32>0, i=1,---,n—1, (2)
where the metric is such that
(b:b)=0"—b " —b2"—b. 3)

Let Z;j=2Z;;, ¢, j=1, -+, n—1, be a set of in(n—1)
complex numbers. Points in X space are mapped on
points in Z space by

Zi=(X.X;). @

The points X€& 7 are mapped by (4) on a subset M7
of Z space. The number of (real) dimensions of M7 is
the same as that of Z space if # <5, and then equals
n(n—1). The n®*—n—1 dimensional boundary of M7
will be denoted BMT. The problem of this section is
to be determine BM 7.

Let Z be a regular point on BMT. By this is meant
that there exists a #?*—#—1 dimensional plane which is
tangent to BMT at Z. Then there exists a vector NN,
with components N;;=N;;, normal to BMT at Z,
and such that Z+ANEMT for sufficiently small real
positive A.

If Z&BMT, and Z’EMT is in a neighborhood of Z,
then there exist complex infinitesimal four-vectors dX #
such that

Zi=(XX)), Zj=X+dX;, X;+dX;), (5)
where
dX=dar+idbs, (6)
and
(B-db 20, bS+-dbo>0. )

The projection of Z'—Z on N, with respect to a
Euclidean metric in the n(n—1) dimensional real Z
space is

(Z'=Z, N)= 3 Re{Ni*(Z:/ = Z)}
' =22 Re{N;*(X,dX,)}. (8)

8 These were first determined in reference 4.
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Here only the lowest order in dX# has been retained,
because for any Z’ not on BMT, Z may be so chosen
that (8) does not vanish. The definition of N requires
that (8) be non-negative for any dX# that satisfy (7).

The only components of dX# not left arbitrary by
(7) are (bidb;) and (f:db;), where f# is a real four-vector
in the forward lightcone. Therefore, (8) must be of
the form

(Z'=Z, N)=2 {\:i(budb))+(fidb:)} 20.  (9)

Comparing coefficients of dX# in (8) and (9) we get
Z fV{j*X]J‘= —’L.)\,'bi“—l'f{". (10)

Here f#70 only in the case that d§# is restricted by (7),
that is when 4#=0. Then ImZ;;=0, which defines a
subspace of the same dimension as BM 7. For this to be
a measurable part of BMT, all the X# j#{, must be
arbitrary.” Hence N;=0 except Ni;, and (10) reduces
to Ni*a#=—if# Thus a# is timelike and ReZ;;>0.
That this is a cut rather than a boundary proper is
seen from the fact that the sign of N;; is undetermined.
A glance at (10) also shows that this is the only kind of
cut in the domain. The \; must vanish unless (b., db.)
is restricted by (7),® that is when 42=0, and in that
case A; must be non-negative. If the right-hand side
of (10) vanishes for any #, then any variation of X#
leads to a point Z’ on BMT, which means that the
equations defining BMT do not involve X #. Hence, if
any A; vanishes we get only the n—1 point parts of
BMT. The only nontrivial part of BM 7 is that on which
all f# and no A\ vanish. It is characterized by the
existence of a unique (up to a positive factor) N;;(Z)
satisfying

n—1
Z A'Tij*XJJ‘= —iAd#, i=1,.0,m—1, (11)
=1

b.<2=0, b,‘0>0, )\,‘>0, ’i=1, ety n—1. (12)

If (11) is multiplied by X.* and summed over %, the
symmetry of N;; gives

Z )\i(a,ﬂbi"—ai"bzﬂ) =0, (13)

Equation (11) can always be solved for N.* but the
solution will be symmetric iff (13) is satisfied. Hence
(11) and (13) are equivalent. The result (13) was first
obtained by Wightman.? Even though our method of
the normal leads to a well-known result in this particular
case, its very great generality makes it a valuable tool
in more complicated situations.

7 Except, of course, that X&T.

8 This simple observation (together with the similar remark
above) constitutes a proof of the fact that of all XET, only points
on B7 can be mapped on BMT. This result was first obtained in
reference 2.

9 Appendix II of reference 4.
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Before proceeding with the task of solving these
equations in the three-point case, it is useful to discuss
the general properties of (13). As a means of showing
the close relationship of the methods of this and later
sections with those of Wightman® and others, we
give another derivation, We have already noted that
Ny; must depend on Z only; it is therefore invariant
under the complex Lorentz group. From (11) we obtain

Z Zvij*l\rkl*zjlz _Aixk (bzbk)y (14)

il

i k=1, n—1.

The left-hand sides of these equations are invariant
under any complex Lorentz transformation

X{" i (AX,)""

such that AX.,&7. Therefore, the right-hand sides
must also be invariant. In particular, taking 1=% in
(14) we see that no A must exist such that &; — &
with 5;2>0. Specializing to infinitesimal transforma-
tions this is expressed by the condition that no real
matrix B, exist such that

2 Bu(a#b—a’b#) >0, (15)
B,v

and this is equivalent to (13).

As an aid in the practical task of solving (11) or (13),
we shall prove that no more than n—1 among the
a#, b can be linearly independent. Suppose that » of
the &# are linearly independent, and let ¢ *, p=1,
-+ +4-m, be 4—m linearly independent vectors normal
to b4 Then (13) gives

Z )\i(Cp(l@‘)bi“ZO, p: 1, ety 4—m. (16)

Of these 4—m linear equations for the 6, only n—1—m
can be independent. Hence there exist

d—m)— (n—1—m)=5—n
relations of the form

> hyA(cpa)=0, o=1,--+ 5—n. 1n
D

Since A;#0, this means that 5—# linearly independent
vectors (note that 5—»n<4—m) are normal to a;* and
to b#. Therefore only 4—(5—#n)=n—1 among the
a, b# can be linearly independent; Q.E.D.

We now return to the practical task of solving (11),
(12). We could, instead, choose to solve (12), (13),
but without gaining in simplicity.

There is always a set of real Lorentz transformations
A; such that

X#= (AKX,
Xtﬁ: {%(’i+wi)7 %(’i—wi)7 Siy ti}y

(18)
(19)

10 Unpublished work, especially by R. Jost.
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with real s; and ¢;. Points in the forward tube are

XeT iff Imw,>0, Imr;>0, (20)
and 52=0 is the same as
Imr;=0. (21)

In this way the $n#(»—1) inner products are expressible
in terms of »—1 complex numbers and a set of real
parameters. The complex numbers may conveniently
be eliminated by the relations Z;;= (X.X,)= (X.X.),
which give

W= fi_l (Zi,'+sqj2+ti2). (22)
The w, are arbitrary except for (20), or
r; ImZ;;>0. (23)

It will turn out that (11) implies conditions on the
real parameters only.

In the three-point case it is convenient to distinguish
the case of 4:* and by* parallel (which gives the S curve)
and b5:* not parallel to b2* (which gives the Fs curve).

Parallel by and b,.

In this case a Lorentz frame exists in which, on the
boundary,

Xi:{%(ri—‘_wi)a %(ri—wi)) 07 0}, 1= 17 2. (24)

Putting the last two components equal to zero is
possible because we have proved that only two among
the four vectors a#, b# are linearly independent.
Equation (11) now reduces to four equations, of which
two are homogeneous and give

1, k 71
v L) e @)

k, k? 72

and the two inhomogeneous equations are
p(w1+kw2) = —’lz)\1 Imw1= _'1:)\2k—1 Imws. (26)

From (24) we find Zis=7ryws~+r.w;. Eliminating w; by

means of (22) [with s;=t,=0], we obtain
SZ Z11+2kZ12+k2Z22=0. (27)

The restriction to positive A; in (26) gives the relevance
condition

ImZ;; ImZ,, <0, (28)
and when this is compared with (23);
k>0. (29)

The results (27), (28), and (29) are identical to those
of Killén and Wightman.*

Nonparallel by and bs.

In this case a Lorentz frame exists such that the
space parts of b* and ¢ are antiparallel, and on the
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boundary
Xi={}(r+w), (=) §(ri—wy), 0,0}, i=12. (30)
Instead of (25) and (26) we now find
‘\/Yij*zp(rzm, o ) Coy=ri7, (31)
-, "nw
vp(wiws—y)= —ihir1 Imw, = —ihors Imaw,.  (32)
Eliminating w; as above we get
F: ZuZyw—2vZ;,+v*=0. (33)
Positive A; and A in (32) means
ImZy; ImZ2,>0; (34)
and when this is compared with (23),
v>0. (35)

The results (33)-(35) are identical to those of Killén
and Wightman.*

We end this section by giving some compact expres-
sions for N;. If (27) and (33) be solved for % and v, we
may write

N*= -—’I;ké(Zn)ak/aZﬁ, k=— [Zm:t (—D)%]/Zzg (36)
on the S curve, and
Ni,-*= —-ie(Zu_)a'y/BZ,-,-, "‘/=212:!:(—D)% (37)

on the Fy; curve. Here €¢(Z;,) is the sign of ImZ;, and
Dis the determinant of the matrix Z;;. Introducing (36)
into (8) we get

(Z'—Z, N)=3 Re{Ni*dZ:;} = ke(Z1)) Imdk, (38)
if

which shows that the allowed side of the § curve is
that on which

ke(Z1) Imk>0. (39)
Similarly, the allowed side of the Fi; curve is

B. Analytic Completion

Up to now we have explored the analyticity in
x space which follows from the positiveness of the
energy of a complete set of states. This domain may
be considerably enlarged by using local commutativity
of the field operators. The consequence of local com-
mutativity is the following.! Let

Xp=VF—V " (41)

Then, to the primitive domain must be added all
domains which may be obtained by applying a permuta-
tion to the # complex four-vectors ¥ *.

It happens that the Z-space domain obtained in this
way is not a natural domain of holomorphy. We are
therefore confronted with the very difficult task of
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computing the holomorphy envelope. Fortunately,
Streater® has found a shortcut to part of the answer.
The Streater theorem, which is based on Dyson’s
integral representation! is this.

Theorem A.* The holomorphy envelope of the union
of the two domains

tcy Yn—l— Yn, Yn'_ Yn+l E TI (42)
and
sy, Yn—l_ Yn+1, Yn+1— Yn E T, (43)
is the domain
Tty Yn——l_ Yn, Yn—l— Yn+1 E Tl; (44)
less the cut
(Vu— ¥ ny1)*=real positive. (45)

Here 7" is the extended tube, or the inverse image of
MT.

The application of this to the three-point case is
straightforward. The three primitive domains are

X, X, €7, =X ,Xi+X.€ 7,
X+ Xo—Xo € T, (46)

Streater’s theorem says that the holomorphy envelope
of the union of these domains is not smaller than the
union of the domains

leX1+X2 E T,) —XI:XZ E T,!
Xi+X,Xo € 77 (47)

less the X%, Xo* and (X ;4 X,)? cuts. Hence part of the
analytic completion is accomplished by replacing each
of the primitive domains by a “secondary domain.”
One such domain is

{— X1, Xo€T )X+ X.E77); (48)

the others are obtained by applying a permutation of
the Y # to (48).

The boundary of the secondary domain is easily
determined. It contains, of course, the three cuts. To
obtain the three-point part of the boundary we have
only to reverse the sign of Imw, in (20). Then (23) is
replaced by

7 ImZu <O, 72 ImZ22>0. (49)

Now (23) was used to obtain (29) and (35). Using (49)
instead we get 2<0 and v <0. With negative £ and v,
(27) and (33) become the S’ and Fy,' curves of Wight-
man and Killén 4

If we construct the union of the three secondary
domains we get a domain that is bounded by the cuts
and by the three F;;’ curves:

ZZiAv(Zh—Z:—~Z)+7*=0, 0>y>—c. (50)
Here 4, 4, % is a cyclic permutation of 1, 2, 3, and
Zi=Zy, 1=1,2,
- Zy= (X1+Xo)=Zu+2Z19+Zs.
L F. J. Dyson, Phys. Rev. 110, 1460 (1958).

(1)
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This domain is only slightly smaller than the holo-
morphy envelope.”?

C. Perturbation Theory

The algebraic problem is the following!®: Let V#
be # complex four-vectors,!* satisfying

Vi=e;20, i=1,--- n, (52)
[(¥V:¥)|=0. (53)
Let n—1 complex four-vectors be defined by
X.“= Yﬁ"—yi.*.l", ’L=1, "',%—1, (54)
and let
Zi= (XX 3). (55)

Conditions (52), (53) define a manifold D in ¥ space,
which is mapped on the domain MD in Z space by
(54), (55). This latter domain is of #(#—1) real dimen-
sions. It is bounded by BMD, which is a manifold of
n?—n—1 real dimensions. We shall determine the
analytical form of the equations which define BMD.

On a point on the boundary in Z space there exists
a complex symmetric matrix N;;(Z), unique up to a
real (positive except on cuts) factor, with the property
that

n—1 n—1
02Re{ 3. Ni*dZ;j}=2 Re{ 2. Ni*(X;dX,)}, (56)

i,7=1 1,7=1

for all infinitesimal dX#=dY#—d¥ . * such that
(52) and (53) are preserved under the transformation
YVi#— Ve4+dV# This definition of Ny is entirely
analogous to that of Sec. A.

Because (52) and (53) are conditions on ¥ # rather
than on X # it is convenient to re-express (56) in terms
of dV #. Then we get

02Re{ 2° M.*(YdY5)}, (57)
2,7=1
where M ; is related to NV;; and satisfies
> M;=0. (58)

=1

Preservation of (53) does not impose any restriction on
dY # that is relevant for the discussion of (57), but (52)

2 What remains to be done is to continue through some of the
‘“corners” formed by the F;;’ curves to the § curve of reference 4.
Our inability to do this by means of integral representations is
due to the difficulty of incorporating the Jacobi identity into the
Streater representation for the double commutator.

B As explained in the introduction we treat only that part of the
perturbation theory problem which is essential for our applica-
tions. The reader is referred to reference 3 for an introduction and
what is, in some respects, a broader treatment.

4 The Y;* and X;* of this section are introduced as a set of
parameters, in terms of which the singularity domain can be
defined. They should not be interpreted as spacetime coordinates,
although it will be shown later that the X;* may be so interpreted
without error.
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implies that
(Y A4Y,) are real, and if ¥ 2=0, positive.  (59)

Because of the particular importance of the case ¥ 2=0,
we shall introduce a positive integer m defined by

Y2=0a;>0, (60)
Y2=0, m+1<i<n. (61)

We proceed as with the solution of (7), (8), to find
that the solution of (57), (59) is

i<m,

Z M,-;*Y,J‘=—u;Y,J‘, (62)

]
Rew,=0, i=1,---,m, (63)
20, i=m+1,---,n (64)

When N;; and X# are reintroduced, (62) and (58)
become!®

n—1 i
Z N,’j*Xj“—:— Z Mkyk“, 1=1, ..

> z -, m—1, (65)
= -
kf,_l Y ir=0, (66)

The existence of a solution of (62), and therefore of
(65), (66), is guaranteed by (53). Our problem is
therefore reduced to writing down the conditions on
Y # which are necessary and sufficient for N,;(Z) to be
determined up to a real positive factor by (63)-(66).
This approach to the problem is closely analogous to
that suggested following (13) for solving (8).

Because of the formal covariance of Egs. (63)-(66)
under complex Lorentz transformations, the uniqueness
of N;;is simply the requirement that

(i) No complex vector y* exist such that ¥V #+y*& D,
i.e., such that ¥V #— V. #+9* preserve (52), (53).

(ii) The #; be determined up to a real positive
common factor by (63), (64), (66).

(iii) The X# be linearly independent. The first
condition insures that the X# determine the Y #&D,
the second that ¥ # determine the ;. Together these
conditions ensure that the right-hand sides of (65) be
expressible in terms of X #. The third requirements says
that (65) be solvable, giving N,; as unique functions of
X#, and hence because of invariance, as unique
functions of X;; (up to a real positive factor).

When condition (iii) is satisfied, (53) is preserved
only if y* lies in the (#—1)-dimensional complex space
spanned by the # ¥ *. In the following we may therefore
treat ¥# and y* as complex (»—1)-vectors.

Condition (i) requires the nonexistence of a complex

16 Tt is interesting to notice that (66) implies (53). Thus the
same boundary would have been obtained without imposing (53)
in the first place.
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vector y* that satisfy
(Yi4y)=r;20, r;real (67)

This condition, being nonlinear in y*, is very difficult to
handle, and we shall be content to explore the conse-
quences of the weaker condition:

(i") No complex vector y* exist such that

Re(Yy) 20, i>m, (69)
y*=real and positive. (70)

Another way to say this is that we consider only
solutions of (67) such that py* is a solution when
y* is, p being an arbitrary positive number. In this way
the problem is, essentially, reduced to a linear one.

It is now necessary to go back to (64), and to prove
that Reu;, for ¢>m, can vanish only on a non-measur-
able part of BMD. First note that the manifold on
which |(¥;¥;)|=0, and all ¥?=0, that is the case
m=0, is mapped on a manifold in Z space of real
dimension #*—n—2. Since the real dimension of BMD
is n2—mn— 1, the case m=0 can henceforth be neglected.
For m>0, the real dimension of the mapping in Z
space of the manifold defined by (53) and (60)-(64) is
exactly (n2—n)+m—2— (m—1)=n*—n—1. The sub-
manifold on which one of Rew;, i>m, vanishes, is of
one lower dimension, and does not, therefore, make up
a measurable part of BMD.

Now, if we multiply (68) or (69) by ;, sum over 1,
and compare with (63), (64), and (66), we find that
(68), (69) can have no solution, except possibly with
all equalities in (69). Actually the existence of u; is
even more closely connected with that of y*. In fact,
if m>0, the existence of #; is equivalent to (a) the
nonexistence of any solution of (68), (69) with inequal-
ities and (b) the existence of a m—1 parameter family
of solutions with equalities. We next show that if
m>3, then a member of this family can be found
that satisfies (70), which means that this case does not
give any part of the boundary.

Every member of the m—1 parameter family of
solutions just referred to may be represented by a
point in the 42 plane. The aggregate of points in the »?
plane which represents solutions will be referred to as
the allowed part of the 32 plane. What we have to prove
is that this allowed part includes part of the real positive
axis, when m 2> 3. First we note that the allowed part
is a domain. In fact, if m >3, the family of solutions
contains, in general, m—1 22 independent parameters.
The mapping onto the 3* plane therefore gives a
two-dimensional manifold, except in very special
degenerate cases. Indeed, the condition that the allowed
part of the y* plane be of dimension less than 2 is
equivalent to imposing m—2 new conditions on the
Z.;, which cannot be satisfied on a measurable part of
BMD.
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Next we show that the allowed part, in the cases in
which it is a domain, is the whole 3? plane. Indeed, if it
were not, it would have a boundary, on which a complex
number N (¥?) could be defined, with the significance of
a normal, which would be determined up to a real
positive factor by

Re{N*(ydy)} 20, (711)

for any dy* such that y*+dy* belongs to the family of
solutions. The condition on dy* is

(dyY)=real, and zero for i>m.

(72)

Whatever y*7#0, the sign of dy* is not restricted. Hence
the sign of N is not defined, contrary to the assumption.
Therefore, no boundary exists, and the allowed part of
the »? plane includes the real axis. Therefore the cases
m>3 do not contribute to the boundary. This result
was known? for =3, and conjectured as well as made
plausible® for n=4.

We have thus seen that only the cases m=1and m=2
are interesting. As we have replaced condition (i) by
the weaker condition (i) we do not know what part, if
any, of these two manifolds make up BMD. We also
do not know what part of BM D constitutes the bound-
ary of the singularity domain.'* Nevertheless, we
proceed to write down the analytical equations for the
“one-mass” (m=1) and “two-mass” (m=2) manifolds,
hoping that their form might give useful hints in the
problem of finding the holomorphy envelope of the
field theory domain.

The one-mass manifold is trivially written down. All
we have to do is to write down (53) in terms of Z;,
using (54), (55), (60), and (61). Then we have to
calculate u;, in order to impose condition (64). To
obtain the two-mass manifold we impose the reality
of #1/us=p, and eliminate the other #; from (66).
Writing the result in terms of Z;;, using (34), (55), (60),
and (61), we end up with two equations involving the
three real numbers a1, as, and p. In this case too, the
u; must be explicitly calculated, in order to impose
condition (64). Carrying out this program, we specialize
to the case n=3. .

It is convenient to introduce, rather than the Z;
defined by (55), the Z;, i=1, 2, 3, defined by (51).
Then the solution of (66) for the #; is, with ¥ 2= g,=0,

ur —20:(Zs—a3)— (Z1~a2) (Z2—a:—a3)

;—3= iy . (73)
Uy Z3—as
w e 7
Inserting this into (66) we get
a3(Z1— a2)*+ (Zs— a2—a3) (Z1—a2) (Z3—as)
+as(Z3—a3)?=0. (75)

16 What we do know, from reference 3, is that the singularity
domain is bounded by cuts and by part of BMD.
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We obtain a one-mass manifold simply by putting
a3;=0, which gives either Z3=0 or

21Z2+(12(Z3—Z1—Zz)+l122=0, (76)
which is just the Fio' curve. Of course the other F,;
curves are obtained by puting either a;=a:=0 or
as=a3;=0. The “relevance criterion” (64) reduces to,
using (76),

Ile IrnZ2>0, (77)
which is just the relevance criterion (34) for the Fy»'
curve.

The two-mass manifold, on the other hand, is
obtained by leaving ¢» and a3 nonzero in (73)-(75), and
imposing #s/us=p=real:

(Za—ag)+p(Z1—dz)=0. (78)
Inserting this result into (75) we get
Zy=(as+pas)(1+p77). (79)

Since only two real parameters, namely p and (a5 pa2)
are involved in (78), (79), we have the surprising result
that the two-mass manifold is four-dimensional, and
therefore it does not contribute to the boundary
(nr—n—1=5).

The over-all results of this section are (a) only two
kinds of manifolds, the m=1 and the m= 2 manifolds,
«contribute to the perturbation theory boundary, and
(b) in the special case n=3, we find that the m=2
manifold is degenerate.

D. Comparison

In the particular case =3 we were lucky to discover
immediately that the two-mass manifolds are the same
as those encountered in the field theoretical problem.
For higher values of # we are less fortunate. On the
other hand it is very difficult, from the parametrized
equation for two surfaces, to prove that they are
distinct. In this section we therefore compare the
surfaces obtained in Secs. (A) and (B) with those of
Sec. (C), by trying to identify the respective normals
N ije

Suppose that a point in Z;; space is on the perturba-
tion theory boundary. We want to determine under
what circumstances this boundary is tangent to the
field theoretical boundary at that point. If that is the
case, we have two alternative definitions of the normal,
namely!?

n—~1 i
Z N,‘j*Xj"‘= - z Y= —1i\; Im X #, (80)
=l k=1

17 Here we made a seemingly unwarranted indentification of
the X; of Secs. A and B with the X; of Sec. C.** That this can be
justified is shown in Part II, Sec. D.
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where
> wYV*=0, Reu;>0 if V2=0, (81)
=1
Y220, Reu;=0 if V32>0,
A>0, (ImX,)?=0. (82)

The most obvious consequences of (80)—(82) are the
following ; assuming all #;0:

Y=Y,2=0,
ImY#=0 if ¥2>0.

(83)
(84)

When n=3, (83) means that we are on the one-mass
manifold, while (84) can always be made to hold by
applying a complex Lorentz transformation. We next
find

u22 Y2 = 2)\1)\2(1le, Isz) (85)

On the S curve, the right-hand side vanishes, and we
would have (¥,;¥;)=0. On the F curve, the right-hand
side is positive, while the left-hand side is negative.
But on the F’ curve, both sides of (85) are negative.
Using (84), and!? X*=V #— ¥V ;. (80) reduces to

M Reuy'=7; Reus'=1. (86)

Hence we have the expected result, that the boundary
of perturbation theory agrees with the boundary of the
secondary domain when they are both relevant,

II. THE FOUR-POINT FUNCTION

In the following we rely heavily on Part I to apply
our methods to the four-point function. In order to
minimize the inconvenience caused by the necessity of
frequent references, this part is organized along the
same lines as the foregoing: (A) the primitive domain,
(B) analytic completion, (C) perturbation theory, and
(D) comparison.

A. The Primitive Domain

The discussion of Part I needs no modification up to
Eq. (23). We note that it was proved that only #n—1=3
among the 6 vectors a#=ReX# b+ =ImX# can be
linearly independent at a point that is mapped on the
boundary BM T in Z space.

We must distinguish three cases, according to
whether the 4# are colinear, coplanar, or neither. In
the following, we discuss the last possibility only. A
parallel treatment of the other two cases leads quickly
to the conclusion that manifolds of too low dimensions
are obtained.

There exists a Lorentz frame such that, on the
boundary,

X#={3(ritwy), 3(ri—w), 51, t},
Xo#={3(r2tws), ta, 3(ra—w2), 52},
X#={3(rs-tws), s3, b, 3(rs—w3)}.

(87)
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The condition that only 3 among the 6 vectors ReX #
ImX# be linearly independent is that the vector
{1, —1, —1, —1}, which is normal to the imaginary
parts, be normal to the real parts as well, that is

1’5+Si+i7;=0. (88)

In analogy with the 3-point case we see that (11)
reduces'®* to 6 homogeneous and 3 inhomogeneous
equations for the six N;*. A novel feature, however, is
that the six homogeneous equations are not automat-
ically solvable. We therefore get new conditions on the
parameters by setting the secular determinant equal
to zero. Notice that, because of (88), (87) contains only
12 real parameters. Since the dimension of BMT is 11,
only one more real condition can be imposed. Therefore,
the vanishing of the determinant must be an identity
in the w;. If we calculate, e.g., the highest power of w;,
we find that it is

W W3 (518283— tltgta). (89)
We impose the condition
515283= lltgts, (90)

and find that a solution of the 6 homogeneous equations
then exists, giving all the V;* up to a common complex
factor p. Inserting this result into the three inhomo-
geneous equations, we find that Ai/A2 and Az/A; are
real, as they must be, and that they are positive iff
(assuming Imw,>0)

si;>0, ()= (12), (23), (31). &2y

Using (87) we may write down expressions for
Z;;i=(X,X;). The diagonal elements may be solved
for w; [Eq. (22)], and used to eliminate w; from the
three off-diagonal elements. In this way we obtain
the following three complex equations, involving five
independent real parameters [ (17)=(12), (23), (31)]:

4 (S¢+ t,;) (Sj+ tj) [Zij— til‘/j— 88— Sitj"}- tiSj:]

— (Zut22)(Z;i+252)=0, (92)
S15283= lilals. (93)
The “relevance conditions” (23) become
(Srl‘ti) ImZ“<0, = 1, 2, 3. (94)
An interesting form of (92) is
257 [Ziit2kiZit ki Z54]
+[Z:iZii—2viZii+vi#]1=0, (95)
where
kij=—ti/si, vi=2(sisittititsis),
(i5)=(12), (23), 31). (96)

Results equivalent to these were first obtained by Jost.!?

18 Tn this case it would be simpler to solve (13).
¥ R. Jost, to be published in the Proceedings of the Naples
Conference, 1959.
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The particular form (95) was first written down by
Kleitman.®

In addition to the cuts and the four-point boundary
that has just been determined, we obtain the three-point
boundary by setting any one of the X\; equal to zero.
The result is the following set of S curves and F; curves:

Z,:i+2k¢jZij+k,-]2ij=0, k,;j>0, (97)
ZiZii— 252 5+v:i2=0, ~v4>0. (98)
Here 4, is1,20r 2,3 or 3, 1.

B. Analytic Completion

There are 24 Wightman four-point functions, but
only 12 distinct primitive domins. These may be
divided into three groups of four domains each, such
that Streater’s theorem is applicable to four pairs of
domains within each group, but not to any pair of
domains from different groups. One such group consists
of the following four domains

ABCD: Y=V, YoV, Vi;=V,E7",
BACD: Y-V, Y=V, V;—YV.€7
ABDC: Y,—Y, Yo=YV, V~V,C 7" (99)
BADC: Y=YV, Vi—V, V.~V

Streater’s theorem may be applied to, e.g., the first
two and to the last two, to give

EH.{ABCD\JBACD}={Y1—Y3, Vo753,

Vi—Y, € TY{V1—Y.E T}, (100)
EH{ABDCUBADC} = { Y1— Y4, Yg— Y4,
Vi—V.: E TYN{Y~YV. € 77}, (101)

Each of these domains will be called a secondary
domain. As in the three-point case, a secondary domain
is the envelope of holomorphy of two primitive domains.

The boundary of (100) may easily be determined.
Except for the (Y1—Y2)? cut it may be obtained from
the boundary of the primitive domain by means of the
substitution X~ X#+Xs#. I we introduce the

notation
ZiZZﬁ:XB, 1:=1,2,3,
X4= (X1+X2)2, Z5= (X2+X3)27
Zg= X1+ X+ X532, (102)
the curves (98) become
ZiZotv12(Z1—Zo—Za)F712=0, v12>0, (103)
ZoZ3—v23(Zy—Zo—Z3)+v22=0, 7v2>0, (104)
ZZs v (Ze—Zs—Z)+va=0, vu>0. (105)

These are all; except for the minus sign in (104),
part of the corresponding perturbation theory boundary
manifolds. From (97) are obtained, in a like manner,

2 G, Killen, Lecture notes of the summer school at Les Houches,
1960
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two .S’ curves and one S curve, and the modified form
of (95) may immediately be written down.

Streater® has also succeeded in finding a characteriza-
tion of the “quartic domain” which is the holomorphy
envelope of the union of the four primitive domains
(99).

Theorem B2 The envelope of holomorphy of the
union of the four domains (99) is the domain

Ur(X1, X2, X)) {XETHN{XET',

where U, is the common domain of analyticity of all
functions

(106)

i(p+X1tg - Xotr-X3)

f(p.ar)
Xdipdigd'r,

F(Xl,X21X3)=f
(107)

whose Fourier transforms f(p,q,r) vanishes unless
g>p>0, ¢>r>0.

Here p>0 means pEV, the forward lightcone.

In order to determine U.(X1,X2X3), write the
exponential in (107) in terms of (¢—p), (¢g—7), p, and r.
The most general form is

p-Xitq Xotr- Xo=(g—p) X+ (g—7) (Xo:—X)
+p(X i+ X)+r (X X5—X),
X“=a1X1“+a2X2“+a3X3“.

Writing s#=g*— p¥, ##=g*—r*, (107) becomes

(108)

(109)

F(Xl,XQ,X3)=feXP{'LI:SX+t' (X2’—X)+p (X1+X)

(110)
(111)

+r (Xo+-Xs— X))} f(pyr,5,D)d*pdrd*sd*t,
I (s )= f(p, r+t, No(s—i+p—r).

The function F(X1,X2,X3) is analytic if X* can be
chosen such that the coefficients of s, £, p, r in (110)
all lie in the future tube. We call this domain Uy':

X.EU,(X1,X2,X;) iff there exists an X, such that
X, X:—X, Xi+X, X +X:—XE& 7.
(112)
Since f'(p,r,s,t) is not the most general function of the
four arguments, F(X1,XX;) may be regular in a
larger domain, and we can only conclude that U JCU,

and hence that the envelope of holomorphy of the four
domains (99) is bigger than or equal to

U/ (X1, X2, X)X ETIN{XET').

There are two domains that can be obtained from (113)
by permutations, namely

Uy (X1, X5, X)) U X1+ XS T XoHXET'), (114)
Us' (X1, X2, X)X ETMN{X 1+ X+ X T}, (115)

(113)
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where U," and U;' may be defined in a manner similar
to (112):
X.,E U, iff there exists an X, such that
X, =X,—X, Xi+X.+X, X;—-XE T,
(116)
X,& Uy iff there exists an X, such that
X, —Xo—X;—X, Xi+Xo+Xs+X,
-X;-Xe&7.

(117)

The problem of computing the envelope of holomorphy
of the union of the 12 primitive domains is now reduced
to finding the envelope of holomorphy of the union of
(113)-(115). We shall content ourselves with showing
how the boundary of (112), say, may be found.

The method of the normal is easily adaptable to
finding the mapping of U, directly, without explicitly
calculating Uy'. The procedure is exactly analogous
to the treatment of (56). Writing «, x;, for the imaginary
parts of X, X, we find at once

’L'A’Tlin: f1”+0'1(x1+x)ﬂy

iNg X #= f1"+f2"+¢71(x1+x)“+a2x“,

iN X #= fir+ f#— [t ot x) ot — a3 (xe— 1)
= fetas(xataz—x)~ (118)

Here f# are real vectors in 7, and f#=0 unless the

coefficient of ¢; vanishes. The ¢; vanish unless their

respective coefficients are lightlike. The solution of (118)

is straightforward. Explicit results will be published

elsewhere.

Before ending this section we mention that Streater®
has proposed that the following theorems might hold:

Theorem C (conjectured).” The envelope of holo-
morphy of the union of the domains 4BCD, ABDC,
ACDB, and ADCB is

{X1, X1+ Xo, X1+ X+ X € T')
X, Xo4- X € TIN{X € 773 (119)
Theorem D (conjectured).® The envelope of holo-
morphy of the union of the domains 4 BCD and BDCA
is
{X17 X1+X2y X33 X1+X2+X3 E T’}
M{Xs, Xo+-X: & 77, (120)
The boundaries of (119) and (120) are easily deter-

mined by our methods. Thus to find the boundary of
(120) we would consider

Z A’Vij*Xj"= —‘i)\lbl”‘—’ﬁ\z(blﬂ‘f'bz“)—‘Z.)\;;(bl“‘f‘bz"—f‘ba”),

1
> N Xj#= —iha(by*+-b2) — ihs (bsH4-bo*+bsH),
7

2 N X 4= — g (b1*+ by 4-b3*) — ihsbs*.

i

(121)

21 R, F. Streater, Nuovo cimento 15, 937 (1960).
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C. Perturbation Theory

First a word about the three-point parts of the four-
point boundary. These are obtained by setting one of
the #; equal to zero. Suppose #,=0; then the right-hand
side of (65), and @ fortiori the left-hand side, become
independent of ¥¢. The problem then reduces to that
of a three-point function depending on V¥, V¢, and
V3. The interesting point is that one obtains no F;/
curve such that X#, X# are conjugate X variables,
but all the others. This selectivity mirrors that of
other sources of singularity of the four-point function
in perturbation theory. In this particular respect the
perturbation theory boundary agrees with the bound-
aries of the quartic domains (113)-(115).

Turning now to the four-point part of the boundary,
we solve (66). Taking ¢,=¢s=0, and writing V,; for
(V.Y;), we find

w/uz=— (Vst+p¥as)/ V14, (122a)
u4/us= - (Y13+PY12)/ Via (122b)
ny YVos¥Via— VieV3a— V13V
p=—= (123a)
U3 2V 1Y 54— a2Y 14
2Y 13V 34— as¥ 14
(123b)

Y23 YM_ Y12Y34— I/13 Y24 .

We consider first the one-mass manifold, with a;=a-
=a4=0, az=a>0. Then the last equality in (123),
which expresses the solubility of (66) [it is the expansion
of (53)7, is the only equation. To write it in terms of the
Z-space variables we introduce the notation (102), and
obtain?

[(Za—a)Ze— (Z3—a)Z1— (Z4—a)Zs5
=4Z125|:Z3Z4+a(ZG'—Zs—'Z4)+d32:]. (124:)
As we have stressed before, we do not know all the rele-
vance criteria for this manifold,'® but (63) gives
Im(ui/us) >0, i=1,2,4. (125)
This simply means that the relevance of the one-mass
manifold changes at the intersection with one of the
two-mass manifolds.
On the two-mass manifold, with a;=a1=0, a,,
a;#0, p is real, and (123) gives?

(Zz—az—lla)ze— (21—02) (Za—aa)— (Z4“"03) (Zs—az)
=2p|:Z1Z5+(12(ZG~Z1—25)+(122] (1268.)

=207 [ ZsZs+as(Zs— Zs— Z9)+a].  (126b)

2 The forms (124) and (126) agree with the results of reference
3. The relevance criteria (125) and (127) do not appear to have
been given in that paper, however.
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The relevance criteria (63) become
a3+pas—Zz—pZs
Im (—___ >0,
Zs
03+PG2“Z4—PZ1
Im (————————) >0. (127)
8

Perhaps a more interesting presentation of (126) is
the following

(oZs)[as+pas— Zs—pZs [ as+pos—Z4—pZy]
=Z— (as+paz) (1+p7),

\ le5+dz(ZG—Z1—Z5)+022
p —1 .
Z3Z4+03(Z6—Z3—Z4)+(132

(128)

(129)

We see the analogy with the corresponding two-mass
manifold in the three-point case; (128) corresponds to
(79), and (129) to (74). Indeed, while the numerator
and denominator of (74) vanish on cuts, those of (129)
vanish on F;; curves. Notice that (128) involves p and
(a3+paz) only. The same is true of (79), and “by
accident” (74) also depends on these two parameters.
This “‘accident” causes the degeneracy of the m=2
manifold for #=3. For n=4 there is no accidental
degeneracy, however. Another aspect of (128) is that
it represents a nearly successful attempt to simplify
(127) (the right-hand side is ‘“‘nearly” real).

We found above that the three-point parts of the
four-point perturbation theory boundary bears signifi-
cant resemblance to the extended field theoretical
domains. No such agreement is apparent for the
four-point parts. The most striking difference is that
the perturbation theory manifolds are obtained in
terms of one and three parameter representations,
while field theory yields five parameter representations.
We know of no way of deciding whether or not in a
given case the number of parameters can be reduced
without destroying the analytic form of the equations.
The method of the following section is therefore indis-
pensible in this case.

D. Comparison

A common feature of all the domains discussed in
Sec. A, both the primitive domains and the proven or
conjectured envelopes of holomorphy, is that they are
all intersections of mappings of tubes. We shall now
prove that no part of the one- or two-mass manifolds
of the last section is the mapping of a tube.

In order to apply our method of comparing the two
normals, it is necessary to justify the dual roles of both
YV # and X Suppose our attention be fixed on a
particular point °Z; in Z;; space. In our discussion of
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the axiomatic approach, and, in particular, in the
definition of IV;;, there occur vectors X #. Let °Z;; be on
the boundary of one of the four point field-theoretical
domains. Then values °X# of X# can be found, such
that (°X;, °X;)=°Z;, and

Z ON,'J'* OX]'“: IAM

H

(130)

Here, A# is a set of real vectors. Thus, in the case of
the primitive domain, A#= —\; Im°X #. The important
point is that A# are always real for the mapping of
tubes.

In our discussion of perturbation theory, complex
vectors X# and Y # likewise occur. Suppose that the
point °Z; is on the perturbation theory boundary.
Then particular values of X#=V#—V;,* can be
found which satisfy (X.X;)="Z,;, and

Z AT,‘J‘*X,J“—" -_ El ukYk“. (131)

b

However, we have no assurance that X* equals °X #
so that the comparison of (130) and (131) is not
immediately possible. We note, however, that (131),
along with all the subsidiary conditions on #; and ¥ #,
are form-invariant under complex Lorentz transforma-
tions. We may therefore apply a complex Lorentz
transformation which carries X# into °X# without
changing the form of (131). This is possible because
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(X:,X;)=2;;=(°X;°X;). The result is

2N O0Xp=— 3 w V¥, Xp=Vp—0V b (132)

i k=1

Now (130) may be compared with (131). If the two
boundaries touch (rather than cross) at °Z;;, then
°N,; and N; must be equal up to a positive over-all
factor. We therefore conclude that

(133)

But this is possible on a 10-dimensional subspace of
Z;; space only. Therefore, the perturbation theory
boundary cannot be the boundary of the mapping of a
tube. Q.E.D.

The meaning of this is that, if perturbation theory is
to be of any help in finding the holomorphy envelope
for the four-point function, then the partial results
obtained up to now bear little similarity to the final
result.

iu; 'YV #=real.
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The notion of generalized free field is introduced, as an obvious extension of a discrete superposition of
independent free fields with different masses. The following assumptions are also made: there is an under-
lying Hilbert space 3¢ (positive-definite metric), the theory is Lorentz invariant, the vacuum belongs to 3¢
ard is there unique, the spectrum of the energy-momentum operator is—apart from the origin—completely
contained within the region $22 €, po>0. It is then shown that a necessary condition for a cyclic field to have
support in ? only on a finite interval of the positive real axis, is that 4 (x) be a generalized free field. In the
Appendix a similar result is derived under slightly weaker conditions.

1. INTRODUCTION AND DEFINITIONS

ET 3¢ be a Hilbert space on which a unitary
representation U(a,A) of the inhomogeneous
proper Lorentz group L1*(e,A) is defined. Let = be
the infinitesimal generators of translations. We assume
that there exists in 3C, and is there unique, the eigen-
state of = to the eigenvalue zero. This state will be
called the “vacuum” and denoted by |Q). Apart from
this state, the spectrum' of w’=m*r, is assumed to be
bounded from below by a positive number, say ¢>0.
It is also assumed that, apart from the vacuum, the
spectrum of #° is positive definite.

We now introduce the definition of ‘“‘generalized
free fields’? restricting ourselves to real, scalar fields;
the definition can be extended in an obvious way to
the case in which the field is not real and/or transforms
according to a finite-order representation of the homoge-
neous proper Lorentz group. The theorems to be
proven below (Theorems I and II) remain valid also in
this case, with obvious modifications in form. We
restrict ourselves throughout this note to real scalar
fields only to simplify the algebra involved in the
proofs. We shall also assume that all quantities we
introduce are tempered distributions; the proofs
remain valid, however, also in more general cases.
Definition: Let A(x) be a real field, A(x)=A4%(x).
Define

0= [opeip, o= ferrawa,

o*(p)=o(—p), at(@)=a(e*).

We shall say that A4(x) is a generalized free field if:
a(e)=0 if o(p) has support only at p*><0 or at p=0
and there exists a measure u(o) such that the following

*On leave of absence from the Istituto Nazionale di Fisica
Nucleare, Milano, Italy.

t Supported by a National Science Foundation grant.
. IlNow at Istituto di Fisica Teorica dell’ Universitd, Napoli,
taly.

! Metric +1, —1I, —1I, —1I.

2 An analogous definition has been given by O. Greenberg
(Proceedings of the 1961 Washington meeting of the American
Physical Society).

identities hold:
@ 1== [ v e

pop? >0

(1.2)
[:1(0),3i( &) J=bmem; f Fpo*(p) ¢ (D)

all other commutators=0

b=
Dpo>0
>0

EP (O (D); bile)= f & pb(p,m3) o(p)

with

s(4)=069) [ (o)l p)3(5*—0)

+0(—p0) f du ()b (s, = p)6(F—0). (1.3)

¥(p), ¢(p) are infinitely many times differentiable
functions with compact support. {m.} is the set of
points to which the measure u(¢) attributes finite
weight. Notice that, if

N
du(o)= zl:z Cid(o—m?),

A(x) is a superposition of N independent real free
fields. Equation (1.3) takes in fact the form

a(p)=06(p) 2_: Cibi(p)po*d (p*—m?)

+0(—po) 22: Cbit (—p)po¥d(p—m?) (1.3")

with b;(p)=po b (c,p)|s=ms and (1.2) reads
[6:(k),b;1(p)]=6:;6(k—p);

[bi(p) )bl(k):l = l:blt(p) ’bJ'T (k)] =0.

2. CONSEQUENCES OF A RESTRICTION ON
THE SUPPORT OF a(p)

(14)

The purpose of the present article is to give a proof of
the following statement :

Theorem 1. If a field A (x) is cyclic in 3¢ with respect
to the vacuum and it satisfies the following conditions:

U(a,0)A(x)U (a,A) = A (Ax+a), (1)
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where U (a,A) is a representation of the inhomogeneous
proper Lorentz group.

[4(x),4(»)]1=0 2
when (x—#)?<0.
a(p)=0 3)

only® for 0K < M2 (M? is some positive number),
then A (x) is a generalized free field.*

The first step in the proof of the theorem will be to
show (Lemma I) that, under conditions (1)~(3) (and
with our assumption about the vacuum® and the
spectrum of #%), the commutator [A4(x),4(y)] is a
¢ number. This result, together with Theorem II (to be
proven in the next section) will then give the proof of
Theorem 1.

Lemma 1. Under conditions (1)-(3) of Theorem I, the
quantity F(x,y)=[4(x),4(y)]is a ¢ number.

Proof: Consider Fy(x,y)={(¢|[4(x),4(y)]]|Q) where
|¢) is an eigenstate® of #*. We shall first prove that

Fy(x,y)=0 (2.1)
if
pa2>0. (2.2)

Since the vacuum is, according to our assumptions, the
only eigenstate of #2 in 3C for which (2.2) is not satisfied,
(2.1) implies that

[4(x),4(»)]12)=C(x,3)0), (2.3)

where C(x,y) is a certain function of (distribution in)
%, ¥. To prove (2.1) let us consider separately the two

functions
Fy/ (xy)=(0| A(x)A(y)|Q)

F(x,9)=(¢]|4 ()4 (x)|2). (2.5)

Inserting in (2.4) a complete set of eigenstates of 7 we

get
Fy/ (x,9)=2n (¢ A(x) | n)(n] A () [2)=

(the symbol ), stands for summation over discrete
indices and integration over a continuum)

=2 ne P 'r'-ip"'(z-y)@’l A(0) I n><n| 4(0) | o),

where p. is defined through =*|n)=4p.%/n). We now
define a function F,'(z12) by

(2.4)
and

F¢I(2122)E ~—ipg - 21 Zn gipn(z1—22)

X($|A(0)|n){n]| A(0)|2).

This function is analytic in every finite region of the

(2.6)

8 The theorem is also true under the weaker assumption ¢(p) =0
for $2<0, a(p)|Q)=0 for p2> M2

‘lOr a superposition of derivatives thereof, if A(x) is not a
scalar.

5 A result analogous to Theorem I can be obtained relaxing the
condition that there is only one eigenstate of =+ to the eigenvalue
zero. A discussion of this case is given in the Appendix.

¢ One should, strictly speaking, introduce “wave packets.”
This is irrelevant for the proof and amounts to a certain compli-
cation in the algebra involved; we shall therefore make free use of
‘“‘eigenstates of m».”

G. F. DELL’ANTONIO

21, 22 space provided only
Im(z,—2,)&V+ (V+ is the forward lightcone). (2.6")
We also have

lim Py (z132) =F,' (x,y).

Imeg -0
Im(z1—2) &V,

We consider now

F(x,y)=2n emime-wtion-=2(g| 4(0) | n)(n] 4(0)|2)
and introduce a new function
FiH(z120) =2 et srtivale0(g[ 4 (0) | n)(n| 4(0)|Q).

It will be convenient for what follows to consider as
independent variables z; and 2z3=21—2s. Fy'(21,23) Is
analytic for Imz;&V, and every finite value of z;.
F42(2125) will be rewritten

F2(zuas) = give eitine 53 f dpe=irsG(p)  (2.7)

with
G(p)=2a (6| 4(0)| pa){p,a| A(0)|Q). (2.8)

We want now to show that G(p) has compact support.
The restrictions on the spectra of A(p) and #* imply

(6] 4(0)|n)(n| A(0)|2)=0 (2.9
unless
ESPESME, P EV, (2.10)
and
0< (pn—po)* S M2 (2.11)

Let us choose the reference frame in which py=0.
Then conditions (2.10), (2.11) read

€< (P —pd) S M2, (2.12)
0K (p"— "2 —pa? < M2, (2.13)
which can be solved to give
max{e, (pg” — M2+ €5)/2p,°} < p’
SO +MY/2p8.  (2.14)

Together with (2.10), (2.14) shows that the support of
G(p) is compact. It follows” that [fdpe—i*=G(p) is
continuous for Imz;=0 and can be extended to be an
entire function for Imz;=<0. The factor e??¢- (=21 ig also
entire and therefore such is F42(2122). In addition

lim F¢2(le2) =F¢2(x1x2).
Imgzi,22 —+ 0

We notice then that both F,'(212:) and Fy2(z:20) are
analytic in the domain® D:

D: ImzncEV,,

It is important for what follows that all real points
belong to the boundary of D.

Imz; finite (z3=21—22).

7L. Schwartz, Theorie des Distributions (Hermann & Cie,
Paris, France, 1951), Tome II, p. 128, Théoréme XVI.
8 As a matter of fact, both are entire functions.
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According to (2.2) if (x—y)2<0, Fy'(x,y)=F(x,y).
The function Fg(z122)="F, (212:) — F42(3132), analytic
in D, has therefore zero as the boundary value on (a
two-dimensional) part of the boundary of D. The
“edge-of-the-wedge” theorem® assures then that
Fy4(2122)=0 and therefore that also its boundary values
on the remaining part of the boundary of D are zero, i.e.,

Fy(xy)=Fy (x,y)—Fi(xy) allxy. (2.13)

Equation (2.1) is thereby proven. One can see that
the arguments which led to (2.15) fail if p,=0 or if
#44=0 (in this case one cannot chose a reference frame
in which p,=0; choosing p,°=ps'=po; ps’=p,°=0
the inequalities (2.12) and 2.13) give p.0— p,.! S M?/2p,,
2 2 |p.| and the region characterized by these
restrictions is not finite).
So far, we have proven that

[4 (2,4 ][ Q)=C(x2)|D), (2.3)

where C(x,y) Is a ¢-number function of x, y. Consider

now
(o{{4(®),4 (N I-Clxn} ¥, (2.16)
where |¢), |¢)E3C. Since A(x) is, by assumption,
cyclic in 3C, we will have proven that
[4(x),4(5)]=C(x,3)
if we can show that
0=(@]A(x)- - A(x){[A(x),4(»)]
~Clay}A() - Alyn) [Q) (2.18)

for all configurations {x;---%,) and (y1-+-y.) and all
values of the indices m, n. Consider the functions!®

2.17)

Gi(2r - - ym%,y)
=(@]4(x1) - A (@) A AGAGD) - Alyw) D),
Ga(x1" * * Ymy,3)
=@ A1) A(E)AGA @A) - A(ym) |2),
G3(x1' : 'ymyx’y)
=C(z9)@[A(x) - A@)A (1) - - A (ym) [ D).
Since we have assumed that the energy-momentum
vector of all states in 3C lies in the forward lightcone,

one can find three functions Gi(z1-:-Zaf1- - {m#,y),
Ga(21" +  Emy,y), Ga(z1: - - Emy2,y), analytic in the tube S

Im{zi—z250€V.. Imz. &V,
Im(¢i—{)EV-. ImbieVo
and such that Gi(#:- - - ym,%,¥) is the boundary value of
Gi(31- - - {mx,y) when Imsz;— 0, Im{;— 0, (2;,{;)ES.
Let us now choose the y,’s in such a way that
(=<0, (y—y*<0all j’s.

® H. Bremerman, R. Oehme, and J. G. Taylor, Phys. Rev. 109,
2178 (1958); F. T. Dyson, ¢bd. 110, 579 (1958); H. Epstein, J.
Math. Phys. 1, 525 (1960).

% From here on, the proof follows R. Jost, Lectures at the
International School of Physics, Spring 1959, Naples.

real parts arbitrary
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Using (2.2), we see that, on this part of the boundary
of S,

Gl<x1' ) 'ymyx;y)_Gﬁ(xl' ) 'ym)xyy)—'G3(xl' * 'ym:x’y)
=(@[A4 (1) - - A(w){[A(%),4 ()]
—Clan}A ) Alya)|Q)
=Q[A()- - A@)A(y1)- -~ Aym)

Therefore

G<ziy§‘i:x:y)EG1 (Zi»ff,x;y) _G2<z5)§—53x>y) _G3(zi:§‘i)x:y)

is analytic in .S and goes to zero on (a n-dimensional)
part of the boundary of S.

According to the edge-of-the-wedge theorem, there-
fore, G(z,¢;,2,y)=0 in § and, since all real points are
on the boundary of S, G(x1- + - Ym,x,y) =0 for all x;, y;.
Equation (2.18) is thereby proven and (2.17) follows.
(Notice that 3C is the closure of the set of all vectors
which can be given the form

[d)y=13 fq&n(xl- cexn) A (1) - A () [Qday - day,

where ¢, (x;- + - x) is a function with compact support.)

3. CONDITIONS UNDER WHICH A FIELD IS
A GENERALIZED FREE FIELD

Our next task will be to prove:
Theorem 1II. The following three are equivalent
statements:

A(x) is a generalized free field, 3.1
[4(2),A(3)]=G(x—y)

[G{x—v) is, in general, an operator], {3.2)

[A(@),4(»)]=C(wy) [C(xy)isacnumber], (3.3)

provided

{(a) the transformation properties of 4(x} under the
inhomogeneous Lorentz group are

Ule M)A (x)U " (a,A)=A{Ax+a),

(b) A=) is cyclic,

{¢) A(x) is local,

(d) A(x)isatempered distribution in x and an operator
in a Hilbert space 3¢, ‘

(e) a state with lowest energy exists in JC and is there
unique. We shall call this state the vacuum and its
symbol will be |@).

We prove first the equivalence of (3.2) and (3.3).
Proposition 1. (3.2) implies (3.3).
Proof: Let 7 be on X the infinitesimal generator of
translations; let |#) be an eigenstate of =* to the
eigenvalue'! p,*.

1 See reference 6,
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By assumption the expression

(n|Gr—y)[Q={|[4@),A]Q) (B4

depends on x and y only through the difference x—1y;
therefore

(——+—— (n|Gla—p|®=0.  (3.4)

On the other end, if #* is the infinitesimal generator of
translations, we have

(n|[A(x),A()]]2)

x— y—x
=eim~<z~+y><n [A (_2),14 (————)] Q> (3.5)
2 2
Therefore,
[ _+_ ei%Pn(I‘Hl):I
ox

<o) ()]

for all |#) and for all values of x+v. This implies
|2)=C(x—y)|2)

[+(59)+(5)]
~[A@,40)119)

where _
G(a—y)=(@|G(x—y)]Q). (3.6)

By standard methods, using the locality and cyclicity
of A(x) and the positive-definiteness of the energy, one
concludes

Gx—y)=G(x—y) Q.E.D. (3.7

From (3.7) we also see that G(x—y) is an invariant
function of its arguments.

Proposition 2. (3.3) implies (3.2).

Proof. By assumption,

Clxy)=(@I[4(x), A ]l2)

A7)y

Q.E.D.

We shall now prove the equivalence of (3.2) and (3.3).
Proposition 3. (3.1) implies (3.3).
Proof. This is a part of the definition of generalized
free field.
Proposition 4. (3.3) implies (3.1).
Proof. Let us introduce the Fourier transform of A4 (x)

a(p)= f e (2)dx. (3.8)

DELL'ANTONIO

By assumption,

A (x)
[m*,A (x)]=4 . 3.9
xH
Equation (3.9) can be rewritten as
[r,a(p)]= —p*a(p), 399

from which follows:

Lemma 2. [a(p),a(k)]=0 for all % if p2<0.

Proof. Since there is no state in 3¢ with a space-like
energy-momentum four vector, we have

a(p)|W=0 if p*<0,
and also
@la(p)=0 if p*<0,

@ila(p)a®IQ) i <0

and Lemma 2 follows since the commutator is a ¢
number. We write now A4 (x)= B(x)+C(x) where

therefore

B(x)= e a(p)d*p,

$220

Clx)= eP*a(p)dp.

$2<0
It follows from Lemma 2:
[B(x),C(y)]=0=[C(x),C()],

and moreover

(3.10)

Clx)|Q)= (3.11)

We shall now prove Lemma 3.
Lemma 3. If A(x) is cyclic, B(x) is also cyclic.
Proof. Cyclicity of A (x) means the vectors

o0= [t w4 (e A ) @),

form a complete basis in 3C. But

0= [0 A )+ A (e 0)d -

= f¢(x1. - x,)B(x1) - - - B(x,) l9>dx1' cdx,

due to (3.10), (3.11). (3.12)

Therefore, also the vectors

fcb(xl- < 2,)B(x1) - - - B(w,) | Q)dxy- - -dx

form a complete basis in 3¢ and this completes the
proof of the lemma.
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Lemma 4. C(x)=0.
Proof.

WC@IW= £ [dn a3

X{x[C(@)A(y:) - A(yn)[2)=0

by (3.10) and (3.11), for every pair of states |x), |¢).
We also have

[La(p),a(®)]m]= (p+k)a(p)a(R)].  (3.13)

By assumption, the commutator is a ¢ number. Equa-
tion (3.13) therefore implies

4k La(p),a(k)]=0. (3.14)

We conclude that [a(p),a(k)] is an invariant function
with support, in the variable (p+%), at the origin [the
invariance follows from that of G(x—v)].

The support property for a(p) as a function of p?, ex-
pressed in Lemma 4, allows an invariant decomposition
of a(p) into positive- and negative-frequency parts:

a(p)=0(po)b(p)+0(—po)bT(—p). (3.15)

Let u be a positive measure on the positive real axis.
We introduce a new field 4(p,s) on 3C defined through

f beo)e@ir= [@blpolel) (316)

for all ¢(¢)&S. The measure u has to be such that
b(p,s) has no é&-like singularities. Our aim will be to
show that the measure u can be so chosen that the
field &(p,o) satisfies the “generalized canonical commu-
tation relations” (3.2). We shall rewrite (3.16) in the

¥ CCHap ) b:(pm) byt (kym?) B (52— m)o (B —m )

763

form

b(p,0)= f dulo—pbpp) (316

with the understanding that all the expressions in
what follows have to be taken in the sense of the theory
of distributions. The measure p consists of one part
which gives finite weight only to a finite (or denumer-
ably infinite) number of points and a second part p’
which assigns zero weight to isolated points. We
therefore have

b(p,2)= X Co2p) ()5 (p—my)
+ f d ()(a— )b (pye), (3.17)

where the C/s are positive numbers. (The factor
(24°)* is added for reasons of normalization.)

On the other end, [b(p),bi(k)] is a ¢ number, and
therefore equal to its vacuum-expectation value. The
most general form of such expectation value is known!?
and we can write therefore

f du(o) f du(N)6(e— 15— )b (0,0) 51 (k)]

~so=b| Tas-wer+ [a0np-0) G.19)

where {d;} is a finite (or denumerably infinite) set of
positive numbers and 8 is a Lorentz-invariant, positive
measure which assigns zero weight to single points.
Substituting (3.17) into (3.18) one has

T Cp) [ @3 o= I om2) () 5= m)

T Cu(2k) [ ai 0)0o— )T (B0) b lm ) o (= m)

+ [[a/6) [ oo 50— BB (B0 1 1))

=% 4.2p)5(p~

We now recall that [b(p,p?),bi(k,k2)]=0 if k>=p. Com-

puting [b(p,f),b'(k,g)], b(p, )= Sb(p,*) f($*)dp> and
choosing properly the support of f, g one then deduces

[bs(pm2),bst(kym2)]=0 if ks£p or mi=m?, (3.20)
[b(p,0),bT (k) ]=0 if k=£p or o5\, (3.21)
[8(p,0),bit (k,m2) =0 if k=£p or o#m2  (3.22)

u2)6(B— 28 (p—k) +64(p— B) f dB(O)(£2—6). (3.19)

Equation (3.21) implies

8(p*—m)s (K —m ) b(p,m:),bt (k;m ) ]
=ad (Pz - mﬁ)a (k2 - m?)& (p— k)&m,‘zmﬁ,

where « is some constant, 6,, is the Kronecker symbol.

12 H. Lehmann, Nuovo cimento 11, 342 (1959) ; G. Kallen, Helv.
Phys. Acta 25, 417 (1952).
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If we choose, in (3.17),

Ci=d4d, (3.23)
we have therefore, from (3.19),
[:b (pymtz))b* (k,sz):':amjm,'é (k_p) (324)

and also m;=pu,. From (3.22) we have moreover
l:b(pya-);blj(k)mlz)]
=ﬂ15(m12—0)5(p—k)+[325mi2,65(l’—k)-

Using the fact that the measure p’ attributes weight
zero to isolated points, one can show that 8,=0. The
second and third term in (3.19) are then proportional to
BoJo=mady’ (6)=0. From (3.21) we have finally,
using invariance considerations®®

[6(p,0),b" (kN ]=¢g(0)8 (p—k)3((e—p*)— (A\—K)¥).
Equation (3.19) implies therefore

f ' (0) f du’ (V)3 (o~ B)5(e—N)g ()6 (p— K)o (9= 1)
—5(p—P) f dBO)3(—6). (3.25)

Let p be the distribution defined by (p,f)=/" fdB,
where 8 is the measure which appears in (3.18). By
assumption, p is a tempered distribution. We shall
assume that “the square root of p”” exists in the following
sense : There exists a positive measure » on E such that*

(p.f)=v(cf) where o,=n[é(x—y)]

In particular, if p is a function integrable on every
finite subset of E and if (p(x))? exists, then the measure
» is given formally by dv={[p(x)]!dx. In fact

o@)= [ L) Pola—=3)ay=[p() ]
and

o= [ LWL = [ p@o@dr= 6.0,

If one chooses!®

u=v, (3.26)

one has, for all 8-measurable functions,
8= [ o) faw s, G2
Eb(p,Po),bT(k,ko)jz5(p—k>5 (PO—'kO)- (328)

13 P, Methee, Comm. Math. Helv. 28, 225 (1954).

14 F is the positive real axis.

15 We shall not give here the detailed proof that this choice
defines indeed b(p,s) as a bona-fide operator on J3C; let us however
remark that, if d8(¢) =0 [and therefore du(o)=0] for o1 <o <o,
then a(p,0) =0 on the same interval. In fact, d8(c) =0 for o1 <o <o2
implies ﬂa(p,«r)éﬂ)“ =0 on the same interval, and this, together
with [a(p,0),a(k))]=0 osr and the cyclicity of 4(x) with
respect to [Q), leads to a(p,e) =0, 51 <o <o

DELL’ANTONIO

With the choices indicated in (3.23), (3.26) (we assume
that the two-point function (@|[4(x),4 (y)]|Q) of the
field 4 is given), we have then relations (3.24), (3.28)

. which, as we said, stand for the more precise forms:

[:(0)bit (@) ]=08:5(0,0) 0=0(p), (3.24)
[OW),01W)]=W¥) v=v¥(ppo). (3.28)

All other commutators are zero. From Egs. (3.15),
(3.19), (3.24"), and (3.28"), Proposition 4 follows.
Propositions 1 to 4 complete the proof of Theorem II.
To Theorem IT we may add the following corollary.

Corollary. From the arguments of L. S. Z.!® one can
see that only b;(p) and not &(p,s) [as defined in (3.21)]
can satisfy an asymptotic condition in their sense. If
such condition is postulated and the resulting free
fields are taken to form a cyclic algebra with the vacuum
as cyclic vector, then b(p,s)=0.

This follows immediately from the identity

[o@),0: () 1= [6(¥),0:(#) ]=0 (3.29)

for all 4, ¢, ¢ and the equivalence, for free fields, of
cyclicity with respect to the vacuum and irreducibility.
Equation (3.29), in fact, implies 5(¢) = ¢ number; on the
other hand, from (@] 4 (x)|2)=0 and (2|5:(¢)(2)=0 it
follows 0={(Q|5()|2)=0b@1) Q. E. D. Therefore, if an
asymptotic condition of the L. S. Z. type is introduced,
the first statement in Theorem II should be strength-
ened to read

(1) A(x) is a discrete superposition of independent
free fields.
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APPENDIXY

Theorem I'. Under the assumptions of Theorem I, but
allowing for the existence in 3¢ of N orthonormal
eigenstates [Q); =1---N, of 7 to the eigenvalue zero,
A(x) takes the following form:

In (A.1), the P/’s are projection operators into orthog-
onal subspaces 3C; of 3¢ (2_1.¥ @3H,;=3C) and A.(x)
[the restriction of A4(x) to 3¢;] is in 3C; a generalized
free field cyclic with respect to |w);, the unique (in 3C;)
eigenstate of 7 to the eigenvalue zero.

16 H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo
cimento 1, 205 (1955); also O. W. Greenberg and A. S. Wightman,
“The asymptotic conditions in quantum field theory” (un-
published).

17 We would like to thank Professor E. C. G. Sudarshan for an
interesting discussion which originated this Appendix.
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To prove this theorem we notice that the equality
(2.1) is still valid, since nowhere in its proof the unique-
ness of the vacuum was used. Now, however, (2.3) does
not follow from (2.1). One has rather

[A(®),A®)]]Q)=1 2 ; Cij(x—y)[Q);.
We now notice that the matrix ||C||:

Cij=—i;Q|[4(x),4(y)]]2):
is Hermitian (strictly speaking, the matrices [|Cyl:
Crii= f'Cij(x) f(x)dx are Hermitian for all real f(x)
with compact support).
In fact

Ci*(x—y)=i((Q|[4 (),4 )] 2)»*
=—i50[[4(2),4()]|Q)=Ci(x—y). (A3)

The matrix ||C|| can therefore be reduced to diagonal
form by a unitary matrix U;;(x—y) which will in
general depend on x—y.

Let us consider the N orthonormal vectors |w),E&3C
defined by

(A.2)

[e)s=2 ;LU (e —9)Jis | D)5 (A4)

The |w)’s are evidently eigenstates of 7* to the eigen-
value zero. From (A.2) and (A.4) one also derives

[4(x),4(y)]]w)i=1bi(x—y) | w)s, (A.5)

where b;(x—7) is the sth eigenvalue of the matrix ||C||.
Let 3C; be the subspace of 3 defined as follows: 3C;
is the closure (with the topology of 3¢) of the set of
vectors that are obtained from |w); by the action of
finite-order polynomials in A(x). In other words, IC;
is the subspace of 3¢ in which A(x) is cyclic with
respect to the state |w)..

We want now to show that, if d:(x)b,(x), then

Let |y)&3c:N3¢;. Consider [A4(x),4(y)]]¢). We shall
have proven that
[4 (), A ]|¥)=ibi(x—1) [¥)

if we can show that
X|[A®), A3 ]A (@) - A(wa)[w)i

=ibi(x—y)(x| A (%) - - A(wn) [0); all [x)ET. (A7)
In fact, by assumption, |¢)&3C; and A(x) is cyclic in
3¢; with respect to |w);.

The proof that (A.4) implies (A.7) is completely
analogous to the proof that (2.3) implies (2.15) and

will not be repeated here. In the same way, considering
now |¢) as a vector in 3C;, we can deduce

[4(x),4()1[¥)=1ibi(x—)|¥). (A.8)

But (A.6) and (A.8) are contradictory unless |¢) is the
null vector [we have assumed &;(x—y)=b;(x—y)].
Therefore,

3C¢ﬂ3€,~=0

(A6)

if b(5)#b;(8). (A.9)

IN p SPACE 765
Let M be the number of distinct 4;(£¢)’s. Then
M
> ese/Cae, (A.10)
1

where 3C; is the subspace on which [4(x),4 (y)] takes
on the value 4;(x—y). We assume that A(x) is cyclic
with respect to the set {|w);}. In other words, we
assume that

U3,/ =3c. (A.11)
From (A.10) and (A.11) it follows
}JE,- e =15 (A.12)
This and (A.13),
[A@),A@)l¥)y=idix—y)|¥) if [p)ERS, (A13)

lead then to

[A(),A()]=i 5, bie—y)P/, PyRe=3¢, (A1)

From (A.12) and the identity

A (x)GC/CJC,-’, (AIS)

it follows
[A4(x),P/]=0 all 5’s and &’s.
From (A.16) it is now possible to show that also
[* P ]=0, (A.17)

where the 7* are the infinitesimal generators of trans-
lations. In fact, one has

(A.16)

34 (x)
[a#, A (x)]=1 , (A.18)
oxH
and therefore
L2/ [m,4(x)]]=0 all j’s, (A.19)
and, due to (A.16), also that
[4 (x),[P/ x]]=0. (A.20)

On the other hand,
[Piliwp]‘w>i=0 all 4, j; M

Therefore, [P;,x*]=0 on 3¢/, all 4, 7, and, since
M
= Z,' @GC—L",
1

P/ x]=0 on 3C. With similar arguments one can
iy 4
prove that

[U(a,A),P;/]=0 on 3C. (A.21)

We shall now show that, if 3¢/ contains s; vacua
|w)ig, k=1-- 5, then

I =3r DIHix
1
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where |w)ix&3Ci; and A (x) is cyclic in 3Ci, with respect
to |w)ir. Equation (A.17) has the consequence that
the restriction of #* to 3¢,/ provides a representation of
the infinitesimal generators of translation and this,
together with the assumption that no state with
negative energy exists in JC, implies that the energy-
momentum p* of the states in 3¢, (apart from |w)i,
k=1.--s) lies in the forward lightcone (and in fact
satisfies also the requirement p?> ).

This allows an invariant decomposition of the
restriction of A(x) to 3¢, into positive and negative
frequencies (Lemmas 24 in the text ; the proof does not
make essential use of the uniqueness of the vacuum).

We shall now prove that

i YHCi;=0 for k=j (A.22)
by showing that the two sets {P(4;)|w)i} and
{P’(4;)|w)i;} are mutually orthogonal if k= j. P(4,)
and P’(4.) are (smeared) polynomials of any finite
order in the A;(x)’s. The two sets are dense in 3Csx, 3Cs;,
respectively; if |¢)E3CaN3Cij, || |¥)]| =1, thereexist two
vectors |Yo) {P(4:)|w)i} and |$0)C{P'(4:)|w)is},
l¥adl=ll#0)l|=1, such that

)=o)l <e, (A.23)
)~ gl <e, (A.24)

with e arbitrarily small. Conditions (A.23) and (A.24)
imply

@l <, [(Wlon)| <é, (A.25)

and also

1@ 1oy |+ | @ do) | 41 ol do)| <e. (A.26)
If (Yo|doy=0, then (A.25), (A.25"), and (A.26) imply

il <e (A.27)

Since € is arbitrary, (A.27) implies |¢)=0. It
remains to be proven that the two sets {P(4,)|w)ix}
and {P'(4,)|w)i;} are mutually orthogonal. This is
true if

ik(w[Ai(xl) v -Ai(xn)[w)i,:O, k;é] (A28)
for all configurations {x;---x.}. To prove (A.28) we

DELL’ANTONIO

make use of the decomposition of 4,(x) into positive
(4:7) and negative (4,;) frequencies and remember that
At (x)|w)ix=0 for all &, since such state would have
negative energy. We also know that [ 4.(x),4:(y)] and
therefore also [ A+ (x),4(y) ]=4b;(x~7v) is a c number.
We can, therefore, follow precisely the same steps as
in the reduction of a polynomial in a free field to its
ordered form, to obtain

inw| As(rey) - - - A (o) )i

=C(x1- - -xn)in{w|w)i;=0, if 177,
where C(x1- - - x,) is a properly symmetrized product of
b.(x—v)’s. This completes the proof that 3Cix(3Ci;=0 if
k#j. Introducing projection operators Pi; (P:x3C,= 3Cik),
one can easily see that

[ Pipyme]=0. (A.30)

From (A.12), (A.16), (A.17), (A.22), (A.29), and
(A.30), we conclude

k=3, @, [A@),PI=[rP], (A1)

where A;(x) is cyclic with respect to |w):. One also has
[U(a,A),P;]=0 and

[A(®),A(y)]=1 ;:' Ci(x—y)P;.

Therefore, [4:(x),4:(y)] is a ¢ number and A.(x) is
cyclic in 3C; with respect to |w). In 3C; |w): is the
unique vacuum (i.e., eigenstate of 7 to the eigenvalue
zero). We can use Theorem I and conclude that 4;(x) is
a generalized free field. We have, finally, the result:
under the conditions of Theorem I,

A@)=X; 4;,(x)P;,

where A4;(x) are generalized free fields; they are charac-
terized by the “eigenvalues” #Cr(x—y) of the matrix
6]]: bi;=4Q|[4(x),4(y)]|R):. P; are projection

N
operators into orthogonal subspaces 3¢; (3_: ©3C;=3C).
1
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The formulation of field theories by means of Wightman functions is studied. It is shown that, given
two field theories that satisfy all the axioms, one can construct a family of Wightman fields with the same
properties by a process of superposition of Wightman functions. The condition of unitarity is formulated
without reference to asymptotic conditions, and it is proved that the Wightman fields constructed by the
above superposition process (starting with “unitary” fields) fail to preserve unitarity, and a fortiori, the

standard asymptotic condition.

1. INTRODUCTION

N the search for a dynamical scheme for describing
elementary particle phenomena consistent with
relativistic invariance and quantum mechanical prin-
ciples, the theory of quantized fields has been favored
with more study and has provided more insight than
any other scheme. The use of manifestly covariant local
Lagrangians as a starting point and the use of perturba-
tion expansions lead to questionable mathematical
operations with infinite quantities. In view of this,
during the last few years the study of general field
theories without starting with any specific Lagrangian
has received much attention.! The more fundamental
part of such a program concerns the study of an
abstract axiom system more or less suggested by earlier
Lagrangian theories. In such a study it is worthwhile
to know if the axioms are independent and whether-
they are compatible; while the axioms are “related” to
general physical requirements their truth is neither
“self-evident” nor can one trust intuitive ‘“physical”
justifications for the compatibility of these axioms.
Among the set of axioms usually taken as character-
izing quantized fields, these comments apply partic-
ularly to the so-called “asymptotic condition’® which
enables one to relate the field operators to particle
scattering amplitudes. The somewhat provisional nature
of this axiom has been noted before; and perhaps not
unconnected with this is the fact that the other “field
axioms” have been the subject of a structure analysis
by Wightman.? Making use of the tools developed in
this brilliant study we show in this paper that the
“asymptotic condition” is an independent axiom and
that one can construct systems satisfying all other
axioms but not this axiom provided that at least one
quantum field theory yielding a nontrivial scattering
matrix exists. In the course of this study we have been

* Supported by the U. S. Atomic Energy Commission.

! See, for example, the Proceedings of the “Colloque sur les
Problémes Mathématiques de la Théorie Quantique des Champs”
(Lille, 1957); see also, “Problemi Matematici della Teoria
Quantistica delle Particelle e dei Campi” Suppl. Nuovo cimento
14 (1959) and references given there.

2R. Haag: Dan. Mat. Fys. Medd. 29, No. 1 (1955); H. Leh-
mann, K. Symanzik, and W. Zimmerman, Nuovo cimento 1,
205 (1955); O. W. Greenberg, Ph.D. thesis, Princeton University
1936 (unpublished).

3 A. S. Wightman, Phys. Rev. 101, 860 (1956).

able to construct several examples of fields with a
trivial scattering matrix.

In Sec. 2 we review Wightman'’s theory and construct
certain elementary families of Wightman fields using
the technique of vacuum expectation values. Section 3
discusses the weak axiom of asymptotic particle
interpretation and the normalization of the field. The
main result of the present paper is to show that almost
all members of the families of fields constructed in
Sec. 2 do not satisfy the (weak) axiom of asymptotic
particle interpretation; this result is stated and proved
in Sec. 4. Certain related comments are made in the
concluding section,

2. FAMILIES OF WIGHTMAN FIELDS

According to Wightman? a quantum field theory is
defined in terms of a Hilbert space 3¢ and a set of
hermitian linear operators (more specifically, operator-
valued distributions) ¢{x) labeled by a four-vector
x provided the following conditions are satisfied :

(I) Manifest Lorentz invariance. There must exist
unitary operators U(a,A) such that

¢(Ax+a)=U(a,A)¢(*)U " (a,4)

for every proper orthochronous inhomogeneous Lorentz
transformation.

(IT) Absence of negative energy states. The spectrum
of the Hamiltonian operator must be nonnegative, the
Hamiltonian being defined as the hermitian generator
of time translations.

(ITII) Local commutativity. The commutator of
two field operators at space-like points must vanish,

[o(x),0(»)]=0 for (x—y)2<0.

(IV) The existence of the ‘“vacuum’ state. There
exists a unique state |0) invariant under all U(q,A).

We now form the vacuum expectation values of
products of % field operators labeled by the points
Xy, Koy v 7y Tnt
W (1,0, - - ,2) =W ({a})

={0{¢(x1)- - -¢(xx)[0). (1)
It can then be shown that, as a consequence of the
conditions imposed on the Hilbert space 3C and the
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linear operators ¢(x), this set of functions labeled by
the four-vector variables (hereafter called Wightman
functions) has the following properties:

1) W™ ({Ax+a})=W™({x}), (Lorentz invariance).

(i) W™ ({«x}) is the boundary value of a complex
function W™ ({z}) analytic for Im{z} in the backward
light cone (absence of negative energies).

(i) W™ ({x})=W™({x’}), where {x’} is any per-
mutation of the # variables {x}, provided the permuted
variables have space-like separations (local com-
mutativity).

(iv)
> f .. ffr*(xly' e x) Wt (%1, %r Y1, “Ye)

st ()’h Tt 7ys)d4x1' ¢ 'd4xrd4yl' ‘ 'd4ys> 0’ (2)

where f, are suitable arbitrary functions (positive
definite metric), Wightman has also shown? that these
conditions are sufficient, that is, given a set of functions
W ({x}) satisfying these conditions, one can construct
a theory of a (neutral scalar) field satisfying the four
conditions stated at the beginning of this section which
has these functions for its vacuum expectation values.

Before the field theory so defined can be used to
describe a model of relativistic quantum theory of
particles, one must introduce some particle concepts.
The structure satisfying only the conditions introduced
in this section is a more general system; we shall refer
to this structure as a “Wightman field.”

We now state two obvious properties of a Wightman
field in terms of its Wightman functions in the form of
two theorems.

Theorem I (scale change). If W™ ({x}) are a set of
Wightman functions, the set of functions k"W ({x})
defines a Wightman field for every real number k.

This statement is immediately verified by noting
that if ¢(x) is the Wightman field which corresponds to
W™ ({x}), then k¢ (x) corresponds to kW™ ({x}).

Theorem II (convexity). If W™ ({x}) and W™ ({x})
are two sets of Wightman functions, the convex set

W™ ({x}) =AW ({o})+ A=W ({z}) )

defines a Wightman field provided the real number A
lies between O and 1.

The theorem is proved by noting that the functions
W ({x}) satisfy all the conditions imposed on Wight-
man functions: Lorentz invariance, analyticity in the
future tube, permutation symmetry for space-like
separated arguments, and finally the condition specified
by Eq. (2). Hence they define a Wightman field. Note
that, in this case, it is not easy to construct the field
operator in a simple manner but these functions satisfy
all the conditions imposed on Wightman functions;
hence they define a Wightman field. If A is real but not
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necessarily in the interval 0<A<1 then all conditions
are satisfied except positive definiteness; even this last
condition may be satisfied in special cases [ as is seen
by considering W™ ({x}) and W1 ({x})].

Thus, given one Wightman field we can construct
an infinite number of distinct Wightman fields using
Theorem I; however, out of this infinite set, a specific
choice can be made by stating a normalization condition.
We shall state such a condition in the next section.
Theorem II allows us to construct an infinite set of
Wightman fields (normalized, if so required) from two
(or more) distinct Wightman fields. Let us call the set
of all Wightman fields W ({x}) generated by
Wi ({x}) and W™ ({x}) the “family”; every point
in this family is labeled by a parameter A. We have
remarked above that while 0<A< 1 is allowed in all
cases, values of X outside this interval are not necessarily
forbidden. It is then interesting to state the following
theorem regarding the boundedness of the allowed
values of A:

Theorem III (semibounded families). There exists
either a lower limit A; or an upper limit A, (or both)
such that for either A<A; or A;<X (or both) the
combinations

V& ({a}) =AW ({23)+ 1=N) W™ ({x})

cannot be a set of Wightman functions.

To prove the existence of such limits, we use the
positive definiteness condition showing that these are
violated for sufficiently large negative or positive values
of A. Consider in particular W{® ({«x}), which is non-
negative according to (2). It cannot be everywhere zero
without making the field operator ¢,(x) trivial. Choose
any suitable testing function f(y) such that

[roweatt, —imiea=1,

and let

[ rowm iy, 1) fo)y=az0.

Then,
[rowettty, = o)==,

which becomes negative A< —a/|1—a| or for a/|a—1|
>\ according as ¢ is less than or greater than unity.
Hence, the statement made in the theorem is proved.

This demonstration however does not guarantee
that provided Ay <A <\, the set V™ ({x}) are Wightman
functions since the positive definiteness condition in
its complete form may still be violated ; it may even be
violated for other testing functions using W ({x})
only. However, from Theorem II we know that there
exists the nontrivial family 0<A <1 at least. In general
the family is, of course, larger.
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It is also remarkable that of the original fields
obeyed canonical commutation relations the family of
Wightman fields so generated also satisfy canonical
commutation relations. This statement is consequent
upon the identification of all matrix elements of the
commutator of the field and its time derivative (at
the same time) in terms of the Wightman functions.

3. ASYMPTOTIC PARTICLE INTERPRETATION
AND THE SCATTERING MATRIX

If this field theory is to become a theory of interacting
particles, one must introduce particle variables into the
theory and identify at least some subspace of the
Hilbert space 3C as being associated with the particle
states. Such a program* has so far not been carried out
except for free fields. There is however another type of
particle interpretation which is less ambitious in the
sense that certain linear combinations of vacuum
expectation values of the fields are identified with a
scattering amplitude for ‘‘asymptotically free” par-
ticles.® Since there are certain properties to be satisfied
by the scattering amplitude this identification in turn
imposes some restrictions on the Wightman fields. How-
ever the scattering amplitudes themselves provide only
an incomplete characterization of the field; and it
appears that without the use of sufficiently strong
additional postulates, the scattering amplitudes do not
determine the Wightman field. In support of this, it
is known that one can construct several distinct
Wightman fields with a trivial associated scattering
amplitude.®

It is conventional® to state the requirement of an
asymptotic particle interpretation in terms of an
appropriately stated “asymptotic condition” and then
to “derive” the scattering amplitude in terms of certain
linear combinations of vacuum expectation values.
We shall follow the alternative method of stating the
connection between the scattering amplitude and the
vacuum expectation values as the additional axiom.
This apparently arbitrary procedure has certain
advantages: first of all, unlike the other axioms of
quantum field theory, the asymptotic condition has so
far been stated only in unsatisfactory forms and their
plausibility is not immediately obvious. The best
defense seems to be that it leads to a covariant expres-
sion for the scattering amplitude; but the expression
itself could be obtained by other means, say for example,
by a formal summation of the perturbation series.”
Secondly the question of completeness of the particle
scattering states which is generally a prerequisite to
the axiomatization of the asymptotic condition seems
too strong; it is conceivable that the field Hilbert

4 A. S. Wightman and S. S. Schweber, Phys. Rev. 98, 812 (1955).

8 This point of view is somewhat more general than the classi-
fication of particle interpretations discussed by Wightman and
Schweber (reference 4).

¢ H. J. Borchers, Nuovo cimento 15, 784 (1960).

7 See, for example, Y. Nambu, Phys. Rev. 98, 803 (1955).
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space is considerably larger than the particle Hilbert
space.

We shall hence take as an axiom the following
condition®:

The scattering matrix element related to the transi-
tion to a state containing 7 particles with four-momenta
P, -+, pr from a state containing s particles with
four-momenta ¢i, ---, ¢ (with pi=:--=¢2=pu?) is
given by the expression

S(pb' Py ',Qs)
= fd4x1. e dbx,diy, - - - dby,

XA(Pl,xl) o 'A(Pﬁx")A(_qu yl) "t 'A(_qs, y-!)
X(OI T[d’(xl); o 7¢(y8):”0>, (43')
—4

(2m)

where

A(px) =——e?*(0."—p’) (4b)

and u is a “mass” parameter. Hence, the T' product
vacuum expectation value is defined in terms of the
Wightman functions by the equations

O T{p(@1)," -, (xa)} O)=W™ (a1, - -x,))  (Sa)
for x,°>x"> - - - >u,0,
O T{¢(x1), *,$(xa)}|0)
=(0[T{¢(x1), - -,¢(x.")}10), (5b)
where x/, .-, . are any permutations of x1, - -, %,.

(Asymptotic particle interpretation.)

At this point, we must restrict our further discussion
to Wightman fields for which the T-product vacuum
expectation values exist. Given any Wightman field
we can now calculate the particle scattering matrix
in terms of this identification ; but there is no guarantee
that the scattering matrix so defined satisfies the
conditions imposed on a scattering matrix, in particular
unitarity. It is considered further necessary that the
one-particle states are “steady” so that the S-matrix
elements connecting one-particle states to any other
state vanish identically (and that the two-particle
scattering is elastic below the three-particle threshold).
This condition can be used to normalize the field
operator:

Janom [ a9c=a, 901 T6@ 20110

= (27)%(p— )8 (p*—u*) (6)
with p?=¢— 2. It then follows that if W™ ({x})
denotes the Wightman functions for this normalized

field of mass u then k"W ({x}) defines a field which is
not normalized except for the special case k= =+1. The

8 This choice is very closely related to the work of K. Nishijima,
Phys. Rev. 119, 485 (1960).
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fields defined in terms of two (or more) sets of normal-
ized Wightman functions in the form W=\,
+ (1—-NW ;™ is also normalized in the above manner if
and only if the masses are identical.

The axiom of asymptotic particle interpretation
introduced here is weaker than the usual asymptotic
condition in the sense that we do not assume either the
completeness of the many particle states nor the
existence of asymptotic fields. But if the asymptotic
condition is postulated as an axiom of the theory in
addition to the axioms for a Wightman field, we can
derive the expression for the particle scattering matrix
yielding the so-called reduction formulas.® Thus the
axiom of asymptotic particle interpretation for a
Wightman field yields a more general system than the
Wightman field with the stronger axiom of asymptotic
condition. Needless to say everything we have proved
in the following sections apply @ fortiori to fields
satisfying the usual system of axioms including the
asymptotic condition. We now proceed to show that
Wightman fields in general do not have an asymptotic
particle interpretation.

4. WIGHTMAN FIELDS WITHOUT ASYMPTOTIC
PARTICLE INTERPRETATION

In terms of the scattering matrix .S one may define
the scattering amplitude f in the standard manner;
and then note that the scattering amplitude so defined
is linearly related to the Wightman functions. The
unitarity relation imposed on f(ps," -+, pr; g1, - -,gs) 18

f(pl" Y 22N ST '7Qs)_f*(q1;' “yGss P, 'vpr)

=i | k(R 2—uD0(%) - - -fd“k,,a(kn?—ﬁ)

n=0

Xe(kno)f(Ph' " '7?7‘; kl)' . 7k")
Xf*(qu‘ ULD kl,' ) ':kﬂ) (7)

(f=fH=iff+ (7)

In the summation, most of the terms contribute nothing
since energy and momentum must be conserved if the
scattering amplitude is not to vanish. Let f; and f, be
the scattering amplitudes for two Wightman fields
with asymptotic particle interpretation defined by their
Wightman functions W™ and W,™. We shall further
specialize than to correspond to the same “mass.” If
we now define a field in terms of the Wightman functions

W =AW (D4 (1= N)W 5™

or symbolically,

in view of the linear relation between the Wightman
function and the scattering amplitude, it follows that
the scattering amplitude f for this Wightman field

9H. Lehmann, K. Symanzik, and W. Zimmerman, Nuovo
cimento 1, 205 (1955).
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is simply given by
F=M ik (=) fon

Using the unitarity condition, Eq. (7), twice it is now
possible to derive the relation

(M A=N LA =N fo1)
=Mifit+(1=N) fofot,  (8)

which may be written

A=A 3

n=0

A5 (k2— D)8 (BY) - - - f d4,5 (k2 — 1)

XO(k0)g(pry- + « pes kay o)
Xg*(qli' ‘s kl" . ';k")=01 (83')

g=fi—fa (8b)

If we now specialize to the case of elastic scattering, the
integrand is nonnegative and the vanishing of the
integral implies that either g=0 identically or A(1—X)
=0. In the first case the two Wightman fields must
have the same scattering matrix and all the Wightman
fields in the allowed family My <AL, yield the same
scattering matrix; the second case is trivial. We may
now prove the following theorem.

Theorem IV  (equivalent scattering malrices). A
Wightman field defined in terms of the Wightman
functions

WH=F AIVa®, T Aa=1,

the functions W,™ admitting asymptotic particle
interpretations with the same ‘“mass,” has an asymp-
totic particle interpretation if and only if all the Wight-
man fields have the same scattering matrix.

This more general statement is proved essentially the
same way as used above; one derives in place of (8')
the equation

Z )\a)‘ﬂ(fa+—fﬂ+) (fa—fg)=0,

a>f

with

A0,

from which it follows that f,=fs unless A, or Ag
vanishes provided all the A\, are nonnegative. Note
that, unlike the case of two fields only, here the condi-
tion A,20 cannot be simply relaxed; in general, on
grounds of continuity, one expects the domain of
values of A, (with sum unity) for which the theorem
holds is somewhat larger in view of the demonstration
above regarding only two fields.

5. DISCUSSION

The results of the preceding section imply that the
axiom of asymptotic particle interpretation is independ-
ent of the other axioms of field theory and is not
derivable from them; a conclusion already indicated
by the existence of several distinct fields with the same
S matrix. We have actually used only a weaker axiom
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in this connection in the sense that we have neither
required detailed properties of the field mass spectrum
nor the completeness of the many-particle states. Our
systems are correspondingly more general and the
“‘unitarity conditions” are imposed only on the Fourier
transforms of the time-ordered combinations

O T{p (@), - -9 (%)} |0)

of the Wightman functions for momenta on the mass
shell ; without additional restrictions this is not sufficient
to determine the field in any sense. Yet here we see
that the unitarity requirement on the particle scattering
matrix excludes most Wightman fields from having an
asymptotic particle interpretation.

Perhaps the weakest point of the present investigation
is that it has not provided any example of a field theory
with asymptotic particle interpretation with a nontrivial
scattering matrix; rather it asserts that if there exists at
least one such theory there exists an infinity of Wight-
man fields not having an asymptotic particle interpreta-
tion belonging to the family generated by this one field
together with the free field of the same mass.

We have worked here within the framework of the
conventional axiomatization of quantum field theory.
If the purpose of the field theory is only to provide a
quantum theory of interacting particles invariant under
the complex Lorentz group, the conventional axiomat-
ization is too rigid in that it imposes ‘“‘physical require-
ments” on the field. This is most easily seen in the case
of the axiom of positive definiteness: in a theory where
the physical particle states do not form a complete set
of states in the generalized Hilbert space in which the
field operators are defined, it is sufficient if the particle
states constitute a subspace with positive definite
metric. That these considerations are not devoid of
physical interest is seen from the example of the
quantized Maxwell field. One of the present authors has
discussed® examples of quantum field theories for-
mulated in terms of a generalized Hilbert space with an
indefinite metric where again the physical particle
states are not complete in the generalized space but
constitute only a subspace with positive definite metric.
In such theories the physical interpretation requires an

0 E, C. G. Sudarshan, Phys. Rev. 123, 2183 (1961).
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interpretive postulate and the precise form of this
postulate depends on the dynamics of the field.

Our investigations also provide several examples of
Wightman fields with a trivial scattering matrix. In
addition to a trivial scale change W — k"W ™, we
also have more generally

W =3" Ak W™, 2aha=1, A20, (9)

which provide Wightman fields, the functions W,™
corresponding to known theories; say either free fields
with arbitrary masses, or the Wick polynomials of free
fields or terminating Haag expansions.® By a limiting
procedure in forming such linear combinations one can
produce any two-point function

0l6@s()|0)= f do(mHAD (m; x—y),  (10)

(where A®(m;x—y) is the two-point Wightman
function for a free field of mass m) by taking for the
Wightman functions

W)= [dm W (=), (1)

where W (m; {x}) are the Wightman functions for a
free field of mass 7, and p(m?) is a nonnegative measure.
But all these fields have a trivial scattering matrix.

Finally the present study illustrates the validity of
Wightman’s statement® that the consequences of
positive definiteness are distinct from the consequences
of unitarity. The Wightman fields constructed above
satisfy positive definiteness but do not yield unitary
scattering matrices, while certain indefinite metric
theories (including quantum electrodynamics)® provide
examples of theories in which the field operators are
defined in a generalized Hilbert space but the scattering
matrices are unitary.
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The most general dynamical law for a quantum mechanical system is studied with particular reference to
the necessary and sufficient conditions for such a law to represent Hamiltonian dynamics. The main results

are stated in the form of three theorems.

I. INTRODUCTION

HE most general description of the state of a

quantum mechanical system is afforded by the
von Neumann density operator, and may be defined
as a “real” linear functional which maps non-negative
Hermitian operators on a Hilbert space to non-negative
numbers and maps the unit operator to unity. It is
well known that, in special cases, one can specify the
states in terms of normalized vectors of the Hilbert
space. The dynamical law is then usually given as a
unitary transformation on these vectors. We refer to
this law as Hamiltonian dynamics. But the most
general dynamical law for a quantum mechanical
system is to be formulated in terms of the density
operator and may be described by a linear mapping
of the set of density operators into itself. The question
immediately arises as to the conditions under which
a linear mapping of the space of all operators into
itself maps the subset of density operators into itself,
and then as to the conditions under which such a
mapping represents Hamiltonian dynamics. This prob-
lem has been investigated® for the restricted case of
a system described by a finite dimensional vector
space. In this paper we will answer these questions for
operators defined on any Hilbert space.

Since the density operators form a convex set, the
possible dynamical mappings also form a convex set.
It may then appear that all dynamical mappings can
be formed as “probabalistic” combinations of some
simple set of extremal mappings in the same fashion
as all density operators can be formed as mixtures of
pure state operators. That this set of extremal mappings
cannot be limited to the Hamiltonian mappings is
evident from the existence of a mapping of all pure
state operators to a single pure state operator. Hence,
such a limitation would be an additional physical
postulate. If we limit ourselves to mappings of pure
states to pure states as described by a linear mapping
on the Hilbert space then, such a postulate is implicitly
assumed.

In Sec. II we develop some properties of the convex
set of density operators and the linear space to which

* Supported in part by the U. S. Atomic Energy Commission.

1E. C. G. Sudarshan, P, M. Mathews, and J. Rau, Phys. Rev.
121, 920 (1961). We refer the reader to this paper for a discussion
of the physical motivation for the problem considered in the
present paper and also for physical examples which illustrate the
basic ideas and possible applications.

they belong and in Sec. IIT we prove three theorems
which contain the main results outlined above.

II. THE OPERATOR SPACE AND THE CONVEX
SUBSET OF DENSITY OPERATORS

The quantum mechanical state of a physical system
can be specified by a density operator p which satisfies
the conditions?:

(@.04) = (00.¥) (Hermiticity), (1)
(¢,00)20 (positive-definiteness), (2)
Tr(p)=1 (normalization), 3)

where ¢ and ¥ are any vectors of the Hilbert space 3C
on which the operator p is defined. It is well known?
that an operator which satisfies these conditions has
a purely discrete spectrum with real non-negative
eigenvalues. From this it follows that Tr(p*) <1, the
equality holding if and only if p has just one nonzero
eigenvalue, or equivalently if and only if p?*=p which
is the condition that p be a projection operator. In the
latter case we say that p represents a pure state. Any
density operator can then be expanded in its spectral
representation as
p=2qaipt?,

where p'¥ are orthogonal projection operators and a;
are real positive coefficients satisfying 3~ a;=1.

If we consider the linear operators on 3C as themselves
forming a vector space, we can define an inner product
in this space by

(p1,p2) =Tr(pi*p2).

Let £ be the linear space of all operators p for which
loll2="Tr(p*p) <. Then all density operators belong
to £ If p=apW+(1—a)p®, where p® and p® are
density operators and 0<ae<1, then by an application
of Schwartz’s inequality we get that

(p0) L@ (p®,p V)4 (1—0a)*(p®,p®)
+2a(1=a)[(6®,p M) (p®,p®) ]}
<&+ (1—a)*+22(1—a)=1,

where the equality holds only if p®=p® and (p®,pM)
=1. Hence, if p represents a pure state, it cannot be

2J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1955), Chap. IV. For a general discussion of density operators
see, e.g., U. Fano, Revs. Modern Phys. 29, 74 (1957).

3 von Neumann, reference 2, p. 189.
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formed as a linear combination with positive coefficients
of any two distinct density operators. For any p® and
p® as above, p is also a density operator, so the density
operators form a convex set. We will call the set of all
p formed as above for all values of ¢, 0<a<1, the line
segment between p® and p®@. We then define the set
of extremal elements of the convex set as the set of all
elements which do not belong to a line segment between
any two distinct elements. From the above remarks,
it is clear that the extremal elements of the set of all
density operators is the set of operators which represent
pure states, and that all other elements can be formed
by positive combinations of these.

We will denote by y¢* a linear operator defined on
3¢ by

(0 ¥t @) = (6 %) ($,0),

where ¥ and ¢ are vectors and the ¢ form an ortho-
normal basis in 3¢. Then the operators ¢7¢"* form
an orthonormal basis in £. For

(pPMp@* (e )
=Tr{(pMp@H)+pgps"*}
=,,Z,:n (6™ @) (), p () (™ ) () p™)
’ =070 s
and any operator p in £ can be expanded as
P=2 prep "

where

pre= (¢S ,0)=(¢",09)

2lpnl?=Tr(p*p) <.

and

Since we are interested mainly in density operators,
it is of interest that the pure state operators ¢ (g™
for all r and

(1/V2) (9@ +o@) (1/V2) (¢ o)+
=%¢(r)¢(r)++%¢(8)¢(s)++%(¢(r)¢(¢)++¢(s)¢(r>+)
(1/V2) (o +ip) (1/V2) (¢ +-ip )+
=4 MpNT+1pWp T H1i(p @M — )T

for all r, s, r<s, form a linearly independent set which
spans £.*

©)

III. DYNAMICAL MAPPINGS

The most general dynamical transformation on the
system is represented by a linear mapping of the set of
density operators into itself. But since there are sets
of density operators spanning &£, this uniquely

4 This space of operators with the inner product defined by the
trace has been considered by J. Schwinger, Proc. Natl. Acad. Sci.
U. S. 46, 257 (1960).
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defines a linear mapping of £ into itself,?
p— p'=Ap. ()

We shall call a linear mapping on £ which maps the
set of density operators into itself a dynamical mapping.
The properties of such a mapping are described by the
following.

Theorem 1. Necessary and sufficient conditions for a
linear operator 4 on £ to give a dynamical mapping are:
For any set of basis vectors ¢ in JC

(a) (@@, ApTIPENT) = (¢ 4G TYX
(b) Zr@@p ", 4 ) =50y,

(c) The operator w defined on 3¢ by (¢,we¢")
= (¢, 4p¢ ") is positive definite for each
choice of r. In particular, this implies that

(@™, 46 ¢ ™) 20.

When these conditions are satisfied, Hermitian opera-
tors are mapped to Hermitian operators, the trace is
preserved, and positive definite operators are mapped
to positive definite operators.

Proof. We write Eq. (5) as

@00 =2 (@77, AP ) (0,09 ¢"). (3a)

If A satisfies (a), we can deduce that p’ is Hermitian
when p is Hermitian. If A satisfies (b) we can deduce
that Tr(p")=Tr(p). If A satisfies (c), then (¢¢7,p'¢")
=2 e (@4, ) (7,06 ¢") =Tr(wp) 20 if p is posi-
tive definite. Since this holds for each ¢" belonging
to any set of basis vectors in 3¢, we deduce that p’ is
positive definite if p is positive definite. The sufficiency
of these conditions as well as the final statement of the
theorem have thus been proved. The necessity of (a)
is obtained by noting that if p is taken to be
L(pmgpm* L pmem™) or 1i(pmem™* —pmem™) each
of which is, according to (4), a real combination of
pure state operators, then p’ must be Hermitian, or
from (Sa),

H{(p M@ Ap™pmT) 4 (¢, Aptmpmtyyx
=3{($©¢"",ApMp™ )+ (¢ Wp"*, A m ™)},

(960", 4G ) 4 (50T, Apmg T+
= —H(@WpN, 49 My ™) — (pWP"T, A¢ ™)},

from which (a) follows. Similarly, using these same
operators for p we see from (4) that we must have
Tr(o')=0 while if p=¢™¢™* we must have Tr(p")=1.
Using (5a), these imply (b). To prove the necessity of
(c) we note that for every pure state operator p=ya*+

5To avoid confusion between the two types of operators we
will use capital letters 4 for operators on £ and Greek letters
p, w, o for operators on 3¢ (elements of £). Greek letters ¢, ¥, x, £
will denote vectors in JC, while small letters ¢ will denote scalars.
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we must have
B8 = T (6 wh) B )
=3 (6B )
h - )20

for every ¢ (7 belonging to any set of basic vectors in J3C.
This completes the proof of Theorem 1.

In order to characterize the Hamiltonian dynamical
transformations we will need one more definition. If
the dynamical mapping maps all pure state operators
to pure state operators then for each normalized
vector ¢ in JC we have ¢¢t=p— p'=¢'¢'". The
mapping a¢ — a¢’ of 3¢ into 3¢ will be called the
mapping induced on 3 by the dynamical mapping.
Note that this induced mapping is not necessarily
linear. and is defined only to within a (unimodular)
phase factor. When we can choose these phase factors
s0 as to make the mapping linear, we will say that the
dynamical mapping induces a linear mapping on 3C.

Theorem 2. Equivalent necessary and sufficient con-
ditions for a dynamical transformation to represent
Hamiltonian dynamics are®:

(i) There exists a linear unitary operator @ on 3C
such that p— p'=wpw*. That is the operator 4 has
the form

(676", 46 T) = ($,0 ) (3¢ wp ) .

(ii) The dynamical mapping gives a mapping of the
set of pure state operators into itself and induces a
linear mapping on JC.

(iii) For each member x ¥ of any set on basis vectors
in JC, there exists a normalized vector £* such that
the dynamical transformation maps

xWOx @ to  EOEDT

(iv) The operator 4 of the dynamical mapping can
be factored in the form

(D6, 466 ) = (8,06 ™) (6,06 "),

where w and ¢ are linear operators on 3C.

Proof. (i) represents the usual form of Hamiltonian
dynamics; we need only prove that (i) implies (ii)
implies (iit) implies (iv) implies (i).

That (i) implies (i) is obvious. For ¢p+— ¢'¢’'+
= wh¢twh=wp(wp) T induces the linear mapping

ap— ap’=awp on 3IC.

To prove that (ii) implies (iii) we note that for any
x belonging to a set of basis vectors in 3C, the pure
state operator x¥x®" is mapped to a pure state

¢ Another criteria for a Hamiltonian mapping, that the mapping
preserve multiplication properties, has been given by J. Schwinger,
Proc. Natl. Acad. Sci. U. S. 46, 570 (1960).
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operator, say £®£®". Also, according to (ii), all the
£® must be normalized vectors in 3C. Since the induced
mapping on JC must be linear it can be determined by
D =ux®, Using Eq. (4) and the fact that (1/v2)
X (xP4xD) and (1/V2){(xP+ix?P) are mapped to
ANV (ED4£D) and (1/V2)(§9+41£D), respectively,
we see that %(X(i)X(J')++X(i)X(i)+) and %i(x(")x(")+
—x@x®*) are mapped to %(£<i>g<f>++5(i)gu>+) and
Li(@EDT —£ME®™) from which it follows that x @x @
is mapped to £¢9£®” which establishes (ii).
To obtain (iv) we use Eq. (5a) with (iii) to write

(¢(’),E(i)£(f)+¢(s))
=2 (79, g7 ($ x Dx PTH").

rlgl

Then,
2 (@TED) (XD (90, x D) (ED,9)

= 5 (480N 4690 E (0% D) (xD,9)
XE (67 xP) (xP,6¢")
i
= Z (¢(T)(b(8)+’A¢(TI)¢(SI)+)BT'T”63’3”

since both the ¢ and the x were assumed to form
sets of basis vectors in 3¢. Hence (¢, 4p¢¢"")
=Zi(¢(’),2(“x“)+¢(")) Zj(¢(“),5(j)x(j)+¢(”'))* and set-
ting w=o=3"; £Ox® gives (iv).

Finally to show that (iv) implies (i) we use condition
(a) of Theorem 1 which in the factored form of (iii) is

(7,06) (6,09 (+7)*= ()06 ") (9,06 ").

Then = cw where ¢ is a real number. For (¢,0¢"")=0
if and only if (¢",wp")=0, and for all (¢",5¢ (") 0,
(¢©,0¢¢)%0 we have

(,w8™)  (90,wp)* 1

<¢(7)7U¢(r’)) - (¢(s)’o-¢(s’))* —C.

Then,
(6", 461 = (6, o) (60, chu ) .

Now if x is any set of basis vectors in JC, let
£ =clox®, Then using condition (b) of Theorem 1
we have that

(E0,60)= T (60,ckap™) (9, chug @)
X ()X P) (9 6+")
=3 (XD, M),y (d7 x D) = (xD x D) =83
Then all the £ are non-null distinct vectors and form

a basis in 3C; ¢k must be a unitary operator which
gives (i) and completes the proof of Theorem 2.



DYNAMICAL MAPPINGS OF DENSITY OPERATORS

To show that the condition of the linear induced
mapping in (ii) of the preceding theorem is actually
needed we will include two examples (one a one-to-one
mapping, the other not) of dynamical mappings which
map the pure state operators to pure state operators,
but are not Hamiltonian, in the proof of the following
theorem which describes some of the possible mappings.

Theorem 3. The set of possible dynamical mappings,
or the set of operators A4 giving these mappings,
forms a convex set. The set of extremal elements of
this set contains those which map all pure state
operators to pure state operators. These include
Hamiltonian mappings and (one-to-one and non-one-
to-one) mappings which induce a nonlinear mapping
on JC.

Proof. If two operators AV and A® each give a
dynamical mapping of £, then if 0<a<1, A=ad®
+(1—a)4A® also gives a dynamical mapping. For if
p is any density operator in £, it must be mapped to
a density operator p®’ by A ® and to a density operator
2@ by A®_ But then 4 maps p top'=ap®’'4 (1—a)p®’
which is also a density operator. Hence the set of
possible dynamical mappings or the set of operators 4
giving these mappings forms a convex set.

If a mapping takes all pure state operators to pure
state operators it cannot be on the line segment
between two distinct mappings. For this would mean
that at least one pure state operator would be on the
line segment between two distinct density operators.

We have seen examples of Hamiltonian mappings.
As an example of a dynamical mapping which gives a
mapping of the set of all pure state operators one-to-one
onto itself but induces a nonlinear mapping on 3¢,” we
consider the following: Let ¢™¢®™ be mapped to
¢ ™" for all 7, 5. Consider any pure state operator

W, y=Y (¢ ¥)¢™. Then
W= (00 W) (4,06 ®)pp®"

7 Such nonlinear mappings are used for representing antilinear
discrete operations in quantum mechanics. The most familiar
example is time inversion; see E. P. Wigner, Gottinger Nachr.,
546, (1932); J. Math. Phys. 1, 409 (1960); R. G. Sachs, Nuclear
Theory (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1953), Appendix; another example is charge
conjugation in one-particle theories, see e.g., L. L. Foldy, Phys.
Rev. 102, 568 (1956).
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is mapped to
T (7)o 2)p@e 0T
=2 (W) W )p "

=T (@MW) W) Ip 0T =yY't,

where ¥'=3".(p"¥)*¢. All pure state operators are
clearly mapped one-to-one to pure state operators so
we do have a dynamical mapping, but the induced
mapping ¥ — ¢/ is clearly not linear.

An example of a non-one-to-one mapping is the
mapping of all pure state operators to a single pure
state operator, MM s Yt $Ne@F — 0 for rs.
Note that this induces a nonlinear mapping on 3C. For,
according to Eq. (4), (1/V2){(p"+¢®)— ¢=VIY.
These examples complete the proof of Theorem 3.

We have seen that the set of all dynamical mappings
is larger than the convex subset having the Hamiltonian
mappings as its boundary. To limit ourselves to this
latter subset would require an additional physical
postulate. The non-one-to-one mappings of pure state
operators to pure state operators could be thought of
as describing a kind of measurement process but this
does not exhaust the non-Hamiltonian mappings of
pure state operators to pure state operators. It is
interesting to note that if one describes the mappings
of pure states to pure states in terms of linear mappings
of the vectors in 3C the postulate limiting these to
Hamiltonian mappings is implicitly contained in the
linearity. From the density operator point of view
this cannot readily be interpreted as resulting from
the kinematical structure of the theory.

As a final note we observe that the operator 4 for a
dynamical mapping can have the form

(DB, A= (6,06®) (,36+")

only if (¢¢",0¢%"?)=6,, and w is a density operator.
For condition (b) of Theorem 1 requires that
() (¢ 06¢) =5, which implies that
(¢,00)=8,/,» and Tr(w)=1. Conditions (a) and
(c) then require that w be Hermitian and positive
definite.
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Let 4 and B be square matrices over a field in which the minimum polynomial of 4 is completely
reducible. It is shown that 4 is £ commutative with respect to B for some non-negative integer £ if and
only if B commutes with every principal idempotent of 4. The proof is brief, simplifying much of the
previous study of k-commutative matrices. The result is also used to generalize some well-known theorems
on finite matrix commutators that involve a complex matrix and its transposed complex conjugate.

INTRODUCTION

HE study of matrix commutators of higher order

has received attention from several authors.! In
particular, W. E. Roth? considered what he called
k-commutative matrices. The main purpose of this
note is to prove briefly a useful characterization of
these matrices.

Let A and B be # by n matrices over a field F in
which the minimum polynomial Jl.(x—a)*, of 4 is
completely reducible. If [4,B]=A4B—BA denotes the
commutator of 4 and B, then [)4,B] is defined
recursively by

Lwd,B]=B and [wd,B]=[4,[¢-1n4,B]]

for £>0.2 A4 is said to be £ commutative with respect
to B if and only if [44,B]=0, and [(4,B]=0
implies j= k. Clearly, 4 is k commutative with respect
to B for at most one non-negative integer k.

THEOREM

A is k commutative with respect o B for some non-
negative integer k if and only if B commules with every
principal idempotent® of A.

Preliminary to the proof of this theorem, the
following lemma is demonstrated.

LEMMA

If E, is a principal idempotent of A and [A,B]
commutes with E,, then B commutes with E,.
To prove this, let E,/=I—FE,. Since E, commutes
with 4,
[A,E.BE,]=EJA,BJE..

Thus, since E.E, =0, under the hypothesis of the
lemma, A commutes with E,BE,’. But since E, is a
polynomial in 4, E, also commutes with E,BE,.

*lPresented to the American Mathematical Society, April 22,
1961.

1For a survey of these results see O. Taussky, Am. Math.
Monthly 64, 229 (1957).

2W. E. Roth, Trans. Am. Math. Soc. 39, 483 (1936).

3 See also, M. Marcus and N. A. Khan, J. Research Natl. Bur.
Standards 64B, 51 (1960), and M. F. Smiley, Am. Math. Soc.
Notices 7, 927 (1960).

¢ For the definition and properties of the principal idempotents
of a matrix, see, for example, N. Jacobson, Lectures in Abstract
Algebra (D. Van Nostrand Company, Inc., Princeton, New Jersey,
1953), Vol. II, pp. 130-132.

Hence, E.BE,’=0. By a similar argument, E,/BE,=0.
Finally, E.B= E,BE,= BE,.
The proof of the theorem is now given.

NECESSITY

The result is obvious in case £=0. Thus, suppose
that 4 is 2 commutative with respect to B for some
k>0, and let E, be any principal idempotent of 4.
Since A commutes with [ 1,4,B], and E, is a poly-
nomial in A, then E, commutes with [¢.n4,B].
Hence, by repeated use of the lemma above, E, com-
mutes with [(y4,B], j=k—1, k=2, - -+, 0. In particu-
lar, E, commutes with B.5

SUFFICIENCY

Let Ae=(A—al)E, for a any characteristic value
of A with associated principal idempotent E,. Thus,
if B commutes with every principal idempotent of 4,
it follows by induction on 221 that

Lwd,Bl=2 Zk: (- l)j(i)Aak_fBAaj)

a j=0

where the first sum is taken over all of the distinct
characteristic values of 4, and where the usual notation
for the binomial coefficient is used. Since 4. is nil-
potent, by choosing k sufficiently large, the sum on the
right is zero, and the desired conclusion is obtained.

Moreover, since 4., is nilpotent of order equal to the
index s, of a, the following result due to Roth® is also
a consequence of the preceding equation.

COROLLARY 1

Let m be the largest of the indices associated with the
distinct characteristic values of A. If A is k commulative
with respect to B, then k<2m.

Furthermore, for any scalar polynomial ¢(x), since
the index of the characteristic value ¢(a) of ¢(4) is at
most m, and the principal idempotent of ¢(4) associated
with ¢(a) is the sum Y. Eg over all of the distinct
characteristic values 8 of 4 such that ¢(8)=¢(a), the
following result is also immediate.

5 See also, W. E. Roth, Trans. Am. Math. Soc. 39, 483 (1936),
Theorem 9.
¢ Reference 5, Theorem 5.
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COROLLARY 2

Let m be defined as in Corollary 1, and let ¢(x) and
0(x) be polynomials over F. If A is k commutative with
respect 1o B for some k, then ¢(A) is § commutative with
respect to 6(B) for some j <2m.

Roth? considered only the case 8(x)=x, and showed
under this condition that j<%. However, this stronger
inequality is not in general valid for every polynomial
6(x).

As an application of the preceding results, some
remarks are now given concerning commutators that
involve a complex matrix 4 and its transposed complex
conjugate 4%

First, as is well known, the principal idempotents of
a normal matrix are Hermitian. More generally, the
following is now demonstrated.

COROLLARY 3

Any complex matrix A is k commutative with respect
to A* for some non-negative integer k if and only if the
principal idempotents of A are Hermitian.

To prove this, it is first observed that the principal

7 Reference 5, Theorem 3.

idempotents of A* are the transposed complex
conjugates of the principal idempotents E, of A.
Thus, since E,* commutes with A% if E,=E,*, then
by the theorem above 4 is k commutative with respect
to A* for some non-negative integer k. Conversely, if
E, commutes with 4*, then it also commutes with E,*.
But any normal idempotent matrix is Hermitian.

Finally, as an application of Corollary 1 above, a
well-known theorem is generalized.

COROLLARY 4?

The commutator [A,A*] 1s k commutative with respect
to A for some non-negative integer k if and only if A is
normal.

It is only necessary to prove that C=[A4,4*] and
[ & C,4]=0, for some positive integer &, implies C=0.
But, since C is diagonable, applying Corollary 1 with
m=1, [C,A]=0. Thus, by a theorem of Jacobson,®
C is nilpotent. But any diagonable nilpotent matrix is
necessarily zero.

8 For a proof of this corollary, in case either £=1 or k=2, see
also T. Kato and O. Taussky, J. Wash. Acad. Sci. 46, 38 (1956).
¢ N. Jacobson, Ann. Math. 36, 877 (1935).
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The introduction of nonsymmetric g in unified field theories of the Einstein-Schrédinger type is open
to the objection, on group-theoretical grounds, that the symmetric and antisymmetric parts transform
independently. This objection does not apply to the use of nonsymmetric I';¢#, since these quantities are
irreducible under the ‘“‘extended group,” consisting of the point transformations and the Einstein A trans-
formations.

We consider a theory based on symmetric g;x and nonsymmetric T';#. The Lagrangian L is assumed to
depend only on g and the contracted curvature tensor Ry (this insures the X invariance and transposition
invariance of the theory). For simplicity, we suppose further that L involves R rationally and, at most,
quadratically.

The resulting theory is able to account satisfactorily for the main feature of gravitation, electromagnetism,
and their interaction. In particular, the theory yields the correct equations of motion for charged masses.
The electromagnetic tensor is associated with the skew part of R;;, and the X\ transformations correspond

roughly to the gauge transformations of electrodynamics.

1. INTRODUCTION

N important feature of the unified field theory of

Einstein and Schrédinger is the property of

“A invariance,” i.e., invariance of the field equations
under the group of transformations

N

Tur=Taf 42—, 'ga=gu, (1.1)
dxk

where the function A(x) is arbitrary. This invariance
property depends essentially on the invariance of the

curvature tensor
R.ipt=Ta,*—Tij it 4T Ta*—Tali

and its contractions under the transformations (1.1).
Quite generally, let us consider theories whose field
equations are derived from a variational principle

5f£(g,I‘)d4x=O (1.2)

by independently varying the gi and the I'y* (Palatini
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method of variation). It is then evident that all theories
whose Lagrangian densities £ are built up solely from
g and R ;5% will be characterized by the property of A
invariance. Physically, it seems plausible that A in-
variance is in some way related to the gauge invariance
of electrodynamics.

The basic assumption in the formulation of Einstein’s
theory is that the symmetric g;; and T';z* of general
relativity are to be replaced by nonsymmetric quan-
tities. What @ priori justification can be given for this
assumption? To deal first with the affinity, a convincing
argument in favor of a nonsymmetric extension of I';*
is the fact that this extension is accompanied, for a
theory of the type mentioned above, by an enlargement
of the invariance group through the inclusion of the
A transformations (1.1). (This situation has an analog
in the transition from special to general relativity,
where the replacement of the scalar gravitational
potential ¢ by the ten potentials g, is motivated by
the general covariance of the new theory, a scalar
theory being essentially only Lorentz-covariant in the
sense that Lorentz frames have a privileged status.)

On the other hand, no enlargement of the invariance
group results when we subjoin an antisymmetric part
to ga. In particular, the field equations admit no trans-
formations which “mix” the symmetric and antisym-
metric parts gi and g [as the transformations (1.1)

do with I'y* and I'y*]. The two parts transform as

separate and independent entities, and no real uni-
fication is achieved by combining them. If, then, group-
theoretical considerations are accepted as a basic guiding
principle in the construction of a unified theory, it will be
logically most economical and satisfactory to retain the
symmetry of the fundamental tensor gq, while admitting
nonsymmetric T'z*.

A further disadvantage of introducing a nonsym-
metric g; into the Lagrangian lies in the excessive
freedom (from the physical point of view) which is
thereby afforded to the solutions of the resulting field
equations. Thus, Einstein’s theory admits nontrivial
solutions even for ‘“flat” space-time (R ;3"=0), as has
been shown in detail by Wyman and Zassenhaus.! This
must be regarded as an unsatisfactory trait of a theory
which purports to give a geometrical description of
physical fields. It is probable that almost any field
theory which operates with a non-symmetric gg would
be open to this objection. The difficulty is connected
with the fact that the flatness condition does not
necessarily imply ga=0. We shall revert to this point
later on (Sec. 7).

In the present paper we shall investigate the possi-
bility of constructing a unified field theory of gravi-
tation and electromagnetism based on the following
postulates:

(1) The fundamental quantities are a symmelric lensor
g and a nonsymmetric affine connection T a*.

! M. Wyman and H. Zazzenhaus, Phys. Rev. 110, 228 (1958).
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(2) The field equations are derivable from a variational
principle

Bf\/—g Ld*x=0, (1.2)

where (lo insure N tnvariance) L is assumed to depend
only on gg and R ;pt.

The analysis is simplified if we assume further that
R ;i enters rationally and at most quadratically into L,
and only in the form of its contraction R;j=R ;;o* The
most general form for L is then

b a w B ik

Here, o, b, o, B are constants,
REgaﬁRaﬂy

and g and its inverse g#* are used to lower and raise
indices in the familiar way, e.g.,

Rik=giaghR o

In writing down (1.3), we have been greatly assisted
by the postulated symmetry of gu, which restricts
enormously the number of invariants which can be
formed out of g and Ry.

It will be shown in the following sections that the
present theory is able to give a satisfactory account of
Mazxwell-Einstein fields. In Sec. 2 we derive the field
equations and Bianchi identities from the variational
principle (1.2). The weak-field solutions of the theory
are then compared (Sec. 4) with the equations of
Maxwell and the Einstein gravitational equations.
{Concerning the physical interpretation of the theory,
we may mention here in anticipation that the electro-
magnetic tensor is taken to be proportional to R;;. The

tensor I';.* then corresponds roughly to the 4—p0t€ntial,

and the \ transformations to the gauge transformations.)

Section 5 is devoted to a brief discussion of the equa-
tions of motion of test particles. Finally, in Sec. 6 we
obtain rigorous, spherically symmetric solutions for two
particular cases (b=3=0 and a=3=0, respectively).
These solutions recall in some respects the nonlinear
electrodynamics of Born and Infeld.? Some concluding
remarks of a general nature will be found in Sec. 8.

We close this introduction with a comment on the
principle of transposition invariance, which has played
an important role in the development of Einstein’s
unified field theory. In his later presentations of the
theory, Einstein® formulated this principle as follows.
Introduce the quantities U*, defined by

Uyt=T 3P —T ;a%".

2M. Born, Proc. Roy. Soc. (London) A143, 410 (1934);
M. Born and L. Infeld, ibid. A144, 425 (1934).

3 A. Einstein and B. Kaufman, Ann. Math. Princeton, 62, 128
(1955). See also B. Kaufman in Finfzig Jahre Relativititstheorie
(Birkh#user Verlag, Basle, 1956), p. 227.
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A tensor Au(U) is called “transposition symmetric”
if it goes over into its transpose under the transformation

Uar— Ugr=Upt. (1.4)

The principle of transposition invariance requires that
the field equations stay valid under the transformation
(1.4). The field equations of the present theory are
transposition invariant in this sense, since the Lagran-
gian (1.3) is built entirely out of transposition sym-
metric quantities. One sees this immediately on exam-
ining the expression for Ry in terms of U:

Ria=Uir,a*=Uip*UaP+3U:aUpié.

If we had permitted our Lagrangian to contain the
curvature tensor in forms other than its contraction
R, the transposition invariance of the theory would
have been forfeited. For instance,

Sia=R.aj®*=(Uak,i*—Uaj s*) =3 Usa,;*= U ja i

is not transposition symmetric.

2. THE FIELD EQUATIONS AND
BIANCHI IDENTITIES

Our notation will, in general, follow that of Einstein,*
but with one simplification, affecting the notation for
covariant derivatives. In this paper, we shall be con-
cerned almost entirely with covariant derivatives of
tensors and tensor-densities of rank fwo, and in all these
cases it will be only the “mixed, 4+ —” covariant
derivative which turns up. Hence, no confusion should
result if we suppress the 4,— subscripts. If 44 is a
covariant tensor, A a contravariant tensor-density,
we shall write

A k= Aik;u= A Tk Aakriua'— A in'rmca
ik
QI; #ikE ?L“+-— — lellik—{_ ?Iakl“a"i_|_ g{iar‘“ak__ %IikI‘“_aa

the comma denoting partial differentiation, It will also
be convenient to define M ;(4), the “Maxwellian” of
the tensor A,,, by

Mu(A)=%ginAapA P —3g (AsadistAuwidge). (2.1)

Observe that M is a symmetric tensor with vanishing
trace.
Our variational principle is

5 f /—g Ldt=0 (2.2)

for arbitrary, independent variations 8g**, 6I'w* which
vanish on the boundary of integration. From the ex-
pression (1.3) for L, it is readily verified that

8(v/—g L)=8"*Ru+~/—g Wudg,

¢ A. Einstein, The Meaning of Relativity (Princeton University
Press, Princeton, New Jersey, 1953), Appendix 1I, 4th ed.

(2.3)
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where
g =y/—g { (e+bR)g*+aR" +6R"}, (2.4)
W= a(Ra—5Rg) +OR (R~ 1Rga)

—aM 4 (R_)—BM #(R_), (2.5)

and M (R_), Mix(R_) denote the Maxwellians of Ry,
R,,, respectively. The tensor W has been symmetrize?i,
since 8g* is symmetric.

Noting the Palatini relation

m
BRik= (61‘1'#");7‘_ (6P ik+);m
+ +=

we find, after some manipulation, that the first term
of (2.3) can be written

B8R = 9}“ ST b+ (82481 o — B8988T og*) 4,  (2.6)

where

m“ik=smik__g;aiaaﬂk_éikrn_giaraauk’ (2‘7)

I'= I‘l.;"a'

The term in parentheses on the right of (2.6) is a di-
vergence, whose integral will vanish if 8T';#=0 on the
boundary. Thus, (2.2), (2.3), and (2.6) lead to the field
equations

RN, #=0,

Wik=0.

(2.8)
(2.9)

The customary way of obtaining the Bianchi identities
is to make use of the invariance of the action integral
with respect to infinitesimal coordinate transformations.
We shall find it slightly more convenient to consider
the invariance of

I= f@i"Rikd“x:f\/——g (2L—aR)d*x.

Under the infinitesimal transformation
a2 i (),

the “substantial variation” §8%=8%" (x)—&%(x) is
given by
3B ik= e(Biaf bt Bokg Lim@ikE a—@ ikEa)  (2.10)

For the variation of I, we obtain, assuming £*=0 on
the boundary of integration,

I'—=I=0= f (8*6 R+ R108%)d*x
= f (N *6T 4+ R d8*)dx (2.11)

by (2.6). Let us now assume that one half of the field



780 W.
equations, viz. (2.8), is satisfied. Then the first term on

the right of (2.11) disappears, and the second term
yields, using (2.10) and after integration by parts,

0= f {— (8Rux) s~ (8°°Rig) «

+ (8%8R.g) 1— 8 1P Rag) E4d'x.  (2.12)
It can be verified from (2.7) that
) ik
Nyki=— 2€’kv’
so that
ik
8, =0 (2.13)

is a consequence of (2.8). Using this result, we find,
after some rearrangement, that (2.12) leads to

af af} aff
(Q_Rilz)’ﬁ—%@ﬂRﬂa',k=%§vR[¢$,k]. (2.14)

These are the Bianchi identities of our theory modulo
the field equations (2.8). The square brackets indicate
the cyclic divergence

Fran=Fg1tFptFi,.

Note that (2.13) can be written in the equivalent
form

W—g R@),k=0, (2.15)

which we shall later identify with one half of Maxwell’s
equations (Sec. 4).

3. DISCUSSION OF THE FIELD EQUATIONS

The field equations (2.8) may be formally simplified,
following Schrédinger, by the introduction of a new
affine connection *T';#, defined by

*Dit=T g#+38:+Th, (3.1)

we then have
*;=0, (3.2)
8, k=8, — 4T, +38%T 18,5, (3.3)

where ; --- * indicates covariant differentiation with

respect to *I'y». With the aid of (3.2), (3.3) and (2.7),
it is easy to show that

m"ik_ %%aiaaﬁk.___ 5;“* ik.
Therefore the equations
8% =0, *I;=0 (3.4)

are equivalent to (2.8). We shall make use of this
equivalence in the following sections.

Turning now to Egs. (2.9), we shall consider two
cases, corresponding to ¢ =0 and ¢=0.

Case I: a#0. From (2.5) we obtain g#Wgy=—aR.
Hence (2.9) yields

R=0 (a0). (3.5)
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There is no loss of generality in taking a=1. Equation
(2.9) now simplifies to

RﬂnzaMik (R_)+BM 4(R_). (3.6)

If we regard R,y as proportional to the electromagnetic
field, then the first term on the right-hand side repre-
sents the electromagnetic energy tensor.’ At first sight,
it is disconcerting to find also the Maxwellian of a
symmelric tensor on the right-hand side. However, as
we shall now see, there is always one solution of (3.6)
for which this additional term vanishes identically.

According to a remarkable algebraic theorem due to
Rainich,® ¢ set of necessary and sufficient conditions that
a symmetric tensor Ty be expressible as the Maxwellian
of an anti-symmetric tensor is

gaﬁTaB=0’ M,’k(T)=0. (37)
It follows that all solutions of the equation

satisfy (3.6). The condition
M4(R_)=0

which makes (3.6) deducible from (3.8), is satisfied
as a consequence of (3.5) and (3.8).

Equations (3.6) may be thought of as a set of ten
quadratic equations for the ten quantities Ra. There
are twenty solutions for Ry, one of which is (3.8). Of
the remaining solutions, some may be complex, and
others will lead to physically unacceptable results, such
as negative energy densities, improper behavior at
spatial infinity, etc. Pending a detailed examination of
the additional solutions, it appears best to exclude them
from the present considerations by setting =0 in the
field equations.

Collecting our results, we have, as our field equations
for the case 270, 3=0:

8,a%=0, *I;=0, (3.9)
i
84 =0, (3.10) I
Ra=aMa(R_), (3.11)
R=0. (3.12)
Here,
ik
8*=+/—g (g*+aR"), (3.13)

and *I'y* is defined by (3.1).
Case IT: a=0. In this case we can no longer deduce
R=0 from (2.9). In fact the field equations leave R

5 In order that the interaction between gravitation and electro-
magnetism should have the correct sign, it is necessary that the
constant « in (3.8) be negative.

¢ G. Y. Rainich: Trans. Am. Math. Soc. 27, 106 (1925). See
also C, Misner and J. A. Wheeler: Ann. Phys. 2, 525 (1957).
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completely undetermined. By inspection of (2.4), (2.5)
it is seen immediately that if ¢=0, the field equations
(2.8), (2.9) are invariant under the transformation
gie — ugir, La® — Tyt
implying
R— (1/w)R,

with u an arbitrary function. Hence the field equations
fix only the combination Rga, not R and gg separately.
The equations (2.9) may be written

bR(Ra—tRga)=aM4(R_)+BMa(R.). (3.14)

Let
HikERﬂc—%Rgik. (3.15)
Then
g*H =0, (3.16)
and
Ma(H)=M (R )+3RH . (3.17)
All solutions of
8
(b+5)RHik=aMik(Rv) (3.18)

are solutions of (3.14). For from (3.16) and (3.18), we
have, according to Rainich’s theorem,

M,‘k(H)=0.

Using (3.17), we then find that (3.14) is a consequence
of (3.18). This proves our statement.

As before, (3.14) admits other solutions besides
(3.18), which we can exclude by setting 3=0. Doing
this, we obtain as our field equations for ¢=0,

8,4*=0, *T,=0, (3.19)7
ik
8, =0, (3.20)
1T
bR(Ric—%Rg,k) =aM,'k(Rv), (321)
1k
g%=4/—g (bRg*+aR™). (3.22))

This system of equations has to be supplemented by
an additional equation determining R. The simplest
condition to impose is that R is a (nonvanishing)
constant, and we may as well write, with no further
loss of generality,

bR=1. (3.23)

Then (3.21) and (3.22) may be written
Ra— (1/40)ga=aM a(R_) (3.21a)
8 =y/—g (g++aR>). (3.22a)

These differ from the corresponding equations I only
by the presence of the ‘“cosmological term” (1/4b6)g.x.
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4. APPROXIMATE SOLUTIONS FOR WEAK FIELDS
AND PHYSICAL INTERPRETATION
OF THE THEORY

It is convenient to define Ts; as the covariant tensor
“inverse” to the contravariant tensor density 8%, so
that we have the relations

TsiaBbe=0," (—det8®) 3 dettsyp=det8*. (4.1)

The equations 8,,+**=0 are then equivalent to tsy,,»=0.
Let us consider the field equations I [Egs. (3.9) to
(3.12)7]. We shall examine the linearized form of these
equations for weak gravitational and electromagnetic
fields. Specifically, we shall assume
o= Nat Yk, (4-2)
where 7, is the Minkowski tensor:
=0 (1#£k),

Mm=ne=np=—1, =1,

and the vy are small quantities whose squares and
products will be neglected.
By (4.1), we then obtain

§ik= gty (nn ik —nnE).
Equation (3.13) yields
ik )
av/~ g R = vy,

or

aRg="y (4.3)
to the first order in y.s. Also,
gix="nix+Y . (4.4)
Equations I are, in the present approximation,
TS =0, (4.5)
=0, (4.6)
Ry=0. 4.7

From (4.5), which reads in expanded form
Yikw— Nak *Tiu®—Nia *T*=0,
we obtain by the usual cyclic permutation and addition,
Tk = 502% (Yak, i+ Y ik = Yrisa)
Hence by virtue of (3.1),
To*= —20:4Th 307 (Yak, it Viad— Yeira)-

The vector T is assumed to be of the same order as v.
Computing the Ricci tensor from the linearized formula

Ru=Tiax*—Tir,a%
we find

Ria=23Tr.i— i)+ 37 (Yei,apT7ap ik

_'Yai,ﬁk—'Yﬂk,ia)- (4»8)
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We are still at liberty to impose four coordinate con-
ditions which will not affect the quasi-Minkowskian
character of our coordinates. Let us choose these (as in
general relativity) to be

1% (Yai s~ 47ap,i) =0. (4.9)
From (4.9) we obtain by differentiation,
1% (Yai gtV at, 8~ Y ap,ie) =0.
This enables us to simplify (4.8) down to
Ry=3Tei—Tip)+3[Jvis, [J=n"P0a0s. (4.10)

The Eqs. (4.7) now lead to
[Jva=0

which are the linearized field equations of gravitation,
if we interpret s, (or perhaps gi) as the metric tensor.
(In the following section it will be shown that the choice
of 15y for the metric tensor leads to the correct equations
of motion.)

If Ry is assumed proportional to the electromagnetic
field, then (4.6) [or, in its rigorous form (2.15)] is most
naturally interpreted as the first Maxwell tetrad (the
one which asserts the vanishing of the magnetic current).

Further, we have from (4.3) and (4.10),

1
D’Ygli= %(Fk,i—' Fi,k) +"Y@'~
«

This equation shows that I'y, is, in a very rough sense,
the vector potential of electromagnetism. Taking the
cyclic divergence, we get

D'Y[ilg,l]=_—’)’[ﬂc,z]- (4.11)
o

This is compatible with, although not equivalent to,
the second tetrad of Maxwell’s theory.”
Define (rigorously)

Ji=(—det Ts:;ic)"%;e“i“R (k.01

so that J* is proportional to the 4-current. The equation
of conservation of charge is then (rigorously) satisfied:

V. Jé=0.

Here, V, indicates the covariant derivative with respect
to the Christoffel symbols of Tsy.

We have already pointed out that the constant o
must be negative.’ Accordingly, (4.11) may be written

[J7#= (1/A0)J*, (4.12)

7 Equations similar in structure to (4.11) appear in many
theories based on modifications of Einstein’s unified field theory.
See for instance, E. Schrodinger, Space-Time Structure (Cambridge
University Press, New York, 1950); B. Kursunoglu, Phys. Rev.
88, 1369 (1952); W. B. Bonnor, Proc. Roy. Soc. (London) A226,
366 (1954).
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where A=+/—a is a fundamental length, which we shall
assume to be of subatomic order. For a static spherically
symmetric charge distribution with Jé=p(r), (4.12)
reduces to

Ap=(1/N\)p
with the solution

p=Ae M7, (4.13)
This form of solution is of course only valid for weak
fields (i.e., large 7). In particular, the singularity which
(4.13) displays for =0 may be illusory. According to
(4.13), the charge density falls off very rapidly with
distance. We have in effect, a particle with a radius of
order A. In general, at distances from ‘“‘sources” large
compared with A, the 4-current vanishes to a high
approximation, i.e., the second Maxwell tetrad

Vi =0

is satisfied.

So far, we have considered only the field equations I
which constitute a particular case ¢#0, 8=0 of our
general field equations (2.8), (2.9). If ¢=0, we obtain
in place of I, the “‘cosmological” field equations II. In
this case, the general character of our solutions may be
expected to be the same as before, but silhouetted now
against the background of a de Sitter universe, instead
of flat space-time.

S. THE EQUATIONS OF MOTION

Our discussion up to this point already indicates
with fair certainty that the present theory correctly
describes the interaction between gravitation and elec-
tricity. Indeed, we found in the previous section that
the linearized equations for R,, are in agreement with

Maxwell’s equations. And in the next higher approxi-
mation the quantity M,,(R_), proportional to the elec-
tromagnetic stress tensor, appears on the right-hand
side of the equations for R,,. It seems plausible to

infer that the predictions of the theory regarding the
gravitational effects of weak electromagnetic fields will
agree with the results of general relativity, and also that
the present field equations will lead to the correct
equations of motion for charged masses.

We shall now examine this latter point more closely
by giving a brief sketch, following Infeld and Callaway,®
of how the equations of motion can be derived by the
EIH method. Our discussion will be restricted to the
field equations I.

We assume that the field is “‘quasi-static,” i.e., that
the derivatives of the field quantities with respect to «*
are of order e times the space derivatives, where ¢ is
small. The tensor fs.s is then expanded in powers of e

8 1. Infeld, Acta Phys. Polon. 10, 284 (1950); J. Callaway,
Phys. Rev. 92, 1567 (1953).
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as follows:
Ysa=—8ut+Shatehat- -,
2 s

Tsu= 63?1‘4‘*" Ty
TS44= 14+ haatethaat- - -.
2 4

We assume that the field is “quasistatic” i.e., that
the derivatives of the field quantities with respect to x*

To the second and third order in ¢, it is found, as in
Sec. 4, that %4 satisfies Maxwell’s equations at distances
from the particles large compared with the subatomic
length A:

ézi;g,k=0, }Zl[glg,z]=0, (5.1)
b k=0, hagpthra,itha,4=0. (5.2
3~ 3~ 3~ 9~
Note also
a1§£;£= /;,\;i (5.3)

A solution of (5.1) appropriate for N slowly moving

point charges is
(5.4)

}2%= €ini, 1,

where
o= g o(0), BB)=eB)/r(h),

and r(k) is the distance from the kth charge to the
field point. The third-order field equations are satisfied
if we write

N
}gxi\k/= _€4krs{ ;1 ¢(7') ér(i)},sy

where £.(2), the coordinates of the ith particle, are
slowly varying functions of time, and the dot indicates
the time-derivative.

Let P, be the Ricci tensor formed from the
Christoffel symbols of ts,s, which we shall identify with

the metric tensor. Write
Pu=P,— %mm“’sPaa,
Ruy=Ry,— %’7# V"’laﬂRa_ﬁ;

—uPs.

Aw=Ro

To the second and third orders, R, coincides with
P, i.e., Auw=A,=0. Hence the field equations
2 3

Riy=0, Ru=0, Ryu=0
2 2 3 -

can be solved exactly as in the theory of gravitational
motion.? We need not enter into details here.

9 A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).
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Consider now the fourth-order field equations

Rik = C!Mik (Rv)
4— 2
which may be put into the form

PotAstTa=0 (5.5)
PR

with
1;1'16 = aA{ik (Rv)

L m
=~ T nam ).

Since /4 is given by (5.4), it is clear that Ty is propor-
2~ 4

tional to the electromagnetic stress tensor for purely
Coulomb forces.
The quantities Ay can be expressed in terms of /.,
4 2

has by solving the equations
3

Tsik;,‘*= 0

(5.6)

for the afhinity to the fourth order, from which R and
P
hence A can be computed. Now, the relations (5.6)
4

are the same as those which hold in Einstein’s theory.
Hence, noting (6.8) below, we may take over the
results of Infeld and Callaway,® who found that

—{}ik= (é@%@,s"*‘ﬂip@rkd’,r‘ N, rpP,r), pr

We now integrate equations (5.5) over a closed
surface surrounding (only) the /th particle:

O}

(I:)ik"l‘l}ik"' {ik)nidS: 0. (5.7)

The integral of each of the three terms in (5.7) is
independent of the size and shape of the surface, since
to the fourth order,

f)ik,k=0, Au =0, Ty ,=0.
4 4 4

The integral of Py yields, as is well known? a term
4

proportional to the inertial resistance —m (2)£(I) of the

Ith particle, plus the gravitational force acting on it.

The integral of A* may be shown to vanish.® Hence the
4

last term of (5.7) must account for the contribution of
the electrical forces; and, indeed, it is clear from the
physical meaning of the Maxwell stress tensor, that
the integral of {zk will yield the Coulomb force acting

on the /th particle. The influence of the magnetic field
does not appear in this approximation, since we have
assumed the particles to be moving slowly.
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6. STATIC SPHERICALLY SYMMETRIC SOLUTIONS

It can be shown!® that the most general spherically
symmetric, static tensor field Ts;; is expressible in terms
of polar coordinates in the form

,—e# 0 0 w

L0 —? rssind O

fo. — !

Sik L0 = sinf —r%sin?f O}’ (6.1)
f—w 0 0 e’

where u, v, 9, and w are functions of 7 only.

Our object is to obtain solutions to field equations I
and II for the special case =0, w#0. The more inter-
esting case of w=0, v70 leads to serious mathematical
difficulties, (cf. the treatment by Wyman* of the cor-
responding case in Einstein's theory). In view of the
arguments of Sec. 4 it would seem that the solution
considered here corresponds to the field of a magnetic
pole rather than that of an electric charge.

We first consider solutions to the set of field equations
I. With »=0 in (6.1) we use Egs. (4.1) to obtain 8,
Substitution of % in (3.13) enables us to find v/ —g,
g%, and R.# The results are:

q [ (1= 4)} —r2  —r?sin’g 9 .
gn=diag| —e*(1—4)3, , e(l—A4 ],
T (=4)" (1=A)
(6.2)
14 41
8 =—8"=—[4/(1—A4) ] sind, (6.3)
w 1
a
where
A=ule ), (6.5)

The remaining 8# and R, are identically zero.

Considering (3.10), we note that it is satisfied iden-
tically except for the case =4, which yields

i)
6—{ [A4/(1—A)]J#? sing} =0. (6.6)
r
Integration of (6.6) leads to
A=1/(4rY), 6.7)

where the length / is a constant of integration. If we
denote by *R; the Ricci tensor formed from the *T';#
then it follows from (3.1) that

20T OT%
*Rik=Rik+—( ~—1}, *Ra=Ra (6.8)
3\ 9x. OJx; - -
Hence (3.11) may be replaced by
*R_11¢:= aM 4 (R). (6.9)

Using (6.2) and (6.3) we find that (6.9) reduces to the

10 A, Papapetrou, Proc. Roy. Irish Acad. A52, 69 (1948).
i1 M. Wyman, Can. J. Math. 2, 427 (1950). For the general case,
see W. B. Bonnor, Proc. Roy. Soc. (London) A210, 427 (1952).
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following set of equations:
*Ra=0, i7k,
*Ru+30g(Ry)*=0,
¥Ry j0g2:8" g (R14)* =0,
¥Ry~ 30g358"'g* (R1)*=0,
*Rus+50g" (R1)*=0.

(6.10)

In order to deal with (6.10) we need expressions for the
*Ta* which can be obtained by solving the algebraic
equations (3.9) for the 64 *I';x*, from which *R; may
be computed. Papapetrou!® has solved a set of equations
of the type (3.9), with a fundamental tensor of the form
(6.1), and has computed a Ricci tensor which is identical
with our *Ry. He has shown that the nonvanishing
components of ¥R are the following:

’

1 v u A
*Rll=_yll+_(yl__”/) — _+2 (__)
2 4 r

r
24 1 24
+—(V,—'_‘IL,+‘—’ ,
r r
*Rss
*Roym——=dre (v — ) F et — 14246+,
sin?9
e (6.11)
*Ru=—3(e*) + 1 (V' —u'—4/7)
A A 14 84
- (4—6"—“) +——e““‘(3v’—2p,’——+-———),
r r r r
w \ 4w
*Ryy=—*Ry=— 2(—6_“) ——eH
e he r r?
It follows from (6.10) that
g *Riu—g"* *Ryu=0 (6.12)

and when the explicit expressions for the g® and *Rg
are substituted in (6.12) we obtain [noting (6.3)]

v4u' 44
( +—2) (1—4)=0.
r

4

But according to (6.7)

7'4
1—A= >0,
14
so it follows that
v+ 44
—=0, (6.13)
r r?

Since (6.13) may be written

d
[p.+ v+log
d

r

,A
2
Pl
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we conclude that

(6.14)

()
sand =
e ap &%

¢ being a constant of integration.
It is reasonable to assume that for large 7 the fsa

should approach the metric of flat space-time, which
implies that we must have {2=1. Hence, using (6.5),

A 2
&= (1-|-—)e*", w=—.
r r?

Returning now to Eqgs. (6.10) we find, using (6.2),
(6.4), and (6.15), that the explicit expression of the
third equation is

(6.15)

2 44 v
V—H-(l— ) F—=—— (6.16)
r r  ar(l*+r)?
Equation (6.13) enables us to eliminate v from (6.16)

whereupon u is determined by

e et
—-—(1—6“) =0. (6.17)
2ar (1t4-r1)t
Let ew*=1—2m(r)/r, then (6.17) becomes
l4
m'=—— (P4, (6.18)
4o
so that
l4 0 d‘;’;
m=my+— f , (6.19)
sade e

wherem,isa constant of integration. Hence the equation
2my € p* dE
eTh= 1 — _—ﬁ_*_*

y (48"

together with (6.15), determines all the components of
tsix. In (6.20), we have defined the constant e by

= —14/2q,

(6.20)

(6.21)

recalling that « is negative.® It may be verified that
the full set of Egs. (6.10) is satisfied by our solution.
The asymptotic form of (6.15), (6.20) for large r
(r>1),
er=e=1— 2mo/r)+(&/1?),

is in agreement with the general relativistic line-element
for the field of a particle with mass proportional to m,
and (magnetic) charge proportional to e.

Equations (6.4), (6.8), and the last of (6.11) give a
partial determination of the vector I';. (This vector is
of course arbitrary to a certain extent because of the
X\ invariance of our theory.) It is found that T'; is
arbitrary, Ty=T3=0 (spherical symmetry), and T', is

785

given by a somewhat complicated expression, whose
asymptotic form for large 7 is

T'y~const 3 (1?/a) (1/7).

Our expression (6.20) for e * will be everywhere
nonsingular if the magnetic pole-strength and mass are

related by
Moo=
0 % f ( l4+ 54)%

However, e” still becomes infinite when »— 0. It is
not possible in the present theory to obtain a com-
pletely nonsingular metric tensor 'fs,k representing a
magnetic monopole.

So much for the field equations I. We turn now to
the alternative field equations II, Eqs. (3.19) to (3.22).
As the method of solution is much the same as before,
it will be sufficient to record the main results. If s
is assumed to be given by (6.1) with »=0, it is found
that

1
gu=— diag[~e(1—A)}, —r*/ (1~ 4)},
bR 8

~risin®0/(1—A)}, e (1—A)Y],
l4
e’= (H——-—)e"‘,
’

2m°
g = 1—._‘

+— (I*4-£)3E,
j: £4+l4)* 4brf

w==1/r

4 is given by (6.7) and e by (6.21). The asymptotic

form of this solution is

21110 e
e=¢rt=1——dF———7?
r 2 12b

(r>I)

and represents, according to general relativity, the field
of a magnetic particle in a de Sitter universe.

7. SOLUTIONS FOR FLAT SPACE-TIME

The existence of non-trivial solutions of Einstein’s
unified field equations for “flat” space-time (R ;3*=0)
has already been alluded to as being a defect of the
Einstein theory (Sec. 1). In the case of the field equa-
tions I of the present theory, it will now be shown that
the assumption

R =0 (1.1)

necessarily implies that the electromagnetic field Ry

vanishes (this is obvious) and that the line-element is
reducible to the Minkowskian form.

If (7.1) holds, the field equations I simplify to
*T:=0, (7.2)

(7.3)

Ts'ik,p_fsak *I‘iua_TSia *I‘ukaz 0,

gik=/—g g,
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From (7.3) and (4.1) it follows that Tsy=ga, a sym-
metric tensor. Then (7.2) may be solved in the con-
ventional way for the *T'*, which turn out to be the

Christoffel symbols {fk} of g Hence, by (3.1) we have

"
APLES { ik} — 25T (7.4)
Substituting (7.4) into (7.1), we find
R;j=P;u"*+36(T;,4—T4,5),=0, (7.5)

where P ;! is the curvature tensor formed from { fk}

Contracting with respect to %, and observing that
P..ix*=0, we obtain from (7.5),

I‘,-,k——Fk,,:O (76)
so that

P.pt=0. (1.7)

Equation (7.7) expresses the flatness of the Riemannian
space having the metric tensor gu. Consequently, ga
can be reduced to Minkowskian form. According to
(7.6), T}, is equal to an arbitrary gradient: this is merely
a reflection of the A invariance of the theory.

The question of flatness does not arise in connection
with our second set of field equations II, since here the
existence of a nonvanishing curvature invariant R is
presupposed.

8. CONCLUDING REMARKS

As Einstein' has pointed out, there are two distinct
points of view from which a field theory may be
regarded as “unified.”

(1) The field quantities should appear as unified,
covariant entities which are irreducible under the
invariance group of the theory. (For instance, the
electric and magnetic fields experience a unification in
this sense under the Lorentz group of special relativity.)

(2) The Lagrangian of the theory should not be
expressible as the sum of several invariant parts, but
should be a formally unified entity.

Einstein’s theory, whose field equations are derived
from the variational principle

6f(—g)*Rd4x=0, 8.1)
and which operates with nonsymmetric ga, I'* appears
to be satisfactorily unified from the second point of
view, but fails to satisfy (1), since the g are not
irreducible.

Precisely the reverse appears true of the theory de-
veloped in this paper. Our field quantities are irreducible
under the “extended group,” comprising the group of co-
ordinate transformation and the A transformations (1.1)
but our Lagrangian (1.3) is not unified according to

12 A, Einstein, Ann. Math. Princeton 46, 578 (1945).
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criterion (2). However, the latter is a somewhat loose
requirement which can be met by a variety of formal
devices. Let us write g, R for the matrices g, R,s, and
regard their matrix product as expressed dimension-
lessly in terms of some suitable microscopic standard
of length (e.g., the length X of Sec. 4). Then we may, for
instance, consider the action principle

5 f (—iLdw=0, L=Trf(gR), (8.2)

where f is an arbitrary analytic function such that
f(0)=0. Expanding f in powers of the matrix gR, we
obtain

L=1"(0)g"Ru+1f" ()R, R+ - -,

which agrees with (1.3) up to the quadratic terms, if
b=0, 8=—a. From this point of view, the present
paper may be regarded as a preliminary exploration of
the consequences of (8.2) in the case of weak fields, for
which the higher terms in (8.3) can presumably be
neglected.

More generally, a Lagrangian of the form

L=Tr f(gR, gRT)

(8.3)

might be considered, where RT denotes the transposed
matrix. This Lagrangian is M invariant, transposition
symmetric, formally unified, and reduces to (1.3)
(with 5=0) in the quadratic approximation. The diffi-
culty is to find some way of discriminating among the
innumerable possibilities which present themselves once
Einstein’s simple choice L=Tr (gR) is abandoned as
inadequate.

We remark finally that an approach to the problem
of unification resembling ours in one or two respects
has been given in a series of profound studies by
Lanczos.”® Postulating a Lagrangian which is homo-
geneous quadratic in the curvature, Lanczos is led to
field equations of cosmological type, the “cosmological
constant” being now interpreted as a microscopic
constant. Lanczos’ treatment differs basically from ours
in not straying outside the framework of Riemannian
geometry, and in not making use of the Palatini method
of variation."
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An invariant formulation in Minkowski space-time of an approximation to the Einstein theory of
gravitation is given. In this formulation a tensor is introduced which may be interpreted as the approximate
stress energy tensor of the gravitational field. Conservation laws involving this tensor and the material stress
energy tensor are formulated. The behavior of these tensors under ‘“‘gauge transformations” of the weak
gravitational fields is discussed. The classical limit of the conservation of energy equation is studied and
the results are compared to some observations of Bondi on a possible analog of the Poynting vector for

a gravitational field.

1. INTRODUCTION

T is the main purpose of this paper to formulate

and discuss conservation laws in invariant form in
Minkowski space-time for an approximate version of
the Einstein theory of gravitation. These laws will
involve the approximate energy and momentum of the
material and gravitational fields. The discussion will
be mainly concerned with a first approximation to the
Einstein theory but may be extended to higher approxi-
mations. We shall relate the results obtained to some
observations of Bondi' concerning an analog to the
Poynting vector for classical time-dependent gravita-
tional fields.

The Minkowski space-time will be used as the
underlying space in which the discussion will take
place. In principle, any fixed Riemannian space-time
may be used. There are, however, two reasons for
choosing the Minkowski one: (a) with this choice the
Newtonian approximation is readily obtained from the
first approximation given below by neglecting terms
of the order of 1/¢* and (b) the underlying space-time
admits a ten parameter group of motions, the in-
homogeneous Lorentz group. Use is made of the latter
fact in formulating conserved quantities.

The approximate theory mentioned above is obtained
by considering the metric tensor g,, of space-time as
defined over the Minkowski space as a convergent
power series expansion in

k=87G/c*=1.864X 102" cm g, (1.1)

where G is Newton’s constant of gravitation and ¢ is
the velocity of light of the special theory of relativity.
We assume that

guvzﬂuv‘i‘khufl_%kzh(?)w"}‘ Tty

where 7,, is the metric tensor of the Minkowski space-
time. The coordinate system in which Eq. (1.2) holds
may be an arbitrary one. The equations satisfied by
the g, that is %, £@u- -+ will be derived from the

(1.2)

* This work was supported in part by the National Science
Foundation.

1H. Bondi, “Les proprietes physiques des ondes gravita-
tionelles,” Colloque International Sur Les Theories Relativistes
de la Gravitation, Royaumont, 21-27 June 1959 (to be published).

Einstein field equations

Gu=—kT,, 1.3)
where

Guw=R,,—3g.R. (1.4)

R,, is the Ricci tensor and R the scalar curvature
tensor formed from the g,,. The tensor T,, is the
stress energy tensor of the matter ‘“creating” the
gravitational field.

Both the tensors G, and T, may be considered as
functions of & and written as

Gu=Gwywt+ kG wt+ilCGmwt---,  (1.5)
Tw=T0w+kT 0wt 3Tt (1.6)

It is evident from Eq. (1.2) that
G0y =0. .

The following discussion will center about the
discussion of the equations

[(G,,,.-{—kCZT,,,,)g"”:I;,,:O, (1.8)

which are consequences of Egs. (1.3). In Eq. (1.8),
the semicolon denotes the covariant derivative with
respect to the metric tensor g,,. Because of the Bianchi
identities, we have

(Guwg*®). ,=0. (1.9)

If Egs. (1.5) and (1.6) are substituted into Eqgs. (1.3),
and the resulting equations are regarded as identities
in %, we obtain

G nywr=—nT (n_1yur- (1.10)

These equations may be regarded as differential
equations for the determination of the /(). In terms
of Bemyur aNd T (mypu(m=1,2,- - -n—1). The T ()., must
be such that

dm
— (kT ,g“);] =0, (1.11)
[dkm A N

where T, is given by Eq. (1.6), and the g*# are functions
of k& which satisfy

dg** Ager

=_gw

dk dk

g7e, (1.12)
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We also require that

(T(O)yvnﬂp),p:07 (1-13)

where the comma denotes the covariant derivative
with respect to the tensor g,,.

Equations (1.12) and (1.13) are equations for the
determination of the T (ny,, in terms of k¢ u and T gy
with r=1, 2, ---nand s=0,2, ---n—1.

2. CALCULATION OF G,»

We begin our discussion by considering the expansion
of the Christoffel symbols as power series in k. Thus,

"
{ =38 (gvoletLoal»—Eualn)s (2.1)
Vo
where we have used the notation
9815/ 0%°=gup)0- (2.2)
We may write
i b I B u
{ ={ } +k{ 4+ +-e,
vo vo ) (o) volqy 2llvel (g
where
" a~ { u
d-GliD e
vo (n) dk" vo k=0
Thus
'u 1
:77"‘P(nvp|6+npd[v_7]vv|p), (24)
va |l (0)

the Christoffel symbol calculated from the #’s. In a
Galilean coordinate system,

M
1 -
va ) (o)

It may be verified that

(2.5)

"
Aw“—:{ } =%nﬂp(hvp,a_'—hpd.v_hﬂ,p); (2-6)
val

where, as above the comma denotes, the covariant
derivative with respect to the tensor 7,,. It follows
from Eq. (2.6) that

I
[“) b=, 2.)
vy
where
h=n*rh,,. (2.8)
The Ricci tensor is defined by the equation
g o P o T a
S T 1 0 8 AT
ey, lpol, lur)lpe pod by

TAUB

Hence,
Ryw=0

73 o
R(l)u»='— + .
Ml MO (1),

On substituting from Egs. (2.6) and (2.7) into Eq.
(2.10), we obtain

and

(2.10)

R(l)l"’= _%npv(hpv,u"i_hpu,v_hpy,p'—'r]py]l,“),,,. (211)
Since R(0),,=0, we have
Ruy=1"Ruw= —npv(hpa.ﬂnaﬁ_h,p),a- (2.12)

Thus we may write

Guw=Rwmw—3m.Ra)
=—3n° (kpv.u'i"kun,v_kuv,p_nuvkpa.ﬂﬂ“‘s),:
= %ﬂp”(kw,u“ kuv,p_' "luvkt»a,ﬂnaﬂ'{'npvkua.ﬁ’?aﬁ) .6y
(2.13)
where

k‘ll":hpv-'%n“yh- (2.14)

Because the Minkowski space is a flat space it
follows that

G =1"G 1yrs (2.15)

and the order of covariant differentiation is immaterial
that is,

£ ag=1l g
It may be verified by using Eqs. (2.14) and (2.15) that
Gy, =0. (2.16)

3. CALCULATION OF G

In this section we shall evaluate the above tensor
in terms of k,,, k(2w and their first and second deriva-
tives. We shall show that it may be written as a sum
of two tensors. One of these contains the second
derivatives of k., and %), and has a vanishing
divergence. The other is a function of the #,,, its first
derivatives, and G-

It follows from Egs. (2.1) that

! “

=B, — 2/%"/1 va,
[ Vo) (o)

(3.1)

where
Bwuz'fl“% (h(2)vp,w+h(2)ap,»—'h(z)ua,,,)

and 4,.” is defined by Egs. (2.6).
By differentiating Eq. (2.9) twice with respect to
and setting k=0 we obtain

[ p
Rayor=— +
g7 (2),p oply,r

— 24,54, 240004, (3.3)

(3.2)
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Since
G = (gg" —38"8")Rors

it follows that

Gy = ("’ =" n" )R )0
—2(h*oy T+ — et — 3R ) Ry (3:4)

In view of Egs. (2.10) and (3.3), we may write the

above equation as
a p
+ 5%
orl@ loplw

+2 (hud,qv‘r_i_hvrnmr_ %huvnv‘r_ %ha'rnuv)

Gy = [(n‘“’n"—%n“"n‘") ( -

x(A,fa—Aupaf)] 2 — )

X (A V)\pA pr)‘_ A w‘rpA p)\)\) - 2 (h‘”ﬂ”‘i‘h”"l"”
= Y= B ) (A= Ay

It may be verified that

G (oy**= H"~-2c2kLE*, (3.5)

where

H?,=0 (3.6)

and

Hrv= [(77""'7”_%"7”"7") (_ via+57aBﬂpp)
A (e
= (=), et (0T = 3T) BT
L A R L Ry P Iy A
7 L o o),
+[hh.p(ﬂ”“n"‘”—ﬂ“”n”“)]m (37)

1= h¥phe.

with
(3.8)
2L ER =2 (" — 37 T) (A A o = Ao Ar\)
—2(hron T — 3T — 3 hTT)
X (Aart— Ae,"8:5)
kit ke koo —yeoke), o
Ak h 2 — bk T, (3.9)
where, as before,
ko= ppy—Intvh.

Equation (3.9) may be shown to be equivalent to

2 = _kr,p}lk’arp,nvv,__kryﬂvk,o_'rpnvp_.l_kp"r}lk’)\vp.”'r)\
R Ry N BN o7 Nl TRV L g
—3h.oh, P —2hG o)

+ 507 (ke ok, 20" — Shao, k20T

+3h, ko] (3.10)
It follows from Egs. (3.5) and (3.6) that
Gy " =2Ck"1E M. (3.11)
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In view of the field equations, that is Egs. (1.10) and
Eq. (2.16), this equation may be written as

(To“v+kT(1)""+Ew),y=0. (312)

Equation (3.11) holds for arbitrary %,, and %), that
is, it is an identity in these quantities.

Equations (3.12) are the approximate equations of
motion of the matter represented by the tensor T
[cf. Eq. (1.6)], correct to terms involving k% They
are written in invariant form in the Minkowski space.
If k., is interpreted as a tensor in this space
(approximately) representing the gravitational field
created by the matter, then we may regard the last
term in Egs. (3.12) as the ‘“stress-energy” tensor of
the gravitational field.

In a later section, we shall evaluate the right-hand
side of Eqgs. (3.9) for a particular choice of the tensor
T oyus, that is, for a particular choice of k,,. We first
make some remarks concerning some consequences of
these equations.

4. CONSERVATION EQUATIONS
We may write Egs. (3.12) as

(M#w+Em) =0, (4.1)
where

Meoe="T ko4 kT 1y (4.2)

Multiplying Eq. (4.1) by an arbitrary vector field of
Minkowski space-time A, and summing, we obtain

(7\,,(M’“+E“")) ,M_% (M“V"{'Ew) O‘uw"')‘vvu) = 07

since both M** and E** are symmetric.
When A, is a Killing vector of Minkowski space-time,
that is when

>‘u,v+)‘vm=0; (4-3)
we obtain the conservation equation
(MM e+ ER)) 4 =0. (4.4)

As is well known, the general solution of Eqgs. (4.3) is
given by

MN=Fx"+a, (4.5)

in a Galilean coordinate system in Minkowski space-
time where

F,=—F,

and are independent of x* and the a, are constants.
There are thus ten linearly independent A, and associ-
ated with each of these there is a conservation theorem
of the form of Eq. (4.4).

The four-vectors which in a galilean coordinate
system have the coordinate

M@=, a=1,2,3,4 (4.6)

will be said to be associated with the conservation of
energy and momentum.
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Equation (4.4) implies that

f M (M E»)n,doy=0, (4.7)

where the integral is taken over a closed three-
dimensional hypersurface in Minkowski space-time

and
dx® dx° 9x”
1, d30=(—1)  €yer— — —CQudvdw,
ou dv dw

(4.8)

if #, v, and w are variables giving a parameterization of

the hypersurface.
For use in later sections, we derive an equation based

on the Bianchi identity

G; v‘”: G| va_i_Gpv

u v
}+c,w{ }:o.
pu up

If this equation is differentiated twice with respect to
£ and % is set equal to zero, we obtain
In
K
vpl

G =Gy opu—h Gy —2G 1y hyp -

In view of Eqs. (1.10), (2.16), and (4.2), this
equation may be written as

Mu.rv= %k[T(O) l"'ht«p,m_’h,vT(O)uV_ZT(O) ”hpu,vj-

14
G(?),v“”=—2G<1)““K } —2Guy"*
ovl

that is,

(4.9)

5. GAUGE INVARIANCE

In this section we shall discuss the effects of a
transformation of coordinates in the Reimannian
space-time on the tensors %, and /), in the
Minkowski space-time. We recall that, in any co-
ordinate system,

(d"gus/ AR )jm (¢.1)

Under the transformation of coordinates in the
Reimannian space-time defined by the equations

By =

yr=y¥(x), (5.2)
the tensor g,, transforms as
g (2)=gor* (Y (@) Y1u"y5" (5.3)

It then follows that, if the functions y* are independent
of %, the quantities %, transform as tensors in the
Minkowski space-time under the transformation given
by Egs. (5.2) where these are now interpreted as a
transformation of coordinates in the Minkowski
space-time.

If the functions y* depend on &, it follows from Egs.
(5.2) and (5.3) that

Py wr* = (d7g ™/ AR im0

TAUB

is not the tensor transform in the Minkowski space-
time of %¢nyu. In this case, Egs. (5.2), which may be
written as

yr=y*(x; k), (5.4)

may be interpreted either as a transformation of
coordinates for fixed % or as a congruence of curves for
variable %.
It is sufficient to discuss the case where Eqgs. (5.4)
are such that
(3.5)

yr=axhtkfr(x; k). (5.6)

For a general transformation of the form of (5.4) is
obtained from (5.6) by following it by a transformation
independent of k. Let us write

(@™y*/dk™—o=a(n)*

(1) k=0=8,".
That is,

(5.7
and set
(5.8)

0(1)": a*.

The functions ¢* are the components of a contra-
variant vector field, the vector field tangent to the
congruence of curves (5.4) at the point a*. In fact,
under the transformation of coordinates

x'r=g"(x),
with the definition

yo=g@),
we have

dy'” Bx"’
() Go)e
k=0 616'

However, the functions a*(x) do not have a vector
transformation law. Indeed we have

d2 /o
a@' = ( )
’ a

Note that the quantity

dx'e '

ara’.

a()

ox” dxPox”

g
b=ae’+ { }a*’a’ (59)
7p

does obey the transformation law of a vector.
It follows from Egs. (5.3) and the definition (5.1)
that under the transformation (5.4) subject to Eq. (5.5)

h“y*= /’l”y—a«u,y"av,u, (510)
heyw*=h@u—"bpy—=by u—20500,,%,,"
—2(huy, @+ hyo*a o+ hug*a,,0)
=h@u—2(hur, 00"+ hpo 1+ 1o, %)
—(b,,——Za,,,.,a"),y— (by_zav,vaa).m (511)

where the vector d* is given by Eqs. (5.9) and we
have made use of the fact that 9., is the metric tensor
of a flat space.
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In case
Ruv=h2yuw=0,
e (5.12)
hy*=— (a4, Fa,u),
h(?)uv*z - (b“—Za,,,ad”),y— (by——Zay,,a”),,. (513)

That is, even when the Reimannian space-time is flat
but a non-Galilean coordinate system is used which
arises from a Galilean one by a transformation of the
type given by Egs. (5.4), the quantities %,, and A,
need not vanish. However, they are of the form given
by Egs. (5.12) and (5.13).

We shall call the transformation

By~ by,
by = heyw®,

where the A,,* and k(s),,* are given by Eqgs. (5.10) and
(5.11) a gauge transformation. It is the transformation
induced on these tensors by the coordinate trans-
formation (5.4). When £,,* and %s),* are substituted
into Egs. (2.13) and (3.4), we will obtain quantities
we shall denote as G1y*** and G(***. These are the
coefficients of the first and second powers of & in the
expansion of the tensor

R*pv_ %guv*R*__: G*uy,

which may be obtained from the tensor G** by using
the fact that G*** arises from G** by means of the
transformation (5.4) and the transformation law

G*¥* () =G (x)ys"Y)+" (5.14)

It follows from this equation by setting £=0, by
differentiating with respect to % and setting £=0, and
by differentiating twice with respect to £ and setting
k=0 that

Gy***=G@*=0,

Gy =Gy, (5.15)

and

Gy =G "

=2[Gw Me*~Gw* e —Guy™ae,+]. (5.16)

These equations may also be derived by substituting
hu® and k(ay.* into the equations defining G1y**” and

G@™** as functions of these quantities. Since Egs.
(3.10) hold identically in %,, and %) ,,, we have

Gy, "=22k"E *o7=2%"E ,°"
+2G)°%a,+,"+2G 1)*7a,5,°
:2(Czk_lEdr"FGafa,pp_}_GTpd,pa),r
as follows from Eqs. (5.16) and (2.16).
It is a consequence of Egs. (5.15), (5.16), and (1.10)
that
T(o)*#v_l_kT(l)*uv
=T +kT0*—k[Tw "0 —Tw*"a,’
—Tw™a,.*].

(5.17)

(5.18)
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We now define the vector

AF=M—k(aN 1 2,0,07), (5.19)

where A, is one of the Killing vectors of Minkowski
space-time, that is, A, satisfies Eqs. (4.3). It may be
verified as a consequence of Eqs. (5.18) and (5.19) that

>\“*M*yv

=AM —k(a*MNT ), p—MT 3*°a,,”), (5.20)

where terms in k% have been neglected, and M* and
M*#w are defined by means of Egs. (4.2) and the
corresponding equations for the starred quantities.

If we multiply Egs. (5.20) by (1—ka,,%) we then
obtain to the same accuracy

(1—ka ")\ M +*
=M M#— k[ (a*A T 0y*"),,—MT 0y*Pa.,,”],
and hence

[(1—ko, M1,
= M) ,— kLo \T )#) 0.
= ()‘MM'”).W

The first form of Eq. (5.21) holds for an arbitrary
vector Ay The second form of this equation follows
from the first form by virtue of the fact that A, is a
Killing vector and T )** has a vanishing divergence.

It follows from Eq. (5.21), by integration over a
region of Minkowski space-time bounded by a closed
three-dimensional hypersurface, that

(5.21)

f(l —ka SNF M ¥n,dby= f)\“M“”n.,d'*v

=~f)\“E“”n,d3v. (5.22)

It is of course a consequence of the first of Egs. (5.17)
that

f)\“M"”*n,dav= —f)\AE“”*iz,d3v. (5.23)

The difference between the surface integral of E#*
and that of Z** is due to the fact that the hypersurface
in Minkowski space-time into which the hypersurface
defined by the equations

x# = x* (0w, v,w)

transforms under the transformation defined by Egs.
(5.4) differs from the former one. Thus we see that,
although the gravitational energy tensor E** is not
gauge invariant, the conserved quantities computed
from it are related by Egs. (5.22) which take into
account the fact that the gauge transformations arise
from coordinate transformations in the Riemannian
space-time.
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6. BONDI’S RELATION
In this section we shall compare Eq. (4.4) with

)\v=774v,

where the 75,, are evaluated in a Galilean coordinate
system, to a set of equations first derived by Bondi!
from classical arguements. We shall derive his relations
by studying the classical limit of the Einstein field
equations for weak fields for the case where T (y*” is
the stress energy tensor of a perfect fluid. In forming
the classical limit we shall neglect terms involving 1/¢2.
The tensor E** will also be evaluated for this special
case in the classical limit.

McVittie? has given the k,, associated via Egs. (1.10)
with such a T (**. In the notation used above,
McVittie’s results may be written as follows:

In a Galilean coordinate system, let

fyy=—2¢8,4,+ (¢+2g(n)/c2)7lw; (6-1)
then
h=2(p+y¢/c?), (6.2)
where
4
V=2 gw (6.3)
u=1
and
k= —208,40, —2c 2 (s (6-4)
with
W =v—2gw, (6.5)
hence
4
Zl Yw=¥. (6.6)
—

It may be verified from Egs. (2.13) that
Goy=c"%0 it @ .60+ Yy,
@

Goti=—C¢,u—¥w,u—¥w,i
Guy¥=c0,ut¥ (@, @), 0m™

+2¢<i),i¢—62(§ Ya.u),
Gy =Wwt+¥m) ey 1747,

The tensor T'()** may now be calculated from Eq.
(1.10) where the above quantities are used for G*".
If in the resulting equations we neglect the terms in
1/¢%, we obtain for the classical limit

T "= —38%p ;=p,
T(o)“: ‘P,i4=pUi,
T 0= — ¢,0—= 2 ), e T iy 110"
+(Zl): Yo .u=pUtp,

(6.7

T == o+¥d). =epUl;

2 G, C. McVittie, General Relativity and Cosmology (Chapman
and Hall, Ltd., London, England, 1956), Secs. 6.1 and 6.2.
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The extreme right-hand sides of Egs. (6.7) are obtained
from the classical limit of the relativistic stress energy
tensor of a fluid

€ P ?
T"”=p(1+—+—— urU—
& pc? &
with
1 ) U
(=)

ut = , =3 UL
(1—o¥/c*)} G

The quantities ¥ are not arbitrary but must be
chosen so that a set of equations called consistency
equations by McVittie must be satisfied. These
equations are determined from the requirement that
the ten equations (5.7) determine the five quantities
p, 9, and U;. When these are satisfied we find

p=—.0%,
pUi=+o.u, 1,7=1,2,3, (6.8)
p=—outx,

where x is determined by the integrable equations

3 LA, 45
X,=Y ’) , 1=1,2,3. (6.9)
23

=1\ @ g6t

We next evaluate the right-hand side of Eq. (4.9) in
the classical limit, that is, by substituting from Eq.
(6.7) for T(y* and from Eqs. (6.1) and (6.2) with the
terms in 1/¢* omitted for 4,, and 4.

Equation (4.9) then becomes

Ma‘u"'_‘ %k[S",aT(O)M (_ 25u46p4+"lup)
—4¢ (T 0a*—T 03" ].

If we set a=4 in this equation we obtain, on neglecting
terms in 1/¢? inside the parentheses,

(6.10)

My b= —%ko T w"=3ke b0,  (6.11)

The first of these equations may be written as

M= —3k[(¢T ™) s~ T ) ,4*]
=—3k[(eT ") s+ ¢T ,#]
=—[ (T ") 4+ (T 0*).i— 0. T "], (6.12)

since
Ty ,»""=T 0y, "+ T (0),#=0.

The second of Egs. (6.11) may be written as
Myt =3k (0.40,i— 09.45),187— ¢ 4:0,30%
+ (¢<P,4i).i5ij:|

=3kl (0.10,— 0¢,45) 87— ¢ ;T 0*
+(eT ') .i], (6.13)

where we have used Eqs. (6.7). Subtracting Eq. (6.13)
from (6.12), we then obtain

¢ o
=3(0.40.i— 00,45 87+ (T ©*) i +5 (T 0)*) 4
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The scalar ¢ is related to the Newtonian potential V
by the equation
V=4xGe,

as is evident from the first of Eqgs. (6.7). Hence, the
above equation may be written as

pUV ;8= (STG)—I(VAV,,'—' VV,M),]'&H
+VU) 67543(pV).s  (6.14)

Equation (6.14) has been derived by Bondi from
purely classical arguments and has led him to suggest
that the vector

2= 8r) V4V, :—VV &)

is the gravitational analogue of the Poynting vector.
That is, it represents the momentum of the gravitational
radiation through unit area of a surface exterior to the
moving matter.

When Eqgs. (6.12) and (6.13) are added we obtain

My =1k (00,:i87) 47 (0,405~ 0@ 47),:07]
or

My #=c?[—(3pV)
+ BxG) UV (V ;—VV 4;),:67].

This equation relates the four-dimensional divergence
of the energy-momentum of the material field with the
time rate of change of the potential energy of the mass
distribution and the divergence of the vector p;.

We shall compare Eq. (6.15) to the equation resulting
from Eq. (4.4) for the case of a perfect fluid by choosing
A, as mentioned above. To do this we substitute for
k., from Eqs. (6.4), with the 1/¢? terms omitted, into

(6.15)
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Eqgs. (3.10). We then obtain, on neglecting 1/¢? terms

EY=—3k[+1¢ 087 +400,i87],

or
Eb= — [ —4Vp+F (xG) 7V iV ;6%]
== [—3pV+E@G) VYV ) 87], (6.16)
Efi=3k[3¢10.+40¢.14],
or
Bri=c(4xG) 3V 4V A4V V i]
=~ (8nG) V4V i—VV 4.)
—F@G)(VV.0).e].  (6.17)

On substituting Eqgs. (6.16) and (6.17) into Eq. (4.4),
we obtain Eq. (6.15), since the time derivative of the
second term in Eq. (6.16) cancels the space divergence
of the second term of Eq. (6.17).

Thus we see that, in the classical limit, the
gravitational stress energy tensor introduced above
leads to a conservation of energy equation identical to
that proposed by Bondi. However, the energy density
and the analogue of the Poynting vector, the quantities
E* and E* differ somewhat from those he proposed.
The differences are: The former quantity contains a
term proportional to a three dimensional divergence
(the three dimensional Laplacean operating on V?) and
the latter contains a term proportional to the time
derivative of a gradient, (the gradient of V?2).

The derivation given above enables one to obtain
the stresses ¥ as well as the quantities E# and E*.
These may be calculated by substituting from Eq. (6.4)
into Egs. (3.10) and neglecting terms involving 1/¢.
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The outgoing solution of the time-independent Schrédinger equation, with a suitably restricted real
potential, is shown to be the uniform limit of the square-integrable solutions of the same equation with
complex energy as the imaginary part of the energy tends to zero. Under further restrictions on the potential,
it is also shown that the solution to the initial-value problem for the time-dependent Schrodinger equation
tends to the outgoing solution as time increases indefinitely.

1. INTRODUCTION

HE scattering problems which arise in classical
quantum mechanics may be described in terms
of an unperturbed wave incident upon a potential which
is switched on at a certain instant of time {=0. There-
fore, the scattered wave, which exists for 120, satisfies
an initial value problem for the time-dependent Schro-
dinger equation. If the incident wave is time-harmonic,
it is natural to assume that the scattered wave becomes
time-harmonic with the same frequency as time be-
comes infinite. Then the steady-state solution, which
is the limiting form of the scattered wave, will satisfy
the time-independent Schrédinger equation. The ques-
tion then arises as to what conditions should be im-
posed at infinity to ensure the uniqueness of the solution
of this equation.

Three principles seem to be available for determining
a unique solution of a scattering problem. These are:

(1) The radiation principle, which is that the solution
should satisfy Sommerfeld’s radiation condition.

(2) The principle of “limiting absorption” (Igna-
towsky?!) which states, in the case of Schrédinger’s equa~
tion with energy £>0, that the solution is to be obtained
as the limit of the bounded solutions of the same equa-
tion with energy E4-ie as the parameter ¢ tends to zero
through positive values (assuming the time dependence
is of the form ¢~%**). The principle has its roots in the
theory of scattering of electromagnetic waves where
it is known that the media through which such waves
propagate are usually “absorptive.”” This means that
in actual scattering phenomena, which are characterized
by the fact that the wave number % does have a small
positive imaginary part, energy is always dissipated.
Consequently, it is expected that boundedness or vanish-
ing conditions at infinity would insure the uniqueness
of the solutions to such problems. The principle of
limiting absorption states, roughly, that in order to
solve the idealized scattering problem where no absorp-
tion occurs we must take the limit of the “physically
attainable” solutions as the absorption approaches zero.

* This work is based on a part of the writer’s dissertation, sub-
mitted to the Mathematics Department, University of California,
Berkeley, and was supported in part by the Office of Naval
Research.

1W. Ignatowsky, Ann. Phys. 18, 495 (1905).

(3) The principle of “limiting amplitude.” This con-
sists of solving the initial value problem and then
studying the limit of such a solution as time increases
indefinitely. It is supposed that any part of the solution
whose time dependence is different from that of the
incident time-harmonic wave has a transient char-
acter, i.e., it will die out as time increases. Consequently,
a stationary state with the same time dependence as the
incident wave will emerge as the desired correct solu-
tion. This is physically the most reasonable of all three
principles, though its applicability is rather limited.

In a previous paper? we considered the Dirichiet-
Neumann problem associated with the three-dimen-
sional Schrédinger wave equation with a suitably re-
stricted real potential V (r)

Ly=[A+F-V (D W@®)=0, >0, (L1

and proved that Sommerfeld’s radiation condition does
specify the solution uniquely. The primary aim of this
paper is to apply the latter two principles to the same
equation. Our main results are:

(i) The radiating solution of Ly=f, where ¢ is
defined in the whole space or in the exterior of a regular
closed bounded surface Z and f is a suitably restricted
function, exists and is the uniform limit of the L, solu-
tions of the Schrédinger equation with complex energy
k? as Im (k%) — O through positive values.

(ii) Under rather severe restrictions on the operator
(—A4-V), we show that the radiating solution is the
limit, as £— o, of the solution to the time-dependent
problem. Thus, we have shown the equivalence of the
three methods described above for characterizing the
solution.

The above results extend some of the results of
Povzner? and Ladyzhenskaia* although the methods
used are similar. Ladyzhenskaia proved that the time-
dependent problem (for a wave-like equation) leads as
time increases to the radiating solution under the as-
sumptions that (—A-+V) has no eigenvalues and that
V is continuously differentiable (C®W) and is of com-

2 C. Zemach and F. Odeh, Arch. Rational Mech. and Analysis
5, 226 (1960).

3 A. Y. Povzner, Mat. Sbornik 32 (74), 109 (1953).

4 0. A. Ladyzhenskaia, Uspekhi Mat. Nauk 12 (3), 161 (1957).
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pact support.® Povzner assumed that V&EC® and is
O(r+), p>3.5 and proved the existence of the solution
to the integral equation derived from LG(r,s)=93(r—s)
(the so-called second resolvent equation) and its con-
tinuous dependence on % if k2 does not belong to the
point spectrum of (—A-+V).5 Assuming V to be also
radial, Povzner proved that the point spectrum is con-
tainéd in the nonpositive real axis. Recently Ikebe®
proved, independently, the existence of G for all #2>0
assuming V to be square integrable, Hoelder continuous
{except for a finite number of singularities), and
O(r ), u>2 at infinity. The conditions we impose on V
are stated in Sec. 2 below and are less restrictive than
any of the above mentioned.

The main restriction referred to in (ii) is that the
operator (—A47V) have no point eigenvalues (i.e.,
bound states). If the potential were switched on at
t=—c0, as is usually done in scattering theory, one
would expect that the exclusion of bound states would
be unnecessary. A similar remark applies to the prob-
lem treated by Ladyzhenskaia.t

We outline the plan of the paper. In Sec. 2 it is shown,
following Povzner,® that the question of the existence
of G reduces to studying an inhomogeneous integral
equation with a Fredholm alternative property and we
study the homogeneous equation. In Sec. 3 the existence
of the solution to Ly = f and its continuous dependence
on k are proved. In Sec. 4, the time-dependent problem
is reduced to a time-independent one by means of a
Laplace transform, and the validity of the principle of
limiting amplitude is shown. In Part II we prove that
similar results to (i) and (ii) above hold also for the
wave equation in an inhomogeneous medium. %

2. THE RESOLVENT OPERATOR [—-A -4V k]!

Assumptions and Preliminaries

We shall use the same notation which was employed
in Zemach and Odeh,? hence we define

1V(s)]

D lr—s]

I(n)= ds,

where D is the whole space E; (or the exterior of a
bounded closed regular surface =) and assume:

@ I(r)—0 as r— x, (2.1a)
(i) V(r) is locally Hoelder-continuous’
and is bounded near infinity. (2.1b)

% Additional hypotheses should have been assumed in Lady-
zhenskaia’s paper, since Povzner’s proof fails in the case £=0.
A counter example is given in Sec. 2, and the correct hypotheses
are stated in Lemma 4.1.

¢ T. Tkebe, Arch. Rational Mech. and Analysis 5, 1-34 (1960).

6a F. M. Odeh, J. Math. Phys. 2, 800 (1961).

" This may be easily extended to a potential having a finite
number of square-integrable singularities. We then need to modify
slightly the proofs of Lemma 2.1 and Lemma 2 in reference 2.
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It is clear that (i), (ii) imply

(ili) max I(r)<eo.
r&ED

(2.1c)

Under these conditions the operator H=—A+V has
a unique self-adjoint extension defined on Ls (Kato®)
which we denote again by H. In scattering problems we
usually ask for the solution y of (H~— E)Y= f, where E
is the energy, which may be real or complex, and fis a
known smooth function. If £ is not real, then the inverse
(H—E)™! exists in L; and depends analytically on E.
Infact, if ImE>0 and k=+/E is so defined that Imk >0
then it is known (Povzner®) that (H—E)!is an integral
operator with a kernel k(r,s; E)=G(x,s; k) which is
symmetric and, for a.e. s,° belongs to Ly(r) and satisfies

G(r,8,k)=Go(r,8,k)— f Go(r,) V()G (t,s)dt,\

where - (2.2)

1 6ik]r-—s|
Go(r,s)=— ,
4r |r—s]| J

Noticing that (2.2) is the same equation which G
would satisfy if 22>>0 and G is outgoing at infinity, we
see that the problem of the existence of radiating solu-
tions reduces to investigating the solvability of (2.2)
when k2 is real. Moreover, since both Ls and radiating
solutions are O (1) at infinity by Theorem 1 in reference
2 we may restrict our solutions to the Banach space
B of all functions ¥, which are continuous on D and
which tend to zero uniformly at infinity. A natural
norm on B is

W]l 2 =max [¢(r)]. (2.3)
r&D
Let the operator 7' be defined on B by
1 eik|r—-sl
Th(r)=—— V(si(s)ds.  (2.4)
4rd |r—s|

Since we have assumed that InEZ=0 we see that % lies
in the first quadrant Q of the complex % plane. Equation
(2.2) may now be written, for a.e. s, in the form

Y()=¢()+Tw (), kSO

where ¢(r) is a known function.

The following lemmas demonstrate that if 2&Q and
F?7#0 is not a negative eigenvalue of H then the inverse
(1—T})™! exists as a bounded operator on B.

(2.2a)

8 T, Kato, Trans. Am. Math. Soc. 70, 195 (1951).

9 a.e. means almost every or almost everywhere.

10 Theorems 1 and 2 in reference 2 have been proved for radiating
wave functions only but they are valid for L, eigenfunctions also;
see Odeh (reference 12).
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Lemma 2.1: The operator T is a bounded linear operator
on B to B.

Proof: Since

V(s)
TR0 () f |

dséClllPH,

it follows that [[Tx| is bounded. It is clear that
Twy(r) — 0 uniformly as r — « by (2.1a). To prove the
continuity in r of 7w, consider

¢iklz—s|
f[ir—SI /=]

e«.klr—sl _eiklr’—s]
— [ ————vewas

[r—s|

etk|r’—s[

]V(s)¢ (s)ds

+feik|r'—sll ! - ! ]V\I/ds=11+12-
le=s| {r'—s]

V(s)|

Now
Ll Skl nwnf

ds=0[ll¢||' lr—r'|].

Let B(r,8) denote the sphere |s—r|=<3, and let

=|r—1'|}, then
1
|2l =l D—B(x,5) Vs )I[Ir—-s[ ]r'—s]]ds
1
s lV(s)l[Ir_s] lr_s,]de;
SIlle—71} [ s oLyl -]
|

=0[|l¢||- [t—=1"1¥] as r—r.
Therefore, Twf(r) is Hoelder-continuous.

Lemma 2.2: The operator T is compact on B.

Proof: Let {y.} be a sequence in B such that |[y.[|<1.
The proof of Lemma 2.1 shows that {7} is uniformly
bounded, equicontinuous, and tends to zero uniformly
with respect to # as r — . We can therefore select a
subsequence of {TwW,} which converges uniformly in
r to a function in B.

We discuss now the homogeneous equation y= T3

Lemma 2.3: Let y& B be a solution of

etklr—sl

y=Tap=— (dm)- f TOws @9

where Imk=520. Then ¥(r) is O(r‘le"") at infinity.

Proof: If  satisfies (2.5) then it is Hoelder-continuous
by Lemma 2.1, hence Vi is Hoelder-continuous also.

M. ODEH

In this case (2.5) is equivalent to (Titchmarsh!t):

Vv=0.

Using the notation of Theorem 1 in reference 2 we then
have

[At#—

Y =yo(r)+ | GoVyds r&Dy, (2.6)

where ¥ is a surface integral over Zry and is O(r~1e~?).
The method of the proof of the theorem mentioned
above shows that ¢ itself is of the same order.
Remarks: Since the representations (2.5) and (2.6) are
valid for any L. eigenfunctions of —A-+4V (Povzner?,
Lemma 7, Chap. IT) we deduce from the above lemma
that an eigenfunction of [A+E—V =0 is O(rle?r)
at infinity, where E= —§2. If E>0 then there exist no
eigenfunctions.??

Lemma 2.4: If ¢ is a solution of (2.5), then it satisfies the
radiation condition

d
r —f—ik\ﬁ 2.7

ar

=Me(r),

where ¢(r) — 0 as r — o and does not depend on ¢, and
M 1s an upper bound for |r(x)].
Moreover, if k2>>0, then ¥ vanishes identically.

Proof: Because of the corollary to Theorem 3 in reference
2 it is enough to prove (2.7). Consider
l]ds

W e”‘“—sf alr—s|
L Y e
Ir—s| or
ds=1kIl 1+ 1.

_’ka 6]r—-sl

Let I:=J,+J,, where J; denotes the integral over the
sphere s<r% To estimate J; we notice that

e@k[ r—s|

[r— s|2 ar

d|r—s| ) 2s st
—1=(1——cosﬁ)[1———cos€+—o -1, (2.8)
,”

ar r r

where 0 is the angle between r, s.
The right side of (2.8) is O(s%?%), hence there exists a
constant C; such that

IJII éclr—-ff M

wE. C. Titchmarsh, Eigenfunction Expansions (Oxford Uni-
versity Press, New York, 1958), Pt. II, Chap. 22 and pp. 10-11.

12F, Odeh, Technical Report No. 8, Department of Mathe-
matics, University of California, August, 1960 (Chap. I).

ds< Car—t. (2.9)

[1—s]
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Also
A _f>* IV(S)t//(S)IdS

[r—s|

<2Mf ()'ds<——e1(r), (2.10)
Sl'—

where ¢;,(r) —0asr— .
A similar estimate holds for I, and the radiation
condition (2.7) follows immediately.

Lemma 2.5: If k0 is not a negative eigenvalue of H
then the inverse (J—T)! exists in B.

Proof: Since T is compact, the Riesz-Schauder theory
(Dunford and Schwartz'®) shows that (/—T')~" exists
for all # such that the equation y=T3) implies that
¢¥=0. In view of Lemma 2.4 we may assume Imk>0
and hence Lemma 2.3 shows that ¥ would be an L,
solution of [A4k2—V Y =0. Since H is self-adjoint, ¢
vanishes identically unless %2 is a negative eigenvalue.

A counter-example: The case k=0 must be excluded
in the preceding lemma (and in Povzner,? Theorem 2,
Chap. II).

Consider

© 3—3r+r r=1
Yir)=
r1 r=1
(6(1—7r1)
— 7 <
V(t)=43—3r+7r
0 r=1.

Then y is a regular solution of the homogeneous equa-
tion =T and yet is not square integrable.

3. PRINCIPLE OF LIMITING ABSORPTION

In order to apply the results of the last section to the
equation (2.2) we rewrite it in the form

G=Got+ TG 3.1)

and iterate (3.1); therefore we define

G1=G—G0, A1= TkGO

Then G; satisfies
Gl = A 1+ TkGl

Lemma 3.1: A,(x,8)E B(x) for all s.

The proof is similar to that of Lemma 2.1 and will be
omitted.

We are now In a position to prove the existence of G
and exhibit some of its properties.

(3.2)

B N. Dunford and J. T. Schwartz, Linear Operators (Inter-
science Publishers, Inc., New York, 1958), Pt. I, pp. 577-585.
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Lemma 3.2: Suppose k2720 is not a negative eigenvalue
of H. Then

(1) The kernel equation (3.1) has a unique solu-
tion G(r,s) which is continuous in r except if r=s. G is
the Green’s function for the operator [A+42—V ] and
behaves asymptotically like O[r~le~?"], where b= Imk.

(2) If k>0 and s is bounded, then G satisfies the
radiation condition.

[ (3G/ar)—ikG]— 0

uniformly with respect to s, asr— . (3.3)

Proof: (1) Let Gy be the unique solution of (3.2). Then
set G=Goy+G1. G is again Hoelder continuous in r, for
forr£s, and Eq. (3.1) is then equivalent to [A4k2— V]
X G(r,8)=—0d(r—s). The asymptotic behavior is proved
exactly as in Lemma 2.3 (and Theorem 1 in reference 2).
We notice here that if we assume that s is bounded (and
smaller than R; of Lemma 2 in reference 2) then the
order is uniform with respect to s.

(2) Lemma (2.4) proves the radiation condition for
each fixed 8. The uniformity follows from the uniform
boundedness of 7G(x) for all s<R;.

Remark: If we wish to prove the existence of a Green’s
function K which vanishes on a closed surface Z and is
outgoing at infinity, then we have to use, instead of Gy,
the Green’s function Ko(r,s) of (A+£?) which vanishes
on Z. Saunders' proved the existence of Ky and in fact
that Ko=G¢+a certain dipole distribution over Z.!®
In such a case K satisfies

K(r,8) =Kot f Ko(e,)V (DK (t8)dt,

where D is the domain outside of Z.

The same procedure that we used to prove the
existence of G may be used to prove the existence of K.
Thus it is possible to prove the existence of an outgoing
solution of [A+A2—V]y=0 which assumes given
boundary values on Z.

The following two lemmas pave the way for Theorem
1 which formulates the principle of limiting absorption.

Lemma 3.3: The operator T is continuous in % in the
uniform operator topology.

Proof: Let

eikll’—s]
rep= [ —

If ¢>0is given, then Lemma 2 in reference 2 shows that
there exists a number R such that for all r

[V(s)|
—d
>R |t—8j
14 W, K. Saunders, Proc. Natl. Acad. Sciences 38 (4), 342 (1952).

16 Except in an exceptional case where it is taken over a neigh-
boring surface.

V(s)¢(s)ds, where |j¢|=1.

s<e.
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Now consider the difference

[ I(r,k)— I (t,ks) |

§£>R+£SR§26+Ik1_k21£SRIV(S)st

— 0 as k1 — ks independently of r.

Hence I(r,k) is uniformly continuous with respect to r
and therefore T is continuous in the sense of the norm.

Lemma 3.4: If k270 is not a negative eigenvalue of H
then G(r,s,%) is continuous in £ (except at r=s).

Proof: We have
G=Got+Gy
=Go+ (I- Tk)—lA 1.

Since T is continuous and (J—T,)~! exists by
Lemma 2.5, we conclude (Dunford and Schwartz®®)
that (/—7)™! is continuous (in the norm). Using as-
sumption (2.1c) we can prove that 4, is continuous in
k uniformly in r, s and the lemma is proved.

Theorem 1 (principle of limiting absorption): Let ¥ (r,e)
be the unique L, solution of

[—a—(E+ig+V=[(1), (3.4)

where E, ¢>0 and f is integrable and of compact
support.!®

Then ¢(r,¢) tends uniformly in r as ¢ — 0 to a func-
tion ¥(r) which is the unique outgoing solution of

[—A—E+V=1.
Proof: If k2= E+ie, then

(o= f Glrs,2)f(s)ds

gitiT—s|
=f f(s)ds-l—fGl(r,s; k) f(s)ds. (3.5)

r—s|

Lemma (3.4) shows that Gy(r,8,k) tends uniformly in
1, s to Gy(r,s,0/E) as e— 0. Since f is integrable, the
right side of (3.5) tends uniformly in r to

v(0)= f G(r,s/E) f(8)ds. 3.6)

Since G is the Green’s function for (—A—E+V)
which satisfies the radiation condition uniformly in s
the last assertion of the theorem is proved.

4. PRINCIPLE OF LIMITING AMPLITUDE

We consider the scattering problem for a time-
harmonic wave ¥ (r,t) = p(r)e—*¥* which is a solution of
the unperturbed Schrédinger equation. It is incident

18 The theorem remains true if f=0(r"%"¢) at infinity.

FAROUK M. ODEH

on a potential ¥ which is switched on at time ¢=0.17
Using the time-dependent Schrodinger equation we
find that the generated scattered wave ¢/(r,f) satisfies
an equation of the form

(x,1)

kK

+(A=Vi(rh)=f(r)eF4(), 20
¢(r,0)=0.

Here f(r) is determined by ¢ and V and is assumed to
be integrable and O(r—"¢), ¢>0, at infinity and 4 (§)=1.
The function A(#) describes the switching on process
and we take it to be

(4.1)

t 0=t=1
A@)=
1 =1

(4.2)

Let x(r,z) be the Laplace transform of y with respect
to £. Then we have from (4.1)

e—i(E—)\) — 1
(H=Nop(aM\)=f(t)———— ImA>0, (4.3)
(E—N)?
where A=4z and ¢ (r,\)=x(r,2).

Our first step will be to define ¢(A), as the unique
solution of (4.3) in the closed half-plane ImA=Z0. The
following lemma accomplishes this by imposing severe
restrictions on the potential.

Lemma 4.1: Suppose
(1) H has no negative eigenvalues (4.4)
(ii) The equation ¢ =T has no solutions in B.18 (4.5)

Then the solution ¢(r,\) of (4.3) is analytic in ImA>0
and continuous in ImA=0 except at A= FE where it has
a pole-like singularity.

Proof: The analyticity of ¢ is a consequence of the fact
that H is self-adjoint. The hypotheses of the lemma
prove, in view of Lemmas 3.2 and 3.4, the existence of
G(r,s; k), k=4/}, and its continuous dependence on %
for all ImA=0. The existence and the continuity of ¢
follow immediately.

Example: I V satisfies either of the following conditions:

(a) sgpflV(S)]ds<41r

r—s|

(b) V(s)20

then the hypotheses of the preceding lemma are satisfied.
The proof is immediate.

To investigate the asymptotic behavior of ¢(r,\) as
A — o we first prove

17 We may, on the other hand, assume that the incident wave
is switched on in the presence of a potential. A similar equation
to (4.1) would still hold in this case.

18 Conditions (i) and (ii) are equivalent to requiring that any
bounded solution of y =T, k2<0 vanishes identically.
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Lemma 4.2: The norm of the operator (I—T%)™ re-
mains uniformly bounded as |k| — «.

Proof: The continuity of (I— T'x)! insures its bounded-
ness on every compact set. Since

(=T ?=I+Ty)(I-T)™

={+T)I+T@+Ty+---) (4.6)
it is sufficient to prove that 7% becomes a ‘“‘small
perturbation” as | k| — . Now

eiklr—sl
T3 = f V{s)d
7= i‘ﬁpl[srp el (s)ds
eikls—yl
x [ v ety | an
s—y|

Let 7(V;r) denote the integral on the right side of
(4.7), then given ¢>0, choose R, such that

f [V(S)[ds<e,
Do Jl’“S|

where Do={s|s= R,}. This is possible by Lemma 2 in
- reference 2. Let

independent of r

V(s) s=Ro

L

It has been proved (Ladyzhenskaia,* or Zemach and
Klein®) that 7(U,r) — 0 as |k| — « independently of
t, therefore it is sufficient to prove that I(V; r) can be
approximated uniformly by I(U;r). Consider the
difference

LW n—-1(U; 1]

eikllr—s|+[s—yl]
= f V(y)¢(y)dy f ~——————V(s)ds

o lr—s|[s—y]

+ ...dyf coods= L+ Lo,
Do D—Dqg
But

[V(s)]
= [ vy [ ——=—as
D polr—s]|s—y|
LVl Vi)l 1V(s)]
<[ —af " as
pir—y|[ Joolr—s| [s—y]
=C-2¢ where C is some constant.
Similarly | L] £2Ce. Therefore ||T4|[>?— 0 as [k] — =
and the Neumann series (4.6) then converges, hence the
lemma follows.

18 C, Zemach and A. Klein, Nuovo cimento 10, 1078 (1958).
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Lemma 4.3: The function ¢(r,A) behaves asymptotically
like O[|A|2] as [N — .

Proof: In view of (4.3) we may write

e—i(E—)\)_ 1
— s, B=\
(E—N)?

Hence it is sufficient to consider the behavior of G.
But

SN = f G(r,s; B)f(5):

G=Got+ (I—~Ti) 4, (3.12)

where Gy, 4, are both uniformly bounded in %. The pre-
ceding lemma completes the proof.

We formulate now the principle of
amplitude.

Theorem 2: Let ¢(r,t) denote the solution of Eq. (4.1)
and suppose that the hypotheses of Lemma (4.1) are
fulfilled. Then ¢'Z% (r,f) tends as t— o to the unique
outgoing solution of

[A+E-VI ()= f(r).

Proof: By the inverse Laplace transform

limiting

4.8)

1 petio
gb(rt)——-f e*tx(r,z)dz a>0. (4.9)

2m1
But

x(1,2)=¢(r,\) is analytic in 2 for Rez>0,

continuous for Rez=0 except at z= —4E where it has a
simple ““pole.” Deforming the contour in (4.9) to Rez=0,
and noticing that |x(r,z)| =0[|z|~*]as |z| — =, we get

1
oy )= [etsvm)seas

1 oo
+P~V-5—e““ f ety (r,i8)d8. (4.10)

T —a0

The first term on the right side of (4.10) furnishes
24(x), where ¢ is the outgoing and therefore unique
solution of (4.8). In the Appendix we prove that the
principal value of the second term exists for each ¢ and
tends, as { — 0, to 3y(r). The method used is a refine-
ment of the Riemann-Lesbegue lemma.
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APPENDIX
Consider
1 +o
PV-—ost f e (1,i8)dB, 0

27 —=
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where
i (B8 — 1
(1,8)=——"""—"—u(B)
(E+8)?

w(B)= f Ge,s; B f(S)ds= I~ T)F( ), F=—8
and

Flrk)= f Go(r,s; k) f(s)ds.

We prove first that « satisfies a Lipshitz condition for
all 3<0; consider

u(B1)—u(B2)= (I —Th1) (I — To)™
X{(Ti1—Tre)F(x; k)}. (2)

Using the facts that (/—7;)™! exists and that
F(r)=0(r) and is Lipshitzian in %, an argument
similar to the proof of Lemma 3.3 proves that the
right side of (2) is Lipshitzian in & and hence in 8. Now
let us turn back to (1). The integral over the region
outside any fixed neighborhood of 8=—E tends to
zero as ¢t — « by the Riemann-Lesbegue lemma. Let
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>0 be fixed and consider

1 e—iE+E) — 1
_eiEt[ f et (B) dﬁ]
2r | E+6] Se (E+B)*

u(8) ;

1
=__eiEtf (cosBt+-1 sinBt)
E+8| S« (E+8)

27t
~+terms which tend to zero as t — ». (3)

Let I, I, denote the cos and sin terms in (3). Then,
writing 8t=1(8+E)— E] and substituting in (3), we
get

t(B+E
I,= ——e’E‘l costEf oS —————u(B)dB
2mi z4plse  (B+E)

+sin/E f ————-——u(6+E) ®)dsi. 4)

The first term in (4) tends to zero as ¢ — o since %
is Lipshitzian. I, exhibits a similar behavior and we are
left with

e'Et sint(8+E)
lim (smlE-H costE) f —-——)—u( B)d8
{—o0
=2u(r, — E) as in the theory of Fourier series

=5(r).
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This is a continuation of Part I with special emphasis on wave equations in an inhomogeneous medium.

1. STATEMENT OF THE PROBLEM

HE principles which were employed in Part I to
characterize the solutions of Schrédinger’s equa-
tion can be applied, also, to the wave equation in an
inhomogeneous medium.! It is assumed, however, that
the properties of such a medium will approach those of
a homogeneous one as the space variable r approaches
infinity. This is expressed mathematically by assuming
that the wave velocity is a function of r which tends to a
certain constant as r— o, The problem will be to
characterize the solutions of the reduced wave equation
in a three-dimensional space:

[A+(#/@) W@ =f@) &>0,

1F. M. Odeh, J. Math. Phys. 2, 794 (1961).

(1.1)

where f(r) is an integrable function which is O(r),
>3, at infinity. If we assume that ¢?(r) — 1 asr — o,
it becomes possible to define a “potential” V' (r) through
the relationship

[e@mTi=1-V (). (1.2a)
Equation (1.1) may now be written in the form
[A+R—-EV () W(@)=fx) k>0, (1.3)
We assume that:
(i) V(r) is integrable, bounded near infinity
and locally Hoelder-continuous.”* (1.2b)

(ii) [1—V(¥)]>€e>0 except at a finite number of
points where 1— ¥ (r) may tend to zero. (1.2c)

ls Except at a finite number of square-integrable singularities.
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The conditions (1.2b) imposed above on the potential
V(r), and hence on the velocity ¢(r), insure that the
radiating solution of equation (1.3) is unique (Zemach
and Odeh?). In order to prove the existence of such a
solution and to apply principles (2) and (3) of Part I
to this equation, one has to consider again the resolvent
operator R(k)=[A+k—FV] If Imk?#0 (and % is
defined so that Imk>0) then this resolvent, on L.(r),
is an integral operator with a symmetric kernel G(r,s,k)
which belongs to L.(r), for a.e. s, and satisfies?

G(r,5,8)=Golr, 5 1) — f Gole,)V (DG (L,s B)dt,

where
1 eiklr—sl
Gy (r,s,k) =— .
4 |r—s]|

(1.4)

Since the solution ¢(r) of (1.3) may be written in the
form Y (r)=R(k): f(r), it is necessary to discuss the
kernel equation (1.4) in the case of real k. This equation
becomes exactly the same as the kernel equation (2.2)
of Part I when the potential ¥ in the latter one is
replaced by &2V. We shall, therefore, follow the same
procedures previously employed and adopt similar
notation. The same Banach space B(r) is introduced as
before and the operator T is defined on B by

._.k2 eik(r—sl
Tk¢(r)=———f V(s)¢(s)ds, Imk>0.
4

s fr—s|

Throughout the whole discussion, proofs will be given
only if they differ materially from the corresponding
ones in Part L.

2. THE RESOLVENT OPERATOR [A4-k*—R2V]!

In this section we show that the kernel equation (1.4)
has a solution which is continuous in r a.e. whenever
the condition Im£>0 is satisfied.

Lemma 2.1: The operator T, is a linear bounded compact
operator on B to B.

Lemma 2.2: Let Y& B be a solution of
v =Tp=—# [Gurs BV Op0)s, (21

where Imk=562>0. Then
(i) Y(@)=0(@"'e?) at infinity

(2.2)

. o
(ii) lim s ——ik¢]=0.
7300 ar

2 C. Zemach and F. Odeh, Arch. Rational Mech. and Analysis
5, 226 (1960).

3 For proof see A. Y. Povzner, Mat. Shornik 32 (74), 109 (1953);
or T. Ikebe, Arch. Rational Mech. and Analysis 5, 1-34 (1960).
? prosof of the existence and the uniqueness of G also follows
rom Sec. 2.
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Lemma 2.3: I =T and Imk>0, then ¢ vanishes
identically.

Proof: The lemma is obvious if #=0. We distinguish
three other cases:

(1) k2>0: In this case ¢ satisfies
fA+R2—EV () =0,

where we have used the Hoelder-continuity of both V
and the solution ¢ of (2.1) in deriving (2.3). Since
Lemma 2.2 shows thaty satisfies the radiation condition,
it follows from the corollary to Theorem 3 in reference 2
that ¥ vanishes identically.

(2) #*<0, Imk=56>0: Let Sg, Zr denote a sphere of
radius R around the origin and its surface, respectively.
If Green’s first formula is applied to y and its conjugate
¥*, we obtain

(2.3)

oy
dA = AY*d V|2 24
fzﬁ? fSRw s+j;Rl wltds, (2.4)

where dA,ds denote surface and volume elements,
respectively.

Let R — o in (2.4), then the left side of (2.4) tends to
zero by Lemma 2.2, Substituting for AY* in the right
side, we get

lim [ W ITI-veWs=0. 23
SR

Equation (2.5), together with condition (1.2c),
prove that ¢ vanishes identically.

(3) Imk=56>0, Imk?#0: Use of Green’s second
formula in conjunction with ¥,¢* leads to

Ilzi_x}g‘1 (Imkg?) | |¢|1—V(s)]ds=0.

SR

Therefore, ¥ vanishes identically in this case also, and
the proof is concluded.

Lemma 2.4: The inverse (I—T) exists as a bounded
operator on B for all k such that Imk>0.

Proof: Since T is compact and Y= T holds true only
if ¥=0, the statement of the lemma follows from the
Fredholm alternative property for compact operators.

An iteration procedure similar to the one in Sec. 3 of
Part I now yields

Lemma 2.5: Suppose Imk>0. Then

(1) The kernel equation (1.4) has a unique solution
G(r,s,k) which is continuous in r except if r=s. G is
the Green’s function for the operator [A+4k2—E2V].

(2) The Green’s function G satisfies the radiation
condition (2.2).
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3. PRINCIPLES OF LIMITING ABSORPTION AND
LIMITING AMPLITUDE

It was shown in the last section that, if Im&>0, there
exists a unique solution y¥(r,k) to the equation

[A—R =&V (1) W (r)= f().
In fact Y(r) is then given by

¢(r,k)=fG(r,s; k) f(s)ds. (3.1

The dependence of this solution on % is obviously
governed by the behavior of G as a function of &. But,
since G=Go+ ([ —Tw) ' T1Go and Go(r,s,k) is a con-
tinuous function of %2 (except at r=s) it would be
sufficient to consider the operator (I—1";)™L. The follow-
ing lemma exhibits the smooth dependence of the
operator on the parameter %.

Lemma 3.1: The operator (I —T%)™! is analytic in k for
Imk>0 and is continuous in £ for Imk>0 (in the uni-
form operator topology).

Proof: Since (I—T;)™* exists, it suffices to consider the
behavior of T, itself (Dunford and Schwartzt). Let
Imky=56>0 and consider the difference

eikl r—s| eikol r—s|
o= |
[r—s||k— ko
Given ¢>0, choose R large enough that

f [V (s)|ds<e.
$> R

1etkol s ] V(s)ds.

Then

D(r,k)= +

s> R

<L2e+Clhk—ko|

s< R

X |r—s|eikolr—st| V(s)|ds,

s< R

where C depends on k&, only.

Therefore, D(r,k) tends to zero as & — &, independ-
ently of r and the analyticity of 7'x for Imk>0 is
proved. The continuity follows in a manner similar to
Lemma 3.3 in Part I.

We state now the principle of limiting absorption.

Theorem 1: Let ¥ (r,e) be the unique Ls solution of
{A+ (B +ie)[1—V (1) D (r,0) = f(x),

¢ N. Dunford and J. T. Schwartz, Linear Operators (Interscience
Publishers, Inc., New York, 1958), Pt. I, pp. 577-5385.
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where k2,e>0 and f is integrable and O(r—*), p>3, at
infinity. Then ¢ (r,¢) tends uniformlyinras e —0toa
function ¥(r) which is the unique outgoing solution of
[A+R—R2V =1

The proof invokes the continuity of G as a function
of & and proceeds along the same lines of Theorem 1 in
Part I.

We turn now to the task of characterizing the solution
of (1.1) by means of employing the principle of limiting
amplitude. Let us consider the time-dependent problem.

1
AY(r,0) ———u= f()e A ()
A (r)

, (3.2)
1//(r,0) =¢t(r70) =O
where
t/e 0<i<e
A= (3.3)
1>e.

Let x(r,2), Rez>0, denote the Laplace transform of
¥(r,t) with respect to ¢ and ¢(r,\)=x(r,s) where A=1z.
Then we deduce from (3.2), (3.3) that ¢(r,\) satisfies

1— eie()\—k)

[A+EN=NV(0)Jo(r\) = f (r)m,

where V (r) is defined by (1.2a).

The properties of the function ¢{r,\) are summed up
in the next lemma which can be proved by using the
methods of Sec. 4 in Part I in conjunction with Lemmas
2.5, 3.1.

Lemma 3.2: Let ImA>0. Then

(1) The equation (3.4) has a unique solution ¢(r,A)
which belongs to B(r) for every fixed A.

(2) The function ¢()) is analytic in A for ImA >0 and
is continuous in A for Im A>0 except at A=% where it
has a pole-like singularity.

It is possible now to proceed in a fashion similar to
the one employed in the last section of the first part and
prove the analog of Theorem 2 there, namely:

(3.4)

Theorem 2: Let ¢ /(r,t) denote the unique bounded solu-
tion of the time-dependent problem (3.2). Then
ety (r,t) tends as £ — « to the unique outgoing solu-
tion of

kZ
p+ }m=ﬂa
20
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A study has been made on the scattering of light by the hydro-
dynamical and statistical atom model. Bloch’s treatment of the
hydrodynamical equations of motion for this model is supple-
mented here by inclusion of the interaction with the electro-
magnetic field. We limited attention to oscillations of small
amplitude. By correspondence principle arguments, general
expressions were derived for the cross sections for absorption,
coherent and incoherent scattering,

The energy can be expressed—following Bloch—as the energy
of a Thomas-Fermi atom plus a Hamiltonian which is associated
with departures from the Thomas-Fermi distribution. Using
Bloch’s quantization of this Hamiltonian and applying the method
of quantum field theory, we rederived the correspondence principle
results for elementary cross sections.

I. INTRODUCTION AND SUMMARY

WE discuss several processes which involve the
interaction between light and atomic electrons.
This subject has been so much discussed in the past
and at the present we might think that there is no
essential problem left except to secure accurate knowl-
edge of atomic wave functions.

Certainly for the hydrogen atom and other elements
of small Z, there is no problem to be studied. However,
when the value of Z gets larger and larger, the number
of degrees of freedom of the dynamical motion becomes
so big that we need some simple and suitable approxima-
tion method which can be applied universally for all Z.

As such a method, we have the simple model of
Thomas! and Fermi.2 This model gives a smoothed-out
representation of the charge distribution in the ground
state. When an atom absorbs a photon, typically one
electron jumps to an excited state—or to the continum.
This is one of the processes upon which attention will
be focussed here.

First we treat the interaction between light and
atom in classical theory. The energy is taken up from
electromagnetic field into vibration of the electron gas.
This energy is the classical equivalent of photon absorp-
tion. Also, the electromagnetic moments induced in
the electrified gas atom by the primary electromagnetic
disturbance—and by any supplemental electromagnetic
disturbance also from outside—generate secondary
waves which are the classical equivalents of Rayleigh
and Compton scattering. Therefore one has in the gas
atom a far reaching model for treating the interaction
of photons with atoms.

The Thomas-Fermi gas model has the disadvantage

* Based on the thesis submitted to Princeton University in
partial fulfillment of the requirements for the degree of Doctor
of Philosophy, May, 1961.

L L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1926).

2 E. Fermi, Z. Physik 48, 73 (1928).

Then applying the correspondence theoretical argument to
the matrix element, we rederived Heisenberg’s result for the
total intensity of the Compton scattering. We also apply the
method of stationary phase to the hydrodynamical treatment and
show that this method gives the same result as does the linear
term in the momentum transfer in Heisenberg’s expression, except
for a numerical factor 3¥/2—a point that was discussed by Bloch
many years ago.

Application of the general formulas given here for angular
distribution of Rayleigh and Compton scattering will require
electronic machine calculations of higher modes of oscillation of
the gas model of the atom analogous to those made by Wheeler
and Fireman for /=1.

of exaggerating the number of low momentum electrons.
This effect shows up in the circumstance that the density
of electrons in the Thomas-Fermi atom falls off more
slowly at large distances than do the experimental and
Hartree-Fock values. Attempts have been made to
remedy this shortcoming of the simple model. Dirac?
derived a revised equation of state by statistical
methods from Fock’s equation for a many electron
system. This Dirac equation includes the exchange
effect. The correlation energy between electrons with
antiparallel spins was calculated by Wigner* and this
correction also has the same effect as Dirac’s correction
in cutting off the radius of the neutral atom to a finite
value.

Recently, much work® has been done to include
quantum corrections in a systematic way. The Thomas-
Fermi model is treated as the lower limit of the approxi-
mation in #. But all these corrections are obtained at the
expense of the scaling law which is so important in the
Thomas-Fermi equation. For this reason, no account is
taken of such corrections in the following work.

When the energy of an incoming photon and the
momentum transfer to an electron become large,
sufficient to eject a K electron from a heavy atom
(Z~100) to the continum, we have to use the relativistic
wave functions for the electron or the relativistic
equation of state developed by Chandrasekhar and we
cannot use the Thomas-Fermi equation of state.
Therefore, to test our theory we have to limit the
transfer in energy and momentum below the K-absorp-
tion edge (Fig. 1).

3 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

4 P. Gombas, Z. Physik 121, 523 (1943).

5 W. D. Theis, Z. Physik 142, 503 (1955); W. Macke, Phys. Rev.
100, 992 (1955); Am. J. Phys. 17,1 (1955); E. S. Fradkin, Soviet
Phys.—JETP 64, 5 (1957); S. Golden, Phys. Rev. 105, 604 (1957);
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Fic. 1. Diagram showing the domain of atomic number Z
and energy transfer from photon to atom where one can safely
use the statistical atom model.

To treat the dynamical motion of the electron gas as
simply and universally as Thomas and Fermi treated
the hydrostatics of the gas model, Bloch® introduced
the hydrodynamical proper modes in his famous work
on the stopping power of a dilute gas for charged
particles. He regards the electrons as a degenerate
Fermi gas endowed with a characteristic pressure—
density relation. The ground state has the property
familiar from the work of Thomas and Fermi. This gas is
capable of normal modes of oscillation about this
equilibrium state. Bloch’s model underlies the present
analysis of the scattering of light by atoms.

In Bloch’s theory of stopping power, the interaction
between a passing particle and atomic electrons has
been assumed to take place directly through action
at the distance. To treat the scattering of light by
atoms, we derive (Sec. IT) the hydrodynamical equation
of motion of a coupled system of electron gas and
radiation field. Based on these equations and the
Poisson equation, we derive the absorption cross
section. The absorption cross section is obtained as the
energy uptake by the atom when the atom jumps to
excited states from the ground state. Then we give a
general definition for the oscillator strength. This work
differs from that of Wheeler and Fireman’ only in
this respect, that they used the dipole approximation
whereas we use the general retardation factor.

8 F. Bloch, Z. Physik 81, 363 (1933).

7 J. A. Wheeler and E. L. Fireman, ‘A universal atomic photo-
absorption curve,” Aeronutronic Systems, Inc., a subsidiary of
Ford Motor Company (1957).
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Following Maxwell’s theory of classical electro-
dynamics we derive (Sec. III) the differential cross
section for coherent scattering. For a long wavelength
of the incoming wave, we find the well-known standard
Rayleigh formula which connects the differential cross
section to oscillator strength.

The amplitude for coherent scattering turns out to
be the sum of a “direct part” and a “dispersive part.”
The classical equivalent of a matrix element for the
direct part makes no reference to any excitation of
hydrodynamical oscillations, and when analyzed into
partial waves contains contributions only of the type
I (incident wave)=! (outgoing wave). The dispersive
part is a product of factors akin to matrix elements one
for the incoming wave, one for the outgoing wave, each
satisfying the relation ! (hydrodynamical oscillation)
=1 (electromagnetic wave)+1.

We apply Einstein’s argument of statistical mechanics
to derive (Sec. IV) the differential cross section for
incoherent scattering. We consider an atom illuminated
with two classical electromagnetic waves. Under these
two perturbations we solve the hydrodynamical
equations to the second order and get the absorption
cross section. From the absorption cross section we
obtain the differential cross section for inelastic scatter-
ing. The formula has three terms, (1) direct scattering,
(2) dispersive scattering, (3) internal scattering (tenta-
tive name). The internal scattering is connected with
the complexity of the original equations of hydro-
dynamics. It says that if two modes are excited, then
these two modes in combination excite another mode
through the internal mechanism.

So far we discussed Bloch’s hydrodynamical electron
gas in classical terms as being capable of free vibration.
We give (Sec. V) proper quantum field theoretical
treatment to this free vibration. We divide the total
Hamiltonian into the sum of a Hamiltonian of the
ground state and a Hamiltonian which is associated
with deviations from Thomas-Fermi’s distribution.
This Hamiltonian is quadratic in deviations in our
approximation and has the form of an assembly of
classical harmonic oscillators. We quantize this system
and the radiation field. Following the perturbation
method of quantum electrodynamics, we derive dif-
ferential cross sections for coherent and incoherent
scattering. Compared with the results obtained by
classical methods, the new results have the same form
in direct scattering and more or less the same form in
dispersive scattering. Corresponding to the internal
scattering we have a new term which is related with the
simultaneous excitation or annihilation of two modes.
However, the states which have two or more modes
excited are not stationary but decay exponentially with
time. Therefore, our method of derivation is not correct
in its treatment of these higher order processes.

Finally, (Sec. VI) we discuss the Compton scattering.
We take the direct scattering term. Using JWKB
orbitals and the method of stationary phase, we rederive
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Heisenberg’s formula® for total intensity for the
Compton scattering. Also in the hydrodynamical model
we employ JWKB expressions for the characteristic
modes of oscillation and use the method of stationary
phase to calculate the scattering cross section. The
result agrees up to the Bloch factor® of 3%/2 with
Heisenberg-Bewilogua’s?® result for values of the
scattering cross section for small momentum transfer.
In this derivation we ascribe momentum! #%w/(dp/
mdno)?, and inertial mass®? o/ (dp/mdng) to a phonon
of energy #w. We find that only at the distance where
the momentum 7w/ (dp/mdn,)t of the phonon agrees
with the value of the momentum transfer from the
photon do we get a contribution to the total intensity.

II. HYDROELECTRODYNAMICS OF ELECTRON GAS
Equation of Motion

In this section we develop basic ideas and formulas
which we use in this work, following Bloch and Wheeler-
Fireman. We start with Euler's hydrodynamical
equation of motion for the electron gas which interacts
with the electromagnetic field

Dv v
mp—= — vp——an—I-en(E-i-—XH). (2.1)
Dt ¢

Here ¢ and m are the charge and mass of the electron,
n(x,y,3,t) is the number density of electrons, v(x,y,2,)
is the velocity distribution, and p(x,y,2,t) is the hydro-
dynamical pressure. Pressure p arises from the zero-
point energy of the degenerate quantum Fermi gas.
We neglect exchange energy and temperature correction.
We simply assume that the equation of state

h2 3 2/3
= __(__) n5/3
Sm\8r
is valid for hydrodynamically excited states as well as
for the ground state.

V is the electrostatic potential, E and H are the
transversal electric and magnetic field intensity. These
quantities represent the total electrostatic and electro-
magnetic field inside the atom. Therefore electrons move
not in the given applied (external) field but in the final
(total) field including the effect of the induced charge-
current distribution inside the atom. Inside the atom,
we can neglect the electromagnetic interaction between
electron and electron and take the electrostatic interac-
tion alone because the electromagnetic interaction is
proportional to v/¢c (1), where v is the velocity of an
electron.

(2.2)

8 W. Heisenberg, Physik Z. 32, 737 (1931).

? F. Bloch, Helv. Phys. Acta 7, 385 (1934).

1 1. Bewilogua, Physik Z. 32, 740 (1931).
11, Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).
12 H. Kramers, Physica 18, 653 (1952).
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We rewrite Eq. (2.1) into the following form:

3 e 1 pedP@) 1 1
— v-l-—A) =——v f ——VV—vy-?
ot mc m Jy w m 2

()] o

Then we can introduce the velocity potential # defined
by

v+eA/ (me)=—vVu.
We substitute (2.4) into (2.3) and get

du 1 prdP@) V 1 e \?
*_Z f +——+—(vu+———A). (2.5)
t mdy ! m 2

(2.4)

a n me

The field equation inside the atom is the Poisson
equation

V2V = ~4xeln, (2.6)
The equation of continuity is
dn/0t=div[n(Vut+eA/(mc)]. 2.7

Three equations (2.5), (2.6), and (2.7) and the equation
of state (2.2) supply the necessary and sufficient basis
for the present analysis.

Small Vibrations, Equilibrium State,
Orthogonality Relations

Bloch’s hydrodynamical electron gas is capable of
oscillations around the ground state. The deviation from
the ground state can be treated, as usual, by the theory
of small vibration. We expand hydrodynamical quanti-
ties in terms of deviations:

n=notnitnt-- -,
p=potpitpat- -,
=04 +us+-- -,
V=Vot+Vit+Vot---.

Succeeding terms are specified by the order of interac-
tion with the external field. Suppose the interaction is
switched off at a certain time. From that moment the
atom remains stationary in the various excited states.
Exactly speaking, if two or more modes are excited, this
state is not stationary because these modes in combina-
tion excite another mode as discussed in Sec. IV.
However, this process takes place through the 2nd-order
perturbation. Therefore, as far as we are concerned
with the lowest order, the states where two or more
modes are excited are stationary and are characterized
by harmonic oscillations. These oscillations we call
free vibrations. Then equations which are linear in #,,
#;, and V' are

number density :

electron pressure:
. . (2.8)
velocity potential:

electrostatic potential:

V2V1= —4162%1, (29)
8n1/6t= V(nOVul), (210)
mduy/0t=n1(dP/nodno)+ V1. (2.11)
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We characterize the free vibration by proper fre-
quency « and by the indices of a spherical harmonic.
The general solution is the superposition of the elemen-
tary solutions of the form

nl(k) = ——wk]Vk(r,B,qS) Sin((x.’kt-l_alc), (212)
w0, ® = Up(r,0,¢) cos(wet+5%), (2.13)
Vi® =maw, Vi(r,0,0) sin(wii—+8x). (2.14)

Inserting (2.12), (2.13), and (2.14) into (2.9), (2.10),
and (2.11) we get

vz V}c: (41re2/m)Nk, (215)
—wksz= V(ﬂoVUk), (216)
—U,= —Nk(dp/mnodno)—l— V. (2.17)

Next we recall the derivation of the contribution of
an individual mode of proper vibration to the energy
uptake of the statistical atom. As usual we proceed with
the wvariation principle. The total energy has the
following form:

2@ p®
E= fn—dr+—f dradTs

Ya,

_zef~df+fdf nf

Let this energy be minimized with respect to #, keeping
the total number of electrons fndr=Z fixed. We get
the unperturbed static solution 7y Then let all free
vibrations be excited, so that

n=ng+n1=ny+2_r Ceti‘®,

dn'.

(2.18)

u=0-+u,= Zk Ckm("), (2.19)
V=Vt V1=Vt 225 Ci Vi ®.
To secure real #1, 41, and V; we claim that
Ck:: C—k*y
where
Ck= ka,l,m (2.20)
and
Co= ka.l.—m
since we define the spherical harmonic such that
YVin(0$)=Yi-n*0,0). (2.21)

(Not in accord with Condon’s choice of phase!)
The energy increase AE is given by

1
=5 de{ mno(vu1)2+n1V1

il (o ) ) e

because terms of the first order in deviations from
equilibrium vanish. This AE must be a constant of
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time after the perturbation is turned off. We can
explicitly show this constancy by taking the time
derivative of AE:

d dP
dt dno

1 oV, av,
+ [Vl——*v V]} (2.23)
87e? ot ot

Then we impose the boundary conditions:

(1) Normal component of gas velocity vanishes on
the boundary surface.

(2) Variations in potential vanish on the boundary
surface.

We eventually extend the boundary surface to the
infinity. Due to the boundary conditions d(AE)/d¢=0.

On the other hand, the energy increase due to free
vibrations has the following form:

1
AE=3] lelz'EmwﬁfMUk*dr (2.24)
k

provided that we demand the orthogonality condition

f NU*dr=0.

This condition annuls all the mixed terms which would
otherwise contribute to (2.24) and which would vary
periodically in time with a circular frequency of the
form (w;—ws). The absence of these terms ensures
that AE remains constant in time.

(2.25)

Absorption Process

Now we are ready to apply the hydrodynamical
theory to the absorption of light. Following Wheeler-
Fireman, we sketch the general procedure. At time
t=0, let the electromagnetic interaction be applied.
As time goes on, various modes are excited. The
amplitude of the individual mode varies with time.
After a sufficiently long time, let the interaction be
stopped. The atom will be left in a superposition of
free vibrations. During the supply of the electromag-
netic interaction, the energy for the individual mode
increases linearly with time or oscillates with time.
We pick up those terms which increase linearly with
time, and get the absorption cross section.

We expand the deviations #,, #;, and V in terms of
an orthonormal complete set Ny, Uy, and V.

n1=§ Bk (t)Nk (7)0:¢)>
=2 () Ui(r,6,6), (2.26)

V1= Z dk (t) Uk (7,0,¢),
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where we have included the time dependence of
stationary states into the expansion coefficients g, ks,
and dy. The equation of motion, field equation, and the
equation of continuity in first order in the external

field are as follows:
6u1 1 dj? V1
— = ——,
d! mnedng m
ViV, = —4ren,, (2.27)

Onl €
—=div[no(vu1+——A)].
dt mc

Inserting Eq. (2.26) into Eq. (2.27) we get the following
relations:

dk(t)= —mgk(t), (228)
hu(8) =g (0), (2.29)
ﬁk(t)+wk2hk (t)
i f 0B ¥ UH)e <Dy
e
= (——) Re et (2.30)
Mw
f U*Nidr
Here, the external classical field is given by
E=Re[ Eeitk- 0]
or
.
A=Re ——Eoe“k"—“’"], (2.31)
Aw

where Re means the real part.

AE@=§(%dbvmw)GMﬁwwmmmvy

By elementary calculations we get

w;ﬁ

fno(Eo' vU*)eiks-0dr
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The general solution of (2.30) is

hk (t) =Re

e—-iwkt

— Wy

fﬂo(Eo'VU}c*)ei(k'r)dT
e/m .
+ " p eioth (2.32)
—iw
ka*deT(wk2—w2)

P means the principal part and Ay is an arbitrary
constant. We fix this A, from the initial condition.
We demand that at =0, the number density deviation

n; and the velocity potential #; vanish. Namely, we ask
I (t=0)=0,
2.33

Then A, takes the following form:

fﬂo(Eo'VUk*)ei(k'r)dT

[

A}c='—— Rc
m

f Uk*JdeT

f 10(Bo- VU *)eik Dy
Wi
+i—Im P

w Wit —w?
U*Nidr

At time ¢, the interaction is stopped and the atom

remains in a state of free vibration. Therefore we have
the following relations between g (1), 4 (t), and Ci(¢):

— Crore sin (wid4-8) = g (2),

Cr cos (wit+6) =R (8).

(2.34)

(2.35)

Hence

(2.36)

2 2

fﬂo(Eo' VUk*)Ei(k ‘Odr

l&@“+””“@“=(i)P( R

2—(.02)2 ¥
wkak*ZdeT

fﬂo(Eo' VUk*)e"(k Odr

XM (1) +2 |Re

MO0+ | Im

w;,f Uk*der

fno(Eo' VUk*)ei“‘ ‘Ndr

wkf Uk*deT

Im Mk(a)(t) ’
wkak*deT

(2.37)
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MO (1) = w2 (w? sinZwi+w? cosiwi— 2wwy, sinwt sinwyt— 2w? COswl Coswri+w?),

M D (t) = w2(w? sinZwi+wp2— 2wwy, sinw? sinwii+ wi? cosiwi— 2wi? Coswit COswE),

(2.38)

Mi® () = w2 (w2 —w?) sinwi(coswyt— coswt).

We sum over states k:

ae()= | d“”%(; i Uk*der) (160 el )],

(2.39)

where dN/dw; is the level density at frequency wi. It turns out that M®(f) contributes only to oscillating terms
so that we neglect it. M;® (¢) and M;® (f) contribute to terms which increase linearly with time. Therefore we

keep those terms. The final result is

fn()(Eo' VUk*)e"“‘ ‘Odr
me? |dN

2

d
—(AE@)=—]— (2.40)
dt 4m | deor, i
wk(ka*JdeT)
wk =W
Since the flux S of the incoming electromagnetic waveis then
2
¢ ¢ 'fno(e-ka*)e‘“"’)dr
S=n—|E|?=n—| Eo{?, (2.41) aN
4r 8 flw)y={— (2.44)
Wk
the absorption cross section becomes wi? f U*Nidr
wh=w
2
(k1 The eigenvalue of Egs. (2.15), (2.16), and (2.17)
U )itk -ng g q ) ’
2x%2 | AN \f nole-VUit)e 4 were studied by Wheeler and Fireman. They have
o(w)= — . (2.42) shown that the spectrum is not discrete, as Bloch had

mc | dw
. f UFNudr

Wk =w

This agrees with the result of Wheeler-Fireman when
the general retardation factor ¢** ® ig replaced by the
first-order term i(k-r) (dipole approximation).

Oscillator Strength
If we define the oscillator strength f by

2m2e?

f(w), (2.43)

o (w)=
mc

assumed, but continuous.

III. COHERENT SCATTERING
Scattering Cross Section

In this section we apply Bloch’s hydrodynamics to
elastic scattering and analyze the differential cross
section by the method of partial waves.

The external electromagnetic field produces a current
inside the atom. This current is given, to the first

order, by
. e e
]1=——7L0(Vu1+—A), (31)
¢ mc

where «, is already obtained in (2.26) and (2.32). However, we have to replace the principal part P in

(2.32) by the outgoing boundary condition.

From the induced current (3.1) we get the magnetic field H(r,?) outside the atom.

e2

H(rp)=

fﬂgVUae—i(k'.r)de no(Eo- VU *)er - Ddr

+c.c.-Xn. (3.2)

ei(k-r—wt)Eofnoei(k—k') .rdT_Z

2mccr «

L

f U*N adr (0o — wi—1ie)
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From this expression we get the differential cross section for coherent scattering

fﬂOVUae—i(k/'r)deno(ein'VUa*)ei(k'r)dT

do e \?
— (—-) ei,,fnge“k—"""dr—z Xn| . (3.3)
dw me? @

fUa*N.,dr(wﬁ—w?—-ie)

Rewriting n by the product of two orthogonal polarization vectors, eou¢ of the scattered wave, we get

fno(eout-vU,,)e—i(k"’)drfng(ein-an*)e"(“‘”dr

do e \?
__=(——.—) Z (ei“.eout)fnoei(k—k/)-rdT__Z . (3'4)
dw mc?/ polarization of a

scattered wave f U*N.dr (wf—w2—ie)

Forward Dispersion Relation for Light with a Long Wavelength

Based on this equation, we discuss the dispersion relation. We take the scattering of light with a long wave-
length. Let the polarization vector e;, point in the « direction. Since N, forms a complete set of functions satisfying

fﬂ7aUg*d7'= 0 for a#p,
we expand the vector V (noe~** ) in terms of the N, with coefficients which are vectors C, independent of position:

fnge‘““"’)VU.,dr
W (et & ) =3 C N *=—3" N ¥, (3.5)

fUaN,,,*dr

We now multiply both sides with xe~% " and integrate. Then we use Eq. (2.6) and get

fnoe—i“‘"')andr .
—fxv(noe‘i("'">)e"(k")dr=z -——;fv-(noVUa*)e"(k"’(—x)dr. (3.6)
Wea

f UN ¥ dr

Eri<<1, (3.7)

We assume

where 7; is the distance inside which half of all the electrons are included. Then, noting Vx=e;,, we can reduce
Eq. (3.6) to

1 fnoe—i(k'.r)andT_ f”O(ein‘VUa*)ei(k")dT
€; fnoet(k—k) tdr= Z__ . (3.8)

2

a We
f U*Nudr

Inserting this relation into (3.4), we get
fno(eouyVUa)e‘““'")drfno(ein~VU‘,*)e"(“")dr

( ) w2 . (3.9)
dﬂ polanzatxon of «
scattered wave waz (waz _ wg__ 16)[ Ua*NadT

2
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For the forward scattering, the calculations given at the end of this chapter show that if e,y points in y direction,
then the scattering amplitude of (3.9) vanishes. Hence we have

€out= €in. (310)

Thus we have
2|2

1 ’fﬂo(ein.an*)ei(k.r)dT

do e \?
% _ ( ) Nty , (3.11)
mc? @ Wel—w?—1e
wa2fU,1*N,,dT

Now we generalize the definition of the oscillator strength given previously by Eq. (2.43) to

2

( f no(€in- VU *)eik Dy
Jim(we) = . (3.12)
W’ f Uo*Ndr

Inserting this relation into (3.11) we get

do e? \?2 df; m(we) |2
i (__) e _fumlwa) (3.13)
daQ mc? 1,m e —w?—1e
where
N
dfl,m(wa) = fl,m(wu)—dwm (314)

dwg

This is the well-known standard classical Rayleigh formula which connects the forward differential cross section
to the oscillator strength.

Deriving Eq. (3.13) by simple argument, Putnam'?® takes the photoelectric cross section of the hydrodynamical
gas model from the preliminary calculations of Wheeler and Fireman. He fits their results by a simple analytic
formula for df/dw as a function of w. He uses this representation of the oscillator strength in the Rayleigh formula
and integrates to get the elastic scattering cross section as a function of energy for wavelengths great in comparison
with atomic dimensions. Eq. (3.4) of course is not limited to the case of long wavelengths and also forward
scattering.

We looked for a dispersion relation for nonforward elastic scattering, but we have not yet succeeded in estab-
lishing it.

Analysis by the Method of Partial Waves
The scattering amplitude given by Eq. (3.4) can be written in the following way :
® dN (we'")
M(eout, | ¢ 5 €in, k) = (ein'eout)fnoei(k_k,) Tdr-—- Z f dwa”————~——
1 ,m Wy dw.”’
f no(em-an»oe—““"‘)dsxf Holein- VU HF)eik-Vdoy
X , (3.19)
Zwa"f Uogr*Nodr(we' —w—1€)

where we have defined
U—-wa, L m= Uwa,l,m,

(3.16)
N—wa, lm= Nwa, lm.

3 P. Putnam, “Photon scattering by statistical atom,” Ph.D. thesis, Princeton (1960).
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We analyze the scattering amplitude M (e,us, k' ; €10, k)
in Eq. (3.15) by the methods of partial waves. We
choose the coordinate system as in Fig. 2. Here,

€in= (COSPin, SiNgiy, 0),
€out= (COSPous COS O, Singhous, — COSPoys SINGO),
=k(sin®, 0, cos®).

The direct scattering term is well known and given by

3.17)

(€1n- €out)dr f no(r)jol K —k|r)rdr.  (3.18)

To evaluate the dispersive scattering term we employ
expansion of the familiar type:

] 24
e @ N=dr 35 X (=) jr(kn)Y v w

U= mi=—1’

X(0,0)Yv,n*8,4). (3.19)
We assume for U, (r,0,¢) the following form:
Uarr (r8,0)=fuorr /(1) Y 11, (0,0). (3.20)

For simplicity we write fo(r) instead of f,;+(r) in the
following formulas. Then two factors, S #¢(r) (€in- VU,¥)
XetENgdyand S ne(r) (€out VUarr)e ¥ -0d3xin the dis-
persive scattering term can be reduced further as below:
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z(0
Z'(k")
@~ T8,
0 = y(y’)
,
é
" ‘out -
in
xl
eou'

F1G. 2. The coordinate system that we use for the calculation
of the matrix element, M (€out, k’, - €in, k) for the coherent scatter-
ing in Eq. (3.15). k and k’ are the wave vectors of the incoming
wave and the scattered wave. i, and eoys also are the polarization
vectors of the incoming wave and the scattered wave. We choose
the direction of k as the z axis so that e, lies in the (x,y) plane.
Also, we take x and y axes such that k’—taken as the 2’ axis—lies
in the (z,x) plane.

(=) Q' 1)7\}F =

> Q1)

f”O(") (€10 VU o *)ei Oy = e‘“"”%.(

"+1)! 4

=0

) d '’ o0
x[Kl(z,z") f dr-r?nof; i +E0, [ dr~mofa~jz(k-r)], (3.21)
0 r 0

where m''= 41 and

2(—1)1 2(0+1)(I1+2)
KL=~ 8y 11t 810 141,
(21—-1)(214+1) (21+1)(214-3) (3.2
2(1-1)% 2(1+1)(1+2)
Ky(1,1")= 8urr -1+ R TRY
21—-1)(214+1) (214-1) (2143)

From this result we see that the incoming partial wave of angular momentum / induces hydrodynamical oscilla-
tions of proper modes of angular momentum (/—1) and (/41).

f”ﬂ(eout . VUan)e—i(k' ‘Ddr
(l"— ) '
(lli

= (COS¢oys cOSO+im"’ sinqbout)r( ( l”-|—1))

S (i) (A1) r,0(8,0)

=0

44

* dfa” ( _1)’ d
x| &0 f ir o)+ ) [ oo o @)

X 2 (=Y
zgz ) '+2)!
_ AL (
—cos¢outsm®27r(( )(2 +1) VZ_O( i)t (

(2l'+1)) Vi ,2(0, 0)[K3(l’ l”)f dr r2no]p(kr) i

14

(F+1)!

"R f ar mo]z'(kr)fw]

'(zz'+1)) Y1 .0(0,0)

dfur w
X[Ks(l’,l”)f ar T2nojll(kf)—£—‘+K3(ll,ll/)f dr fﬂojl' (kr)faw], (323)
0 r 0
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where m'’ =241 and
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-2 "+t 2 ('+3)!
Ky (V1" = dyr, 1t —r, v,
Q@U@ +1) (7-3)! QUr4+1@r+3) 71!
2041 +1)! 2 4-3)!
K4(l',l") = 0y g1 —17 01,1741,
U= (21" +1) (1" =3)! @'+HEr+3) -1t (3.24)
200+ 1)1 20 (1" +2) ! '
K'Y= IR 01,1741,
Q-1+ —2)! Qr+y@r43)n
2041 +1)! A7A"42)!
Ke(U' )=~ L Sur 141
Q-1+ -2 QU4+ UI+3) (17 —1)!
We conclude that, for the hydrodynamical oscillations way, the formula
of proper mode of angular momentum /”/, the partial A o= (is*/ (21)%6%) Bya, (4.3)

waves of angular momentum (/’—1) and (I"+1) of
the scattered wave give the nonvanishing contribution.
These expressions are well adapted to numerical
evaluation,

IV. INCOHERENT SCATTERING

Use of Einstein’s Statistical Argument to Derive
Incoherent Scattering of Radiation

In this section we discuss the incoherent scattering
of radiation in the framework of a classical picture, in
which we treat both the oscillations of the electron gas
and the perturbing effect of the electromagnetic
radiation in classical terms.!* We recall Einstein’s
derivation of the relation between coefficients Booi
and B, for absorption and stimulated emission
(essentially classical concepts) with the spontaneous
emission rate 4.

The principle of detailed balance states that the
number of transitions per second up has to equal, in
equilibrium, the number of transitions down:

(BO—»IPU)N(): (B1-+0pw+A 1—>0)N17 (4'1)
where the equilibrium numbers have the ratio
N1/ No=eholtT, (4.2)

From this argument, Einstein derived, in a familiar

In turn, Bise{w) is related to the absorption cross
section ¢(w’), which has a sharp peak at o'=w, by the
equation

Bioso(w) = ¢/ f o (o) des' (4.4)
Therefore, we have
Arasl)=[6?/ (2m)ct] f s (43)

Here, following Gregory Breit, we generalize this
kind of reasoning to find the cross section for a slightly
more complicated process where atoms are illuminated
by the primary beam of frequency w, of given direction
and given polarization, and emit electromagnetic
radiation of frequency o', of given direction and given
polarization.

We illuminate atoms with an additional beam which
has the same frequency, direction, and polarization as
does the secondary wave, and contains «'?/(2mrc)?
photons per cm? and per second and per unit solid
angle. Under these two perturbations, we solve the
hydrodynamical equations to the second order and
calculate the absorption cross section. We insert this
expression into Eq. (4.5) and then we obtain the dif-
ferential cross section for the incoherent scattering.
We summarize the reasoning in the following formula:

Probability per second of transition from the ground state to the kth excited state when the
atom is illuminated by the primary radiation of circular frequency w and simultaneously by
light of frequency o’ and of given polarization containing w2/ (2wc)3 photons per cm?; and

|

(da ) per second, and per unit solid angle. (4.6)
a7 oo [Number of primary photons incident per cm? and per second ] T
where by a hydrogen atom and it was shown (details of

analysis not reported here) that the result for the
differential cross section for incoherent scattering is
identical with the formula obtained by the quantum
field theory of radiation.

We rewrite this definition into a more convenient

w=wytw'.

This method was applied to the scattering of light

4 G, Breit (the author was told by Professor Wheeler that
G. Breit had used this method).
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form for calculations,

da') w'?

(dﬂ (1..>1c_81r362

(d/dt)AEk(z’(w,wl)/
(B

w—wkt-€
f Y (wedder  (&7)
W—Wk—€

and

Z(w)wl) =

] Einol 26 ] Eoutol 26
8mhw  8whwn .

(4.8)

Here AE®(w,w) is the energy uptake by the atom
when the atom jumps to the kth excited state under
two perturbations of frequency, w and w, respectively.
To evaluate AE,?(w,wi), we make a calculation of
second order.

The equation of motion, field equation, and the
equation of continuity in second order in the external
field are as follows:

813

ous h? 3 )* ny 1 nﬁ)
dt 3Im?2\8r %o* 6%0%

V2 1 (4 2
+—t- Vu1+—-A) y
m 2 me (4.9)
V2V o= —4me’n,,

g e
—=V" [novuz+n1(vu1+—A)].
ot mc

As before we expand ng, 42, and Vs in terms of Ny, Uy,
and V; such that

No= Z gk(2) (t)Nk (7,0,¢) y
k

uy=2 @ (O Ui(r.0,9), (4.10)
k

V2= Z dk(2) (t) Vlc (7701¢)-
k

Inserting Eqs. (4.10) into Eqgs. (4.9) we get

8O ()= —mg® (),

65 (1) +th

27
ka deT

and

WD) =p® )+

f UpNi*dr

+ OO

We impose the same initial condition as before.

i) B

N (U, VU,)dT+ 2. BV (1)

<2)(t)——1—~——[ 2. gV (Dk; m(t)ka*v (vaU,)d-r—I————Z g,‘l)(t)ka*v (NV; A)dr}, (4.11)

mec i

(1 (t)ka*N Nﬂlo ng

JV},;*(VU,;' A)dT+

62
. ka*A2d1’ }

mec i 2m*c

& (:=0)=0,

@ (t= 0) =0,

(4.12)

Let the interaction be stopped at ¢ and the atom be left in a state of free vibration. Then the energy uptake

AE,® (1) for mode k is given by the familiar formula

B ()= im f UNe#dr (|6 ()| 24| @ (0)]2).

(4.13)

We insert these results into Egs. (4.7) and (4.8) and get the final result

( )0 K (m[: Wi Zm
ka]\ d‘T

fno(ein . VUi*)ei(k ‘Odr

wi2_w2

X fe_i(k' Degys (V¥ Ui~ N,V U*)dr+

(eln eout)wkak gitk—k" - rdT+Z

1

fU *Ndr

f”o(eout' VU,'*)e_i(k’ -r)d,r

wi— (w—wk)2

(Continued on next page)
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Xfe“k")e,-n- (wk;’\’k*vU,»—}— (w—wk)NiVUk*)dr +§:

WAKANO

fnn(ein- VUi*)ei(k "’d‘rfno(eout- VUj*)B_i(k’ ‘Ddr

,7
fU,'*LV,de Uj*]deT (wﬁ-—w“’)[wf— (w—-wk) 2]

X[_wkak*(VUrVUj)dT+wf]Vi(VUk*'VUj)dT— (w‘wk)flvj(ka*'VUi)dT

Comparing this expression with Kramers-Heisen-
berg!*-Waller’s!® formula of wave mechanics, we see that
the first term corresponds to the direct scattering.
This correspondence is pursued in Sec. VI. The second
and third terms are also familiar and correspond to the
dispersive scattering. The last term is less familiar.
One might argue that the correspondence theoretical
method we used is the cause of this term. However, we
applied our method to the simple system of hydrogen
atom plus radiation field where the hydrogen atom is
composed of a fixed force center and a bound electron.
And we used Schrodinger’s equation for this electron.
Then we got the formula of Kramers, Heisenberg, and
Waller. One might argue in another way that we omitted
the electromagnetic interaction inside the atom and
retained the electrostatic interaction. This electrostatic
interaction eliminates itself in determining basic
functions Ny, Uy, and V. Therefore, this elimination of
the electrostatic interaction is reflected as the direct
interaction between three modes 7, j, and %. To check
this point, let us drop the Poisson equation and the
deviation in electrostatic potential. Then we see that
all formulas which we obtained, Egs. (2.25), (3.3), and
(4.14), remain the same. The electrostatic interaction
changes only V; and U themselves. Thus we come to
the conclusion that the complexity of the original
hydrodynamical equations produced this term. The
term in Eq. (4.14) which includes S N*N:Nnitdr
arises from the term in the first equation of (4.9) which
includes #;2. This term shows that two modes ¢ and j,
excited by the external field, excite mode & through the
compressional force. Terms in Eq. (4.14) which include
S NH(VU;-vUjdrand S N,(VU*-vU;)dr arise from
terms in the first and third equations of (4.9) which in-
clude (V#,)? and V- (#,Vu,), respectively. This kind of
term is reasonable. Flow of the Fermi gas excited in mode
11, and flow of the Fermi gas excited in mode <5, build up
in combination certain excesses and deficits of density
which excite mode ¢;. Indeed, suppose that at :=0 the
external field be stopped and the atom be left in the

15 H, A. Kramers and W, Heisenberg, Z. Physik 31, 681 (1925).
16 I Waller, Z. Physik 51, 213 (1928).

2

3\ A2
+(—) ——wwk(w—wk) ka*ZV,‘ZVﬂLQ—ng] . (414)

8r/ 9m?

state where two modes ¢ and j are excited. Then,
from Eq. (4.11), we see that through these terms,
fN]c*NN;]ano_idT, ka* (VU,"VUj)dT, and fN,
X (VU*-vU,)dr, the third mode % is excited.

V. QUANTIZATION OF THE OSCILLATING ATOM

Hamiltonian of the Free Field Which Is Quadratic
in Deviations of Charge Density and
Velocity Potential

Bloch’s hydrodynamical electron gas is capable of
oscillations around the ground state. We termed this
oscillation the free vibration. In this section—following
work of Bloch,” Wentzel,'” and Bohr!*—we give a
proper quantum field theoretical treatment to this
free vibration.

Let us start with total Hamiltonian of the coupled
system of electron gas and radiation field:

n(ﬂ)n( b)
f (Vu-i— A) dT—I— dradTy
Ze? n P (n*)
—-f —ndr+ | dmn f dn*
’ o n®

=H,+H;. (5.1)

Further we divide H, into the Hamiltonian of the
ground state plus the Hamiltonian which describes
deviations from Thomas-Fermi’s distribution.

m n(u)n(b)
H0=— fn(vu)%f-r—l- f ——dTadTb

Ze? n P(n*)
—f ——ndr-i—fdr nf dn*
0 n*?

EH0,0+H0,2,

17 G. Wentzel, Quantum Theory of Fields (Interscience Pub-
lishers, Inc., New York, 1949).

1BA. Bohr Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
26, No. 14 (1952)

(5.2)
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PROPRL)
H() (]—-“f i TadTb

Ze?
f —nodr

n P(n*)
+dTn0f d’ﬂ*
0

n*?

and

m e? nl(“’nl(b>
H0,2=— fno(Vu1)2d+— f —dTadTb
2 2 Yab

1 1d
o Lt
2 #o dhg
The interaction Hamiltonian is given by

m
H1=—fn
2

Canonically Conjugate Coordinate
and Momentum

(5.3)

e e\’
___(Vu-A-{-A-vu)-i—(—) A? }d‘r. (5.4)
mc

mc

Let us forget the interaction H; for a while and
discuss the free vibration. We regard the system
described by H,o as vacuum and 7, and #, as dynamical
variables. As before, we expand these operators by
N, and U,.

m()=— Y 3 Coalim(DwalNwelm(r,0,9),

we201lm

m= X healm()Uwalm(r,0,¢).

waZO Im

(5.5)

To secure real #; and u,;, we claim

Cwa.l,m(t) =Cwa,l,—~m*(t)

and (5.6)

Boastom(£) = huao 1= ().

With these operators, Cug.l.m and hea.lm, We rewrite
H,,; into the following form:

Hyp=E (Jhoatm|*+|Coatm|?)

we 20
lm
m
X—w,? f USNodr
2

From the equation of continuity we have

=T+V. (5.7)

(5.8)

hwa,l,m=wa_10wq,l,m.

Hr(x)=in(no(X)+%1(x)) -?—(A(x)-vul(x)+vu1(x)'A(x))+
2 me mic?

18§, Tomonaga, Progr. Theoret. Phys. (Kyoto) 1 27 (1946); J
(1949); R. P. Feynman, Phys. Rev. 76, 769 (1949); I
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We define the momentum mwq, 1,m conjugate to Cuq,i,mby

Toalm=0T/0Cuqlm=Coqlm*

X(mewa,l,m*Nwa,l,de). (5.9)

Inserting (5.8) and (5.9) into (5.7) we get

a2

1
(me U,,*Nadr)
1
+(—mwa2fUa*NadT) [Ce|?
2

Here, and from now on, we use the symbol « instead of
e, I, and m. From the Hamiltonian, (5.10) we see that
the hydrodynamical system can be regarded as an
assembly of harmonic oscillators with frequency w,.
We introduce creation and annihilation operators b.*
and b, of the hydrodynamical oscillation of the proper
mode « in the familiar way:

/2
Cam (
2B.w,

H0,2=Z

(5.10)

)%(ba+b_a*),

(5.11)
Ta=1(31Bowa) (.5 —b_s),
where
B,,:mf U Nodr. (3.12)
We define the number density operator #, by
bobo*=n,+1
and (5.13)
ba*bo= 0.

Then the Hamiltonian Hy ; takes a familiar form

HO,QZZ ﬁwa(na-i—%). (514)

S-Matrix Formalism!?: Matrix Elements for
Coherent and Incoherent Scattering

Now we deal with a coupled system of hydrody-
namical electron gas and radiation field. We use the
interaction representation. The interaction Hamiltonian
density operator Hy(xy,%2,%3,1) is given by

62

A(x) . (5.15)

Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949), 76, 790

. J. Dyson, Phys Rev. 75, 486, 1736 (1949)
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The S matrix is given by
v s1\"1 p>
S= Z (—) — f d4x1' . 'd4an[HI(.’XJ1),' . ',H[(xn)], (516)
a=0 \ iR/ n!J_,

or more conveniently for our purpose,

1 ®© 1 2 0
S=14— f Hz(xl)d‘*xl-l-(—) f
ihJd_y, ih —

We quantize the radiation field too.

4
. f o Hy (o) Hr () - - (5.17)

G0 —

e,™

1
A= T — (e () Fe 40 (B)). (5.18)

’\/V A=1 \/Zwk

We take only transversal fields because we already included longitudinal and scalar fields into the Coulomb
potential. Then for the coherent scattering we get, to the lowest order,

<k’1e°uh0 ] SI k)ein)0>
fno (€out* VU o) ik "‘)dsxlfno (€1 W U¥)eitk 2 d8y,

e w1l
=—-_—-—6(wout—w) (ein'eout)an(X1)ei(k_kI)d3x1——Z
me® h Ve 2 a

fUa*NadT(wa—-w—ie)

fno(ein'VUa)ei(k"1)d3x1fn0(eout-VUa*)e_i(k"‘z)d“xg
- % -~ 5
2« dm ar.ez
wana*Nadr(wa-i—w—ie)

1

walwa2f Ual*Nalde Uaz*Nang
desxl[wdlzvﬂ (Xl) (eout VUa (xl)) FwasNVas (X1) (eout vla (xl))]g‘i(k'xl)

fdaxZI:wﬂlNal*(Xa) (€in VU as™ (X3)) FwazVag* (X5) (€in - W Uar* (X)) Jeitk-x2

X

(warFwas—w—1€)

/ 1

Am a1,a2

walwasza1*Na1drf Uaz*Nasz
X fd3x1|:wl¥1Na1(xl) (ein 4 Uaz(Xl) +wa2Na2(X1) (ein B 4 Uﬂl(xl))](}'i(k -x1)
fd3x2|:w”‘1N"‘l* (X2) (€out VUas*(x2)) FwagNag* (Xg) (€ous s VU ar*(x2)) Je— 22

X . (519
(wa1+wa2+w— lE)

We are familiar with the first three terms. These terms agree with previous results in Sec. III. The last two
terms are new. These terms arise from

(e/26)n1(%) (A (%) - Vaur () + Vs () - A(x)) (5.20)
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in H;(x). Therefore, two hydrodynamical oscillations can be excited or annihilated simultaneously. From the
consideration given in Sec. IV, we see that the state where two modes are excited is not stationary. Two modes in
combination excite another mode. Therefore, such a state has an exponentially decaying time dependence. So our
method of derivation is not correct in its treatment of these higher-order processes.

We can make the similar calculation for incoherent scattering. We write down the result

<k/; €out 61S' k, €in; 0)
er (wstw' —w) 1 {

= \ - (Cin'eout)wafNﬁ*(m)ei(k_k') iy
met V(w'w)t (Zng,qﬁ)*[

{fno(ein‘VU,-*)ei“"“’d%gfd%l eI xve, i (waNg*V U — iV, WU g*)
1

(wi—w—1e€)
w,;f UXNdr

oz

1
2

fno(ei,,- VU,-*)e‘i(k' “2>d3x2fd3x1 eilk-xieg; . (ngﬁ*VU,-—w,-N,-VUg*)

4
|

(wit (w—wg)—7¢€)

fno(ein . VU,-)e"“‘ 'xl)dlefdsxz gk xe . (wﬂNp*VUi*+wiIV5*VUp*)

1.
T

(witw—71e)

fno(eout.VUi)e—i(k'~x1)d3xlfd3x2 ei(k-xz)ein. (wBNB*VUi*+wiNi*vUB*)1

+

3.21
(witwg—w—1e) ( )

J

Again the first three terms are familiar and agree with previous results provided that those parts of the second
and third terms in Eq. (4.14) which have a factor (wiVi*V U — N ;¥ U*) after rearranging these two terms such
that they have the denominator which depends linearly on w, can be neglected compared with other terms. The
last two terms correspond to the simultaneous excitation of two modes ¢ and 8. However, from the reason given
previously, our method for this particular process is not correct.

In this way, we can automatically compute other processes which involve the interaction between hydrody-
namical electron gas and radiation field. However, we do not proceed further into these processes, but we turn
attention to the Compton scattering because, for this process, we can easily compare hydrodynamical results with
experiments and we can work out cross sections with the semi-classical JWKB approximation, both for the hydro-
dynamical model and for standard wave mechanics.

VI. COMPTON SCATTERING
Rederivation by Orbital Method Plus the Method of Stationary Phase of Heisenberg’s Formula
The intensity for the Compton scattering is in the approximation of direct scattering, proportional to
2n

| Mif|?= [Yi(X1, 015 =+ 5 Xon, 020) Yr* (X1, 015+ + 5 Xany020) 2 867K Xidyy oo oy, |2, (6.1)
=1

where Z=2n.
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The ground state wave function of the atom is given in the familiar approximation by a determinant
1
[(2n)! ]t

Let one of the electrons be excited from the sth level with spin 4 to the (s+%)th level wi i
' ¢ th .
wave function of the final state will again be a determinant of the form ( Jth level with spin . Then the

¢'1,+(?K1,01) < e (X1,01) o0 Pa—(X1,01)

(6.2)

%(Xl, g1; * 7 Xan, 02n)=

¢1.—-(x2n,0'2n) - ‘¢s,+(x2n,0'2n) v '¢n,—(X'2n70'2n)

1 $1,4(x1,01) *+ Porr g (X1,01) 0 pu,(X3,01)
V(X1 015 -+ - 5 Xon, O2n) = - 6.3)
[(Zn) ']2 ¢1,+(x2nya2n) vt '¢s+k,+(x2n,02n) . '¢n,—(x2n,0'2n)
Then we can easily show that
2
Migl2= | [ 90 (e x| (6.4)

WFor the total intensity, we sum |M ;|2 over f and separate off the coherent scattering term as Heisenberg did
e get '

z=2f favav| ¥ orweir) e, (6.3)
occupied )
states
where
s=k—k'.
To evaluate the second term in this equation, we use the JWKB approximation for ¢:(r) in the following way:
¢n,l,m(r)=Rn,l(r)yl,m(0,¢)) (6'6)
T [2m, (432 12
cos[f [ (E,,,l— V(r)——i—— dr—I
1 ng 3 rT.P. h? 2merZ 4
Roslr)=~(~—.1) (6.7)
r\ nti 2m, (1+3)hey 7t ’ '
[ (En,l—V(r)————d)]
%2 2mr?
where
1 (aE,,,,)
W == .
Sy § (6.8)
And in the same approximation, the spherical harmonic takes the following form:
[o+H] 9 m N\ x
Yim(0,9)= cos{f ( I+3)*— ) R Uit
[ (1+1)? sin%—m2]: or.5. = ) ©9)

Using these expressions for R, and Yi,m, we compute Eq. (6.5).

fdedV’l 2 & (1)p:(1)) | 2eisG—"

occupied
states

= 2 zl:m fdedV,¢n,l,m*(r>¢‘n’,l',m’ (r)¢n,l,m(r’)¢n’,l',m’*(rl)eis(r_r’). (6.10)

3
n' ' m'

Let us perform the angular integration first,
fd),,,;_m*(r)d)nr,lr_m,(r)eis"dV= fd”’an'l(f)Rn',[' (7) Sin0d0d¢Y1,m*(ﬂ,¢) Yl’,m’ (0,¢)eisr cosﬂ’ (6.11)

-where we choose the s direction as z direction.
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Using Eq. (6.9) we get

f sin0d0d¢Y,, m¥ (0’(1)) Yl', mt (0;¢)ei8r cosd
1
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=6m',m((l+%)(l’

1

—I—exp[if (By,m(8)— k. m(0))d0+sr cosﬁl—l—éz]
iT.P.

+3) ) :
2xsr (cost ) ((IH-5)2(V+-5)2— m2s%?)t

01
{exp[i f Bim () -Frr m(6))do+ 57 cosol+al]
oT.P.

61

+exp[if (—kym(0)— ki, m(0))d0—sr C0501+53] } (6.12)
7.P.

In the above derivation we used the method of sta-
tionary phase. Here

kim(0)=[(I43)2— (m?/sin20) ]i. (6.13)

81, 82, and 83 are constants independent of . For I>V/,
we have to drop the third term and for /<!’ we have to
drop the second term. The stationary angle 6, is defined
by

)

d
—( ] (kl,m(o)+k,,m(o))de+srcoso)=o,
d6\ Jor 5.

d ¢
—(f (B1.m(0)—ky w(0))d0+sr cosé))=0, (6.14)
do

oT.P.
d @
—( f (—k,,m(e)+kl,,m(e))de+srcose)=o,
df\Jor p,
where
0<oL i

All three equations give the same answer to 6;.

1
singy=—{ (I+3)*+(I'+3)*
Ay
’ £2((I+1)2(V+1)2—misH?)E (6.15)

The physical interpretation of this equation in terms of
vector summation of angular momenta appears in Fig. 3.

Next we make the approximation—based on the
correspondence principle—to drop the rapidly varying
terms in the product of JWKB radial wave functions at
two nearby points,? finding

Roua(r)Rn(r")

M, 1 1
z(_a,,n —
wh R® f2m, (I4+3)%m2\ \ !
(v L))
B 2m.R?
om, (1) |}
Xcos(—(En_l-— V(R)—~——)) ri, (6.16)
A2 2m.R*
20S. O. Hart, A. B. thesis, Princeton, 1942. The author could

not find Hart’s thesis. He knew Hart’s work from Wheeler and
Fireman’s note.

where
R=1(r+7"),
3 ) ) (6.17)
rW=r—r.
|
R

ﬁ /, —

s éxr

& U
P

F16. 3. Final angular momentum of the struck electron
(' +Y5)ay) (in units %) represented as the vector sum of the
original angular momentum ({14-1%).,) and the transfer of angular
momentum sXr. Here s is the transfer of linear angular momen-
tum. The Z axis has been chosen parallel to this vector. The
angular momentum # about this axis is unchanged by the impact.
The dihedral angle 6, between the two planes TRQ and PRQ, is
important in analyzing the impact. It is identical with the angle
between the lines TU and PU because TU and PU are perpendic-
ular to QR. 8, is the angle for which the phase of the product of
PLn(8), Pi,n(8) and e¥r o9 becomes stationary. For 6; the
following equation holds:

L +5P— (m?/sin:) B+ (43 )2~ (m?/sin26;) =57 sing;,

or solving with respect to 8,

sing; = xl,{ U304 U HPL2(CHPE R —mist )i,
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We insert this relation into Eq. (6.10) and get the
following result.

fdedV’l T ¢ (1)gi(r) | 2eist=r)

occupied
states

’h
= 2 w0, (I+3) (' +3)
nlom s
n' i m’
dR 1

3 prpr’ cosd ((14+3)2(I+3)'—m?s?RY)}
X8 m,m{8(pr+ P’ —5h c0s6,) +8(pr—p &'+ sh cosby)
+5(pr—pr'—sh cosby)}. (6.18)

Using Eq. (6.14) we rewrite this expression into the
following form:

def 0y
nlm

1
X
Prpr’kr, m(O)kr, m ()

2

) o (D (D)

5m.m'5(kl,m(6>_kl’,m’ (0>

~+5R sinf)é(pr— px’-+sh cosd), (6.19)
where
e
={2m| En1— —_ .
br {m[ l 2m.R?

Finally we change #, I, and m to pg, ps, and p;.
We get

g dR f d0 f dprdpedp,dpr'dpy'dps's (pe— ps')

X 6(ps— po’ +shR sind)8(pr— pr'+sk cosf)

T w  ndprdpedpsdpr'dpddps’
=2 f R*R f sinfdf f d¢ f
. ; R sing

p6')5(po— po’+35AR sind)
X 8(pr— pr'+sh cosh).

X8(ps—
(6.20)

We can easily see that the integration

[ apnapuipaapetipiapssior )
X 8(po— po’+ kR sind)d(pr— pr'+sh cosd) (6.21)

is the area of intersection or “overlap” in (pg, ps, ps)
space when the Fermi sphere in momentum space at
the spatial distance R from nucleus is transferred by
sk in z direction. And since

dprdpedps/ (R? sing) = dp.dp,dp., (6.22)
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we get Heisenberg’s result
dp.dpdpdp.'dp,/dp.
Zde? papapsapyap
h3
b0’ S pr(R)

Thus we proved that the correspondence principle
argument gives a right answer. We expect further that
this same method also applies to hydrodynamics.

s(p—p'+sk). (6.23)

Predictions of the Hydrodynamical Formula Using
the JWKB Approximation and the Method
of Stationary Phase

In hydrodynamics the Compton scattering is, in
the approximation of direct scattering, given by

do e \2uw'(w—w') k
() () EE0 L
dQ/ v m Mo w 2m,

1
X ‘fA k,0,m *gitk—k’) - rdT .
ka,l,m*Ark,l,de

This differential cross section corresponds to the
excitation of the hydrodynamical vibration of proper
mode, &, I, and m.

In contrast with coherent scattering, the hydrody-
namical vibration of angular momentum /=0 gives a
nonzero contribution to the incoherent scattering. For a
fixed momentum transfer #(k’—k), we can show from
this formula using the completeness theorem, that the
total intensity of the Compton scattering is given by

do e \?
Z (‘) :Z( ) (ein'eout)2
i dQ 0 mec?

ht(k— k’)2

(6.24)

, (6.25)

<ﬁw]> hwo
where we assumed that only modes of hydrodynamical
vibration in the neighborhood of a most probable
scattered frequency contribute strongly to the Compton
scattering so that we could extract the average value
(hw;) of the excitation energy from the summation
over j. For a frequency sufficiently high to neglect
(1/%wo) term, we have

do et \?
Z (—) ZZ('——) (ein'eout)z
i aQ 0> j 1‘)1,;(72

B (k—K')?
X / (o). (6.26)

(hw;) depends upon angle of scattering and incoming
frequency. To make this situation clear, we use the
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JWKB approximation for the hydrodynamical vibration
amplitudes N; and U;.

Let us compute the JWKB approximation formula
for Nii,m and Ug,m, which satisfy Egs. (2.15) and
(2.16) (neglecting Coulomb interaction, for simplicity),

V(n()VUk,z,m)“lesz'l_m:0, (627)

r mew’2
cos f ( +(
const ree. Ndp/dng

’ﬂo’)2 ”0”
2"0 211/0
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where

1 dp
—Nk,1,me
Mty dno

Uk,l,m=

Solving this equation in the JWKB approximation,
we get

no,

rho

<l+%>z)*dr

r2

Yl. m(aad))

er.l. m(f,0,¢) =

2

rngt Mo /
G om
dp/dne  \2mg

and
Mmehy
Netom= Uk,1,m- (6.29)
dﬁ/dno
Now
11/0, 1 1
— =— {(6.30)
no (scale of potential) L
and
mew't 1
~—, (6.31)
dp/dny X2

where A is the wavelength of sound wave. Therefore,
the condition L>>A justifies neglecting (m¢'/n0)%

(6.28)

)2 ne! no ([+%)2)§
219  rHo r’

ng' /m, and ng’/rng. But LR is just the condition for
the validity of the JWKB approximation. Therefore,
under the conditions where one can legitimately use
the JWKB approximation at all, one can neglect terms
in (ny'/n0)2, 0o’ /710, and ny”/no.

Let us consider the normalization integral,

f Uk,l,m*zvk, L, de-

We put const=1 in Eq. (6.28) because, after all, this
constant is cancelled by itself. Then we have

RGNy
(2) f (d /d . )dr
PT.P. rr.p.(1) P Y1 r
ka,l,m*Nk,l,de=f 0
rT.p.(1) dj)/dno ( mew (l+2)2)§
dp/dn, re
Lo ho' )t G+
~ dr / 1— . (6.32)
20’ rr.p.(1) 1 dp e

We give a physical interpretation to this equation in
correspondence with classical mechanics. To a phonon
of energy v’ we ascribe momentum

1 dp
/()
m. dno
and inertial mass
1 dp
fiw’ / ( )
m, dno
Then we can rewrite Eq. (6.32) into the following form,
1 4 Thydro

Thydro

4’

! (6.33)

20’

where Thyaro is the period of orbital motion of a phonon
in the region of binding.

1 dp)*

m, dng m. dng J
After having thus solved the hydrodynamical wave
equation, we have to apply the boundary conditions
to find the proper modes of oscillation. We apply the

semiclassical method of finding eigenvalues to sound
wave. We get

nP 2) 1 dp 32
A/ (i) ) -
rT r.(1) me dno
=(k+Hr. (6.34)
Taking the derivative of both sides with respect to %
we get

_ (Hr‘j)z)*

<1+%>2)*dr

rr.p.(2) d /dn
f PO i —r,  (6.35)

T.p.(1) Mmow'?

dp/dno
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or
aw’ %Thydro
(—) f di=m, (6.36)
ok/J o
hence
o’
Thydro=27r/ (——‘) . (637)
ok 7/,

Though, generally, «’ depends on % and !/, for a large
value of r7.p.(2), ' depends only on k. Eventually we
extend the arbitrary surface to infinity, so that hence-

a2z e? \2uw'?(w—uw’)
( ) = (ein'euut>2( ) '—————'Smeh(l"*‘%)
dQdw’/ ; o w
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forth we assume that " depends only on k. Thus we
get for the normalization integral

T
ka.l,m*Nk.l,de=——,, (6.38)

20w’y

where
o p=(0w'/3k)1. (6.39)

Inserting Egs. (6.28), (6.29), and (6.38) into Eq.

(6.24) we get

w AL Ga )]

Ji(|k=K1|n{, (6.40)

X | | drr

dp/dno

where we have defined (d?Z/dQdw’); such that

( az ) (da') (ak)
dodo'), \de/ \ow/

To evaluate the integration in Eq. (6.40) again, we
use the JWKB approximation for 7;(|k—k’|r):

(6.41)

1
|k—K'|7 ((k—k')*— (+3)*/r)}

Xcoslf ((k k’)2— 2)2 i

. dr———i (6.42)

il [k=K'|r)=

) 2wt (w—w') 2on ) (1
(dﬂdw) (Bin-Cou)? ('mecz) o k—K| () E+3)

X f dry cos( (
dp/dﬂo

dR

(mew 43\ }
dp/d%o ?’2

We make another approximation—correspondernce
principle argument—for the product of two Bessel
functions 7;(|k—k’|#) and ji(|k—k’|7) (dropping
rapidly varying parts!):

Gl (k=K' e [k—K'| ")
1
2 kK[ (k= K)*— (+ 3 RIS
xcos((k—K')— (+1)/R)'r,).

Further, we make this approximation for the product
of two radial parts of Ny w(r) and Uy ;,m(r"). Then
we get

(6.43)

1
(dm) () (e0=7)

(s )2) r1) cos(((k k)2— (s )2) rl) (6.44)

We perform the integration over r; from — e to -+o. We have

2 ’2(__.

wlk—K|

() = e (.
eln eOU
dQdw’ ’ o2

oG ) (v

T ama) (1+3) f dR

o (R)

() (o>

(;2)2)

). s
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Tasre L.
Electrons Hydrodynamical
in atom disturbances

Hydrodynamical equation
of motion, equation of
tions, eigenvalues  continuity, Poisson’s equa-
and eigenfunctions tion, equation of state,

vi boundary conditions,
eigenvalues, density devia-
tion N;, and velocity
potential U; for hydro-
dynamical vibration of
proper mode j.

Wave equations;
boundary condi-

Global analysis

Phonons moving in any
small region of atom
characterized by both
position end momentum.
Spectrum becomes con-
tinuous when artificial
boundary surface is
brought to infinity.

Electrons moving
in any small
region of atom
characterized by
both position and
momentum. Two
electrons per cell
in phase space.

Local analysis.
Approximation
the better the
higher one is in
the spectrum of
proper modes

From this equation we see that only when

1 dp\?
hw’/(———) — |k—K|
M dﬂo
does the & function differ from zero. In other words,
at the distance where the momentum

” /(L d_f’)*
m, Ao

of the sound wave takes the value of the momentum
transfer from the photon, there the phonon is produced.
Just as electron states (extended functions of position)
are analyzed on a local basis in the statistical atom
model (Table I), so characteristic modes of hydro-
dynamical vibration—which are solutions of a global
eigenvalue problem—can be replaced in a certain
approximation by the local concept of phonons.

Integrating (d%2/dQdw’): over the modified circular
frequency «’ and over the angular momentum of
hydrodynamical vibration I, we get the total intensity.

dO’Compton azz e? 2
~=fdlfdw'( ) =(ein'eout)2( )
dQ dQdw'/ Mmec?

X—lk k'| RZdR malR) (6.46)
mt dp/d %o)i

To make this integration, we perform the transforma-
tion of variable

R=ux

1 /972y }
- —(_) aox,
4\ 27
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1.0

ol BLOCH

o8-

HEISENBERG—- BEWILOGUA

I 1 L
o] o] 02 03 04

Fic. 4. Intensity factor S¢? for Compton scattering defined as
ratio between differential cross section and the “ideal” value
(€in-€out)?(€2/mc2)?Z. The curved line shows Heisenberg-Bewilo-
gua’s result

st () - (£ e

o 0176X1044 . o
STz 3N

(@(£)/ st =W

The straight line shows the correspondence theoretical expression
for Bloch’s hydrodynamical formula. This expression agrees with
Heisenberg’s formula except for a numerical factor 3%/2, provided
%hat \Te take the term linearly dependent on in Heisenberg’s
ormula.

where

and

and

no(R)= (6.47)

4yl

Inserting this into Eq. (6.46) we have

azz ez \% 0.176 X108
fdlfdw’( ) =(ein-e0ut)2( ) praiaiaindl
dQdw'/ M o2 7%
4 7} ©
e sin—(1.73 f ¢(x)dx). (6.48)
N2 .

It is interesting to compare this new result with
Heisenberg-Bewilogua’s result. We take the computa-
tion of Miranda® for —¢’(0)=1.5882 for a neutral
atom. From Fig. 4 we see that for low values of momen-
tum transfer both results give nearly, at least qualita-
tively, the same answer. In fact, if we take the term
linearly dependent on momentum transfer in Heisen-
berg’s expression

(ein'eout)Z(ez/me62)2ZS()2
21 C. Miranda, Mem. Acc. Italia 5, 283 (1934).
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and

(7))
<((42) s )ese, o0

0.176X1034 ¢
W=————-sin-
VAl A2

¢(£)7
5]
£
we find that hydrodynamics and wave mechanics give
the same answer within the Bloch factor of 3#/2. This

fact seems to indicate that our method of correspond-
ence principle argument is right.

where

and

VII. CONCLUSION

The principal results of this paper are Eq. (2.42)
for the absorption cross section, Eq. (3.4) for the
coherent scattering cross section, and Eq. (4.14) for the
incoherent scattering cross section. Some understanding

MASAMI WAKANO

is won about the connection between the hydrodynam-
ical method and the wave mechanical method. In
other words, we showed that, for the total intensity of
the Compton scattering, the hydrodynamical treatment
gives the same results as does the linear term in the
momentum transfer in Heisenberg’s expression except
for Bloch’s factor of 3%/2,

Equation (6.24) for the Compton scattering, in the
approximation of direct scattering, can be used for
comparison with experiment if we know the charge
density deviation for single mode £, /, and m of hydro-
dynamical vibration. Equation (2.42) for the absorption
cross section can also be used for the same purpose with
almost the same knowledge. Others, Eqgs. (3.4) and
{4.14) require—before application—electronic machine
calculations of all proper modes of oscillation of the
gas model of the atom, analogous to those which
Wheeler and Fireman made for /=1.
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A one-center expansion of the electrostatic interaction energy of a discrete charge distribution is developed
by making use of the algebra of irreducible tensors. The result is completely symmetric in the coordinates
of the particles, and the relative magnitude of the vectors need not be specified. It is shown that a suitable
interaction representation provides useful formulas for electrostatic and quantum mechanical applications.
In addition, some transformation equations make it possible to refer any arbitrary number of vectors to a
second origin, thus yielding general two-center expansions for overlapping charge distributions.

I. INTRODUCTION

N many electrostatic and quantum mechanical
problems, an expansion of the interaction energy

n €€;
I )
i r—ryl

between # particles in terms of the individual particle
coordinates r; and r; is needed. In atomic problems,
these vectors are referred to a single origin; whereas
in molecular applications, the origin of the r; vectors
may be different from that of the r’s.

In the usual one-center expansion of (1) using the
generating function of Legendre polynomials one has
to distinguish between the magnitudes |r;] and [r;| of
the two vectors, and one obtains two expansions; one
in which 7;>7; and another one which satisfies the
condition 7;>7;. Quite often, and especially when (1)
appears in differential equations, this limitation of the
expansion is a very cumbersome one. A similar situation
exists in the bipolar expansion of the Coulomb potential
between two charge distributions. The range of
validity of the formulas depends on the relative
magnitudes of 7, 7;, and R, the separation of the
two centers.’—3

The method outlined here provides formulas for
the one-center expansion of (1) which are symmetric
in the r; and r; coordinates and which do not require
knowledge of the relative magnitudes of the two
vectors. Some transformation equations will make it
possible to refer any number of the r: to one, two,
and in principle to any number of centers, and one
obtains general expressions for the interaction energy
between overlapping charge distributions. This paper
is restricted to a detailed discussion of the one- and
two-center cases.

*Work supported by a grant from the National Science
Foundation.
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II. ONE-CENTER EXPANSION OF THE
ELECTROSTATIC INTERACTION
ENERGY

The interaction energy of (1) is a scalar invariant
and thus it is possible to write it as a suitable con-
traction of irreducible tensors of the same rank.* To
see how these tensors can be generated, let us consider
the first term of (1) which can be written as

€162 87!’ —i
-»mmb%mwgzwwm%mﬂ, @

712

where r; and r, refer to charges e; and ¢, respectively,
and the solid spherical harmonic Y2(r) is defined as

Y2 () =rYe*(0,0), Yo' ()= (=) Y@). (3)
Setting 7= [72+rs>]}, we can rewrite (2) as
€162

~{O—;§yﬁmWHW)j~ )

r

The term in the square brackets of (4) can be expanded
since

8r
— 2 Yr* (r) Yo (r2) < 1
3 a

and we get®
eies e (2n—1)1!
e, ®)
Y12 r = (2”) ”
where we have set
8x
x=-—2 Yr**(r) Y1*(r2). (6)
37 a
Writing
ar=({[x-x]-x}-%) -, )

then x” can be reduced by #—1 contractions with the
use of the algebra of irreducible tensors. The first

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957), Chap. V.
§2n—1)!1=1.3-5-- (2n—1); 2n)!1=2-4-6--- (2n).

825
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contraction in (7) is obtained in the following way:

8ry\?
X x= (——) > (=)etPy e (ry) Yo P (rn) Yax(re) Yif (rs)
31’2 a,B
(~)+69

(3r2) o dn[ (2p+1) (2 1) Tt
XC(11p; —a, —B)C(11g; ,8)C(11p; 00)
XC(11g; 00)r > Pra?= 1Y, 2F(r) Yoo (rs).  (8)

In the second line of (8) we have used the coupling
rule for spherical harmonics which can be obtained
from the Clebsch-Gordan series. The parity co-
efficients C(11p;00) and C(11¢;00) are zero unless
p, ¢=2, 1, or 0, and the sums 14-14p and 1414-¢
are even. Thus p and ¢ can assume the values 0 and 2
only.
The substitution y=a-+g transforms (8) into

_ (8")22 > (—)9
T 5wl er ) et
XX C(A1p; e, y—a)C(11g; 0, y—a)]

XC(11p;00)C(11g; 00)
Xr i Pr =Y~ () Yo' (r2).  (9)

The orthogonality condition of the C coefficients,
however, requires that

2 C1psa,y—a)C(l1g; 0, y—a)=8p, (10)
and z-x reduces to
(37‘2) p741r(2p+1)
XC(11p; 00022 Y, "™ (r)r P Y, (r2).  (11)
Now,
2. p=2
C(11p;00)=1" ? (12)
3; =0,

and we get for the first contraction in (7)

4rr4
x-x= —4[57 Cr2 Yo (r1) Yo (r2)

r

8
+BZ ‘y27*(r1)‘y27(r2)]. (13)

Equation (13) expresses z-x in terms of multiples of
order 2 and 0, and one can show in a straightforward
way that x" generates multipoles of order #n, n—2,

PETER R.
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n—4---1, or 0. In particular,

4718
x3=7[§rl2r22 20 Yr* () Ya*(r2)
r a

16
+—zywmwﬂm]a®
35 8

4m) 16

4

64
+3—51’127’22 > Yo (r1) Yo (12)

128
FoT U], 09)
315 8
and by induction
}E 42 lr v Mrgn N s ‘() (e
= Ry “(r
2N D) (=)« R
A=0,2, -

A=1,3, -

-n—2,n for n even

-n—2,n for n odd. (16)

Substitution of (16) into (5) yields for the electrostatic
interaction energy between the two charges ¢; and e,

€162 Qu—1D)r "2
——=4re ey Z [Z J
rio (A1) (=) 2ot

XZ fy)\”'*(n)(y)\”(m), n=)\,)\+2,)\+4, tee, (17)

This is a symmetric one-center expansion and has the

advantage over the Laplace expansion that one does

not have to specify the relative magnitudes of r; and rs.
A comparison of (17) with the Laplace expansion

€162
—= 47r6162 Z

712 Aurs,

1
o Un* (1) Ynk(r5) (18)

where r¢ is the lesser and r. the greater of the two
vectors, yields the following useful results:

(1) After setting r«=r., r1=7; and comparing the
monopole terms of (17) and (18), we get the expansion

(2n—1)!!

ViIi=y ——
»=0 (2n)!(n+1)

(19)

(2) A term by term comparison of (17) and (18)
yields the result
r rire*(2n—1)!!
+D X
r>)\+1 n (n+>\+1)1|(n__ )yy,2n+1

n—:)\, )\+2, k+4, Tty

(20)

where r< >=r, 2 and r=[r+r? %
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Equation (20) can be proved directly by setting
r1<rs, y=r</r> and then expanding v~ in a power
series.

(A1) u—1Dly» [ = (ntm—3)!
— m—~—~_ym

Y D = 1
=P DO DI O+ 0 F+)
— OFDOFD A A+ DAL (2D)

mi(n—3)!

It is easily shown that all the coefficients of the
2% terms with k=1, 2, -+« vanish, and thus (20) is
verified.

In some cases, it is convenient to rewrite (17)
by making the following substitutions: r;=r sinx;
ra=r cosx (0K x < gm; r=[ri+r" ).

We then have

ees  dmweses
—= ¥ XG0y, 00) Yk (05,00), (22)
L

712 ¥

where

sin®y cos™x (2n—1)!!

Xx(X)zg (n+)\+1)!z(n——)\)!p

n=X, A2, \+4, .-, (23)
This “interaction representation” of the one-center
expansion of the electrostatic interaction energy has
the advantage over (17) that all the summations
extend over angle variables.

In the 7, x representation we also have from (5)

€162

ri2  #[1—2 siny cosx cosfs |}

216227 (2n— 1)1
=¥ —— (siny cosy)”(cosfqs)”,
n r(Zn)!l

€162

(24)

where 62 is the angle between r; and r,. Comparing
(24) with (22) yields

n!

f10)" =4
(cosfis) % (A1) =N 1!

X Y\#* (61, 00) (62, 02),
A=0,2, ---n—2, n forueven

A=1,3, .--n—2,n fornodd, (25)

and by applying the addition theorem of spherical
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harmonics to (25) we get the well known result®

e n #!(2A41)
(cosf) —>i: (m+A+ DU~

A=0,2---n—2,n forneven

A=1 3. n—2,n forn odd

Py (cos8),

(26)

These results make it possible to express Xy (x) of (23)
in terms of Legendre polynomials by setting n=2%7—2x.
Use of (26) then transforms (23) into

#!2n—11{2»-+1)

Xk(n)zgj-v2’*(n+?\+1)i!(n+v+1)!z(n—x)zz(n—u)zs
X P,(cosn),
n=A\N+2: -,
p=0 or 1,:--n—2,n (27)

which will be useful when (22) appears in integrals.
This method is of course also applicable to potentials
which are of the form (r;)~" where # is a positive
integer. The general derivation is analogous to the
one outlined here; the only change occurs in Eq. (5).
It may be worth noting that (17) is proportional
to the Green’s function for the Laplace equation.” If
r1, 61, ¢1 are the coordinates of the observer point,
and 73, s, g2 the coordinates of the source point, then

(2?’&— 1) ! !1’1"727‘
G(r1[l’2)=47rz [ ]

Ap

§ (nAF+ D) {(n—2N) 20t

X Va#* (01, 01) VAP (62, 02)
(28)

=G(r2 [ l']),
and the reciprocity theorem is immediately satisfied.

III. TWO-CENTER EXPANSION OF THE
ELECTROSTATIC INTERACTION
ENERGY

As a straightforward extension of the methods
outlined in Sec. II, let us transform r; to a second
center such that rp=R-gs, where R connects the two
centers and g; originates at the second center and
points to charge 2 (Fig. 1). The corresponding trans-
formation of the one-center expansion (17) can be

1 i 2 TN
Fr16. 1. Vector diagram AN
for the transformation / 5 [ / 8 \
from the one-center :. +
to the  two-center \ I R\ I /
expansion. A / \ /
~__

® See for instance, P. M. Morse and H. Feshbach, Methods of

Theoretical Physics {(McGraw-Hill Book Company, Inc., New
York, 1953}, p. 1326.
7 Reference 6, p. 1273,
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accomplished in three steps:

1)
8x :
2= [R2+P22+“3"' 2 Yr*(R) Y (92)] (29)
and
4k 128RE~ep,t—e
-

?‘,:a (k=) URHp2) s *(§+a+1)!1(E—a)!!
XZ Yo (R) Yo (e2), (30)

where we have set 2k=n—)X\.

(2)
8 3
yo [nz+p22+ze2+~§ > %«*(R)yw(@a] (31)
and
In-2m— 1) [IR7bp,m>
r—?n—-lzz (_)n ( 17+ " ) pe

@ (2n— 1)1 (b1 1 (n—B)1!
X% YP*(R)Yu?(2), (32)

where B= [f12+p22+R2]%.

(3) The solid spherical harmonics Yp#(r;) can be
transformed to the second center by applying the
addition theorem of Rose.?

Y (12) = Un*(R+g2) = [4r (2A+1) I ]}
Cle,A=¢, A5 v, u—7)
X2 2 [(2c-+1)1(2A—26+1) 1]
XY (R) Yo7 (g2).

The range of v is restricted by the C coefficient to
—eLy<e.

The transformation equations when combined with
(17) provide the general two-center expansion of the
electrostatic interaction energy. Setting either ri, gs,
or R to zero yields a one-center expansion in (go,R),
(r,R), or (r1,82), respectively.

The structure of the resulting two-center expansion
is not nearly as compact as the form of the one-center
expansion. The only advantage attained here is that
the method does not require the knowledge of the
relative magnitudes of r;, g3, and R. The formulas
can be considerably simplified in the region where
R>ry and R>p, since here the shell formed by »;
does not intersect the shell of p, (see dashed curves in
Fig. 1). This process of transforming vectors to different
centers could of course be continued by setting
ge=R’+4po’ in (29)-(33). The form of the resulting

(33)
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three-center expansion, however, while possible in
principle is complicated in practice.
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APPENDIX

In second-order perturbation theory one often has
to evaluate the matrix element

0]1/7:2]0), (A1)
where
10)=teqpty - ~sta5" ot (A2)
and
;=N gvilgfiriy zg’"*‘(@;, qo;). (A3)

Using the results of Sec. II, the operator in (A1) can
be written as

1 4x2mlr
rif o Lo 24D m—2)!!
XVar* (8,00 Vak (05, 05),
"l”“)\; )‘+2v Ty (A4)

which in hyperspherical coordinates 7, x takes on the
form

g

?’3'3;2 7 ha

2! sinx cos™
L ]
7 (A1) =)
XY\ (0s,00) V(055 05).

On the other hand, if one contracts (1/75)- (1/7;)
by using the Laplace expansion of (18), one gets the
following expression :

(AS)

1 4oy <M'H\2
rE aa HMRSNE)

XY (8,00 Va* (05, ¢4),

where the summations over A, Ay, and A; are limited
by the condition A=X;4-Xz, Ai+A2—1,- - -, |Ar=2Az], and
the sum of Ai+As-HA must be even. The two expansions
of (A4) and (A6) can be compared by the method used
to prove Eq. (20).

In evaluating the matrix element of (A1), the use
of the Laplace expansion (A6) yields a sum of diverging
terms and thus is untractable. In hyperspherical co-
ordinates, however, the matrix element of (Al) can
be calculated in a straightforward way yielding a
series which consists of finite terms.

(A6)
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Some isoperimetric and other inequalities occurring in the one-velocity theory of neutron transport are
derived. The quantities involved in these inequalities all refer to bare solids with isotropic scattering and are:
the critical multiplication, the first-collision probability, the non-escape probability, and the buckling. The
inequalities proved provide upper and lower bounds for the quantities considered, and numerous examples
of the estimation of these quantities in cases not readily amenable to direct calculation are given.

1. INTRODUCTION

1 1 In a mathematically complicated subject like
o 1 ¢ the theory of neutron transport, simple,
exact, and general formulas are usually not obtainable.
In order to calculate quantities of interest, recourse
must generally be had either to numerical calculation
or to the introduction of simplifying but untrue assump-
tions. The introduction of such assumptions usually
provides explicit and easily evaluated formulas but also
usually results in errors of indeterminate sign and
magnitude. It must be fairly said that situations in
which these errors are small can generally be recognized
when one understands the “physical” content of the
theory, but the intuitive nature of this approach
nevertheless involves an unavoidable, and furthermore
itself uncertain, extent of error.

An elegant and also useful way out of this dilemma
consists of enlarging the class of acceptable results to
include inequalities. Thereby is one often provided with
relationships involving the quantities of interest
which are again simple and general, and which are
furthermore exact at least in the sense of involving no
mutilation of the theory. Two such inequalities pro-
viding, respectively, an upper and lower bound will
furthermore yield estimates whose maximum possible
error is known. If these bounds are close ones, as often
happens, the numerical accuracy of the estimates may
suffice for practical purposes.

1.2. The quantities of interest which we shall consider
in this paper are all set functions which arise in the
theory of neutron transport and which refer to bare,
homogeneous, convex solids with isotropic scattering.

They are: the critical multiplication, the non-escape
(absorption) probability of neutrons from a uniform
isotropic source inside the solid, the corresponding first-
collision probability, the buckling, and the diffusion-
theoretic non-escape probability. The first three of
these set-functions belong to strict one-velocity transport
theory; the fourth and fifth to the simpler diffusion
theory.

The transport-theoretic quantities have been calcu-
lated accurately in terms of simple formulas or as the
result of not prohibitively great numerical labor only

* On leave from Oak Ridge National Laboratory, Oak Ridge,
Tennessee, U.S.A., operated by Union Carbide Corporation for
the U. S. Atomic Energy Commission.

for the simplest geometrical shapes. The critical multi-
plication! has been calculated only for slabs and spheres,
the non-escape probability? only for slabs, while the
first-collision probability® has been calculated only for
slabs, spheres, infinite right circular cylinders, hemi-
spheres, and some oblate spheroids. For such a simple
solid as a cube, however, no exact values for any of
these quantities are available. Even the diffusion-
theoretic quantities can only be calculated easily for
spheres, rectangular parallelepipeds, and finite and
infinite right circular cylinders. For more exotic shapes
than those just mentioned, straightforward calculation
can be very tedious. To avoid this tedium we can try
to bound the quantities of interest using the inequalities
developed in the body of this paper, and hence estimate
them for solids of irregular shape.

1.3. Inequalities for set functions can be derived in
several ways. The first and simplest way is just to
compare, when possible, the values of the same set
function for two solids, one of which can be totally
included in the other. A second and more subtle way is
to compare the values of the same set function for two
solids which are related to each other by some process
of symmetrization. (Symmetrization is the name given
to a class of geometric transformations by which a
solid is transformed into another which in some sense
(depending on the precise nature of the transformation)
is more symmetrical than its ancestor.) The first process
of this kind was invented in 1836 by J. Steiner! who
showed that this symmetrization leaves the volume of
the solid unchanged while diminishing its surface area.
Since constant reapplication of Steiner’s symmetrization
reduces all finite solids to spheres, Steiner was able to
prove the classical isoperimetric theorem: Of all solids
of a given volume, the sphere has minimum surface

LE, Inonii, Nuclear Sci. and Eng. 5, 248 (1959); M. H. L.
Pryce, MSP-2A (declassified 1947), H.M. Stationery Office,
London; E. Inénii, USAEC Report ORNL-2842, p. 134, 1939,

2 N. C. Francis, J. C. Stewart, L. S. Bohl, and T. J. Krieger,
Proceedings of the Second United Nations International Conference
on the Peaceful Use of Atomic Energy, Vol. 16, p. 517, 1958.

3K. M. Case, G. Placzek, and F. de Hoffmann, Introduction to
the Theory of Neutron Diffusion (U. S. Government Printing
Office, Washington, D. C., 1953), Vol L.

4 G. Pélya and G. Szego, Isoperimetric Inequalities in Maihe-
matical Physics (Princeton University Press, Princeton, New
Jersey, 1951).
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area.’ It follows from this theorem that 53236« V? for
any arbitrary solid of surface S and volume V; this
“Jsoperimetric” inequality can now be used to bound
the surface of any solid from below. Similarly to the
surface area many other set functions, including those
which interest us here, vary monotonically under sym-
metrizing transformations. Thus for each an isoperi-
metric inequality holds from which a bound may be
derived.

Another rich source of inequalities are the variational
expressions which exist for many set functions. These
expressions, when they are either of the maximum or
minimum type, can be used directly to obtain bounds
by the appropriate choice of trial functions. Indirectly,
they can be used as very convenient starting points for
the derivation of the inclusion and isoperimetric
inequalities mentioned above.

A third source of inequalities arises from the appli-
cation of what may be termed the “standard” inequal-
ities of analysis to the sum or integral representations
of the quantities of interest. In particular, the law of
the mean, the inequality connecting the geometric and
arithmetic means of a function, some more general
inequalities imvolving convex functions, and the clas-
sical inequality of Schwarz are all used later in just
this connection.

1.4. Research of the type described above has had a
very long history. Theisoperimetric theorems connecting
the perimeter and area of a circle and the surface area
and volume of a sphere were known to the Greeks. The
powerful concept of symmetrization, by whose use
many more isoperimetric theorems can be proven, was
invented by Steiner more than a century ago, and only
shortly thereafter a number of interesting isoperimetric
inequalities concerning certain physical rather than
purely geometric quantities were announced. In 1856,
B. Saint Venant conjectured an isoperimetric inequality
involving the torsional rigidity of elastic prisms on
inductive grounds. In 1877, several isoperimetric
theorems concerning the principal frequency of vibra-
tion of plates and membranes were stated without
proof by Lord Rayleigh, who also developed the varia-
tional method of obtaining bounds to a high degree of
refinement. In 1903 a famous isoperimetric theorem
regarding the electrical capacity of solids was stated by
Poincaré, but accompanied by an incomplete proof.

In the years between about 1900 and the present,
effort was given to the proof and elaboration of these
conjectures by T. Carleman, G. Faber, E. Krahn, R.
Courant, G. Szegd, G. Pélya, and others. These
workers confined their attention largely to inequalities
involving purely geometric quantities and those physical
quantities arising from Laplace’s, Helmoltz’s, or related

5 The word “isoperimetric” is actually a misnomer since the
solids have the same volume (area) not the same surface area
(perimeter). However, the theorem stated is a trivial deduction
from the truly isoperimetric theorem: Of all solids of a given surface
area, the sphere has maximum volume.
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equations (i.e., arising in electrostatics, the study of
vibrations of plates and membranes, hydrodynamics,
the theory of elasticity, the theory of heat conduction,
etc.). In 1951, G. Szegé and G. Pélya published a
book* in which all the old results and many new ones
are systematically described, thus elevating this
research, which in these authors’ words “moves some-
what outside the usual channels,” to the level of a
discipline.

The mathematics of neutron diffusion theory is
extremely similar to the mathematics of the studies
mentioned parenthetically in the last paragraph. The
methods described by Pélya and Szegd can thus be
systematically applied to diffusion theory. Indeed, in
some cases all that is required is a simple reinterpreta-
tion of Pélya and Szegd’s results. Regrettably, only
those quantities can be really effectively treated which
admit of a variational representation of the maximum or
minimum type; this limitation is probably a funda-
mental one. A single paper pointed in this direction
has already been written by Ackroyd and Ball® who
studied the effect of Steiner symmetrization on critical
mass in diffusion theory.

The mathematics of strict transport theory is, how-
ever, essentially different from that involved in electro-
statics, hydrodynamics, etc., since it is governed not
by second-order partial differential equations but rather
by integral (or integro-differential) equations. To
obtain inequalities from these equations the author
previously developed several new techniques’ whose
application is extended in the present work.

1.5. The arrangement of this paper is as follows: In
the next short section, the quantities of interest are
precisely defined, and in the following section, the
process of symmetrization is defined. Following that,
in the fourth section, the subsequently used repre-
sentations of the quantities of interest are derived. In
the fifth section, the various theorems are stated and
proved. In the sixth section, a discussion and some
examples are given. The reader who wishes to avoid
the laborious details of the proofs may read Secs. 2
and 3, the statemenis of the theorems in Sec. 5, and Sec.
6 without difficulty.

2. DEFINITIONS

2.1. In one-velocity transport theory the criticality
of a bare, homogeneous reactor with isotropic scattering
is governed by the integral equation

s(D)=c f K(|r=1'])o(r)d, (12)

where
K(r)=e7/(4dxr?). (1b)

8 R. T. Ackroyd and J. M. Ball, “On the conjecture that Steiner
symmetrization reduces critical mass,” UKAEA, Risley, Declas-
sified Reprint WHC-(C)P-36, No. 8135, 1955,

7 L. Dresner, Nuclear Sci. and Eng. 6, 63 (1939); 7, 260 (1960);
9, 151 (1961).
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Here ¢(r) is the flux of neutrons at r, defined as the
product of the neutron density at r and the (single)
neutron velocity, ¢ is an eigenvalue whose physical
significance is that it is the average number of secondary
neutrons emerging from each collision which will make
the reactor just critical, and K(|r—~r']) is an integral
kernel which represents the probability density that a
neutron originating at r’ will have its next collision in
a differential volume element at r. V finally is the
reactor volume. Here, as in the rest of the paper, the
mean free patk (m.1.p.) in the reactor has been chosen as
the unit of length. The spectrum of eigenvalues of (1)
is discrete and characterized by the fact that there is
a lowest one ¢o.® To this lowest eigenvalue corresponds
an eigenfunction (flux) which is positive everywhere in
the reactor interior, while to all other higher eigenvalues
correspond eigenfunctions which change sign somewhere
in the reactor interior. Thus the lowest eigenvalue
alone corresponds to a physically realizable persisting
state, and henceforth, only it will be called the critical
multiplication. Its reciprocal P, which will prove more
convenient to consider in what follows, is just the aver-
age first-collision probability of neutrons spatially
distributed in the persisting flux mode. It will therefore
simply be called the critical first-collision probability.

2.2, Another average first-collision probability of
interest is that of the neutrons originating from a
uniform, isotropic source inside V. It will henceforth
just be called the first-collision probability and will be
denoted by P..

23. If V is filled with a non-multiplying medium
capable of scattering and absorption only, one can
consider a second probability referring to a uniform,
isotropic source, viz., the average absorption or non-
escape probability P, This quantity is defined as the
average probability that a neutron will be absorbed
in V, rather than leak out of it, irrespective of how
many scattering collisions it has had.

2.4, The diffusion theoretic calculation of criticality
is governed not by (1) but rather by the much simpler
second-order partial differential equation

Dv?¢ (1) + (c—1)¢(r) =0, (2)

where D is the diffusion constant and ¢ and ¢ are defined
as before. The most common boundary condition used
with (2) is that the flux ¢ shall vanish on some pre-
scribed surface, usually lying just outside the actual
reactor surface. For the considerations of this paper no
formal distinction exists between this extrapolated
surface and the actual reactor surface. Hence, to (2)
we shall add the condition that ¢ vanish on the reactor
surface S.

8 A. M. Weinberg and E. P. Wigner, The Physical Theory of
Neutron Chain Reactors (University of Chicago Press, Chicago,
Illinois, 1958}, pp. 406~10. See also the remarks by B. Davison,
Neutron Transport Theory (Oxford University Press, London,
1957), pp. 195-6.
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The eigenvalue problem
Vi (r)+B*(r)=0 inV, (3a)
¢(r)=0 onS, (3b)

which arises from (2) has infinitely many discrete eigen-
values B2, of which there is a lowest, B2.% This lowest
eigenvalue alone corresponds to a flux ¢ which does
not change sign inside V. We call it the buckling. It is
a purely geometric quantity depending only on the size
and shape of V. In terms of it the criticality condition
may be expressed as c=14-DB¢%

2.5, It is not possible to define an average first-
collision probability in pure diffusion theory since the
individual flights of the neutrons do not appear in the
theory. On the other hand, the average absorption
probability can be defined simply as the ratio of the
total absorption rate in V to the total source rate in V.
When the source is a uniform, isotropic one, we shall
denote the corresponding diffusion-theoretic average
absorption probability by Paa.

3. SYMMETRIZATION

3.1. The process of Steiner symmetrization can be
succinctly defined as follows: Symmetrization with
respect to a plane Q changes the solid V into a solid V*
such that:

(1) V* is reflection symmetric with respect to Q.

(ii) Any straight line perpendicular to Q that inter-
sects one of the solids ¥ and V* intersects the other also.
Both intersections have the same length.

(iii) The intersection with V* consists of just one
line segment. The plane Q is called the plane of sym-
metrization.

A simple picture of the process of symmetrization is
this: The solid is broken into paraxial differential
cylinders, all of which are perpendicular to Q. These
cylinders are then slid parallel to their axes until their
midpoints all lie in Q. In case any of the cylinders
consists of several pieces these are slid together and
then the resulting single cylinder is slid so that its
midpoint lies in Q.

3.2. It is clear from the definition of Steiner sym-
metrization that it leaves the volume of the solid
unchanged. The surface area, on the other hand, is
either decreased or remains the same. This last result
is not at all obvious; it was first proved by Steiner. A
little thought will convince the reader that repeated
Steiner symmetrization with respect to a suitably
chosen infinitude of planes will change any finite solid
into a sphere of equal volume. Furthermore, repeated
symmetrization in a suitable infinitude of planes all
containing a common line L will reduce any infinite
cylinder to a right circular cylinder with axis L. From
these last two statements isoperimetric theorems follow
for any quantities which never increase (decrease)
under Steiner symmetrization.



832

Fi1c. 1. Steiner symmetrization of a right elliptical cylinder.

3.3. Symmetrization of a right elliptical cylinder with
respect to a plane containing its axis produces another
right elliptical cylinder of the same base area but with
the same or a smaller eccentricity. This fact can be used
to show that any quantity which never increases
(decreases) under Steiner symmetrization is a monotone
increasing (decreasing) function of eccentricity, the base
area being held fixed. It can be proven as follows: The
midpoints of the differential cylindrical elements already
lie in a plane Q' by a well-known property of the ellipse
(see Fig. 1). Steiner symmetrization is then equivalent
to rotating the plane Q' around the center of the ellipse
until it is parallel to Q, all points sliding on lines per-
pendicular to Q, as though they were beads sliding on
wires. This transformation is affine, and hence carries
the original ellipse into another (in this case also of the
same area). From the fact that one of the new axes 44’
cannot be larger than the old major axis nor smaller
than the old minor axis, but can be chosen arbitrarily
in between, the desired conclusion follows.

3.4. Similar conclusions hold for spheroids but to
prove them we must introduce the notion of Schwarz
symmetrization. A solid V and a solid of revolution V*
can be related by Schwarz symmetrization as follows:

(i) Any plane perpendicular to the axis of revolution
of V* which intersects one of the solids V" and V* also
intersects the other.

(ii) Both intersections have the same area.

Clearly, Schwarz symmetrization leaves the volume
invariant. As it happens, the solid V* which results from
Schwarz symmetrization can also be obtained by an
appropriately chosen infinitude of Steiner symmetriza-
tions. We choose this infinitude as follows : All the planes
of symmetrization contain the axis of the Schwarz
symmetrization, but are otherwise distributed randomly
in azimuth. This series of symmetrizations reduces all
cross sections perpendicular to the common axis to
circles, and thus has the same effect as Schwarz sym-
metrization.
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If we first Steiner symmetrize a prolate spheroid we
get, in general, an ellipsoid of equal volume whose
largest principal axis lies in magnitude between the
principal axes of the initial spheroid (again by an
affine transformation). Schwarz symmetrization of the
resulting ellipsoid with respect to largest principal axis
gives another prolate spheroid of the same volume, but
smaller eccentricity. If the original spheroid was oblate,
the only difference is that the Schwarz symmetrization
must be carried out around the smallest principal axis
of the resulting ellipsoid. Since the largest (smallest)
principal axis of the ellipsoid can be made as close to
that of the original prolate (oblate) spheroid as desired,
the eccentricity of the resulting spheroid can be made
arbitrarily close to that of the original spheroid, from
which the desired conclusion follows: Any quantity
which never increases (decreases) under Steiner sym-
metrization is a monotone increasing (decreasing)
function of the spheroid eccentricity, the volume being
held fixed. (The spheroids being compared, however,
must either be all prolate or all oblate.)

3.5. Steiner symmetrization of a hemisphere with
respect to its diametral plane gives a volume equivalent
oblate spheroid with a ratio of principal axes of 1:1:3.
Schwarz symmetrization with respect to a diameter
gives a volume equivalent prolate spheroid with a ratio
of principal axes of 1:v2/2:V2/2.

Further discussion of Steiner symmetrization can be
found in Pélya and Szegé’s book.*

4. REPRESENTATIONS OF QUANTITIES
OF INTEREST

4.1. A variational representation of the lowest eigen-
value ¢ of (1) is given by the Rayleigh quotient

[ f oK (-t )6 (r)
p=—z T e

Co
f S (D Pr
Vv

where ¢(r) is any function. Equality in (4) occurs if and
only if ¢(r)=¢*(r), the true solution of (1). The sense
of the inequality in (4) is related to the nature of the
eigenvalue spectrum of (1), which we prove following
the method of Davison®: Let ¢,(r) be the normalized,
orthogonal eigenfunctions of (1) corresponding to the
eigenvalues ¢,. In terms of them, Davison writes the
kernel K(|{r—r'|) in a bilinear Hilbert-Schmidt series?

= $a(D)pa(r’) .
K(|f_1"|)=z y (3)
n=0 Cn
9 B. Davison, reference 8.

10 See, for example, S. G. Mikhlin, Iniegral Equations (Pergamon
Press, London, 1957), Chap. I, especially pp. 88-92.
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indicating that- (5) holds irrespective of whether the
@.(r) form a complete set or not. Furthermore, ¢(r)
may be written

B(r)= fﬂoanqsn(r) +2(x), ©6)

where p(r) is orthogonal to every ¢,(r) and vanishes if
the latter are complete. Then the right-hand side of
(4) is given by

é (@:2/c2) / ( é ot fv pz(r)d3r)§c0‘1, 0

since co 1= 1= 1

4.2. A useful and obvious representation of P, is
P.= V‘lf d3rf &K (|r—1']). 8
v v

Another useful representation for P., whose derivation
is outside the scope of this paper, is

I 0 )

where f(I) is a certain normalized distribution of chord
lengths I, whose mean [ is equal to 4V/S, i.e., to four
times the volume-to-surface ratio.?

4.3. For P, the only representation we shall use is a
variational one. To derive it we must proceed as
follows! : First consider the equation

Hy*=S, (10)

where H is a positive, hermitian operator, and the star
denotes the true solution of (10). A variational ex-
pression for the inner product (S*) can be obtained
by noting that for any ¢

(S0 7= (H* )|
S (HY* ) G HY)= (Sy*) W Hy).  (11)
Here, the inequality has been obtained from an obvious

generalization of the Schwarz inequality in which (f,Hg)
plays the role of the inner product between f and g.
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That this is possible depends on the positiveness of the
operator H; for this property of H ensures that all
norms (f,Hf) are non-negative. The proof that the
operators H to which (11) is applied in this paper are
positive as well as a proof of the generalized Schwarz
inequality are to be found in the Appendix. From (11)
it follows that

(S¥z | (SH) 1P/ (. HY)

for any ¢, with equality if and only if y=y*.

Now, when a uniform, isotropic source of unit total
strength exists in a non-multiplying medium V, the flux
is determined by the inhomogeneous equation

(12)

¢*(r) =ch( lr—1r'])¢*(r")d%’

+y f K(|r—r ), (13)

v

where ¢ is now just the ratio of scattering to total cross
section in V. The terms on the rhs are contributions to
¢* from collided and uncollided neutrons. The total
absorption rate in V is given by

(19 [ ¢

= (1—c)[cj;d3rj; &r'K(|r—1'|)o*(r')

V1] 4@ #'K(lr—r])]|, (14
ff VK(|x rl)] (14a)
=(1-—-c)[cV f S(r)qs*(r)d"'r—!-Pc]. (14b)

The second line follows from (8) and the identification
of S(r) with the last term on the rhs of (13). Further-
more, H must then be given by

= f o [a(r—1t)—cK(Jr—r )], (15)

Now, applying (12) to the first term on the rhs of
(14b), we have that for any function ¢

c{ -1 j; &r fv al“r'«#(r)K(lr—r’l)}2

+P.|. (16)

P,= (l—c)f *(n)dr=(1—¢)

V—1£¢2(r)d3r—cV“1£,d3rLd3r'¢(r)K(]r—r’|)¢(r’)

Since the source in V is of unit total strength, the lhs of (16) is equal to P, and has been so denoted. Equality again

occurs if and only if ¢=¢*,

1T, Kahan, G. Rideau, and P. Roussopoulos, Memorial des Sciences Mathematiques, Fascicule CXXXIV (Gauthier-Villars, Paris,

1956); N. C. Francis ef al., reference 2.
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4.4. For B¢* we also employ a variational repre-
sentation based on a Rayleigh quotient, viz.”?:

Bo"’é-—f oVipd®r / f &*dr
v v
=f |V¢[2d3r/f¢2d3r (17
v v

for any (suitably well behaved) function ¢ which
vanishes on S, the surface of V. The sense of the
inequality follows from the eigenvalue structure of (3),
that is from the fact that B¢ is the lowest eigenvalue.
Equality again occurs if and only if ¢ equals the exact
flux given by (3).

4.5. For eigenvalue problems with Hermitian operators
another variational representation of the eigenvalue due
to Weinstein®® exists which gives both upper and lower
bounds. However, the most forceful application of
Weinstein’s method unfortunately involves a number of
assumptions which render it fundamentally unsound.

Let us begin by considering the quantity

M= ({H—R}¢, {H—a}¢)/(¢,0),

where H is an hermitian operator, R is the Rayleigh
quotient associated with ¢, i.e., (¢,Ho)/(¢,6), and a is
any number. Multiplying the numerator out shows that

M=W-—Re, (19)

(18)

where

W= (He,Hd)/(&,9). (20)

If now we set =3_ ,_0® and s, where ¢, are the eigen-
functions of H corresponding to eigenvalues A, and are
now assumed lo form a complete set, it can easily be
shown that

M=§ 1202 0i B) An—) / z=0 laal2. (21)

Now we designate by A, the eigenvalue to which R
lies closest. Furthermore we choose a¢=R. In this case,
it follows from (21) that

Mz (\.—R), (22)
from which it follows that
RH/M2ZNa=ZR—/M. (23)

Now if in fact A=\, the lowest eigenvalue, (23)
will give bounds for it. The Rayleigh quotient R itself
is clearly a better upper bound than R++/M, but for
the lower bound R—+/M, there is as yet no competitor.

2 R. Courant and D. Hilbert, Methoden der Mathematischen
Physik, Erster Band (Springer Verlag, Berlin, 1931), sechstes
Kapitel.

3 D. H. Weinstein, Proc. Nat. Acad. Sci. 20, 529 (1934); G.
Goertzel and N. Tralli, Some Mathematical Methods of Physics
(McGraw-Hill Book Company, Inc., New York, 1960), pp. 21315,
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Two remarks need to be made: First, of the identi-
fication A,,=XAo we cannot in general be sure. Second, if
the trial function ¢ differs from the true lowest eigen-
function of H by a small quantity of order {, Ao will
differ from R by a quantity of order {2 as is well known,
but it will differ as we shall see presently from R—+/M
by a quantity of order |¢|. Thus, (23) will provide
only very rough bounds. This situation can be improved
if we choose a=N,+Anp1—R or a=Ap+An_1—R ac-
cording as R is > or <A,. In these cases, respectively,

Mz Amp1—R)(R—X\y), R>\,, (24a)
M=z (R—Mu1)(An—R), R<A\. (24b)

If An=XAo, we can use (24a) and obtain
MZR—(W—-RHY(\—R). (25)

In case some simple estimate of A; can be made, (25)
may provide a much sharper estimate of A¢ than (23).
To see how this may happen let us consider a trial
function ¢, which differs from the true lowest eigen-
function ¢, by a quantity of order e. Then, for small ,
it can easily be shown that W—R?2 is of order €. Since
R—X\q is also of order ¢, it follows that the rhs of (25)
differs from Ao by a quantity of the order of ¢ at most.
In the case of Eq. (23), however, the rhs and lhs both
differ from Ay by a quantity of order e

In principle, Weinstein’s method may be used to
bound B¢?; we shall say more of this application later.

4.6. Finally, we derive a variational representation
for Py using (12) exactly as we did in treating P,. This
we do as follows: When a uniform, isotropic source of
unit total strength exists in V, the flux ¢ is given accord-
ing to diffusion theory by

—_ V2¢* (r)+K2¢* (r) — (VD)—I
¢*(r)=0 on S,

(26a)
(26b)

nV,

where «? is the inverse squared diffusion length and is
given by (1—c¢)/D. The total absorption rate, equal
here to Pag, is given by

Pu= (l—c)f o* (D) dPr
=(1——c)VDf S(ne¢*(v)d%r, (27)

where here S(r)= (VD). Using (12) plus the iden-
tification H= — V24«2, we have that for any function ¢

1-gvp( f (VD>—1¢<r>d3r)2
P

v

. (28)
f (0 (— V) (D) dr



INEQUALITIES IN THE THEORY OF NEUTRON TRANSPORT

or

( f ¢<r>d3r)2

1
V
= f V8| dr+ f S
vV 14

if we use Green’s theorem. Equality occurs if and only
if p=¢*.

Poaz

) (28b)

5. THEOREMS AND PROOFS

5.1. A versatile class of results which will prove
extremely useful in estimating all of the quantities P,
P,, P., B¢?, and P, is the class of inclusion theorems.
Our results along this line are expressed in the following
theorem:

Theorem 1. If Vi can be entirely included in Vs, then
P(Vy)2 P(Vy), BE(Ve) S B(V1), VaPua(V2)Z ViPaa(V1),
Vch(Vz)g V1PC(V1), and VzPa(Vz)g VlPa(Vl).

Proof. The proofs of all parts of the theorem follow
the same general rationale and are based on the ex-
pressions (4), (17), (28b), (8), and (16). The details for
the first three parts of the theorem are very similar and
we shall only carry them through for P: Let ¢,*(r) be
the exact flux in V7, i.e., the exact solution of (1) in V1.
Let us define a trial function ¢«(r) in V; by the stipu-
lation: ¢o(r)=¢:*(r) in Vi, ¢2(r)=0 otherwise. Then

f ds’f Fre* (DK (|1—1')gr*(r')

P(V1) =
f Cort () Par
Vi1

f & f B é (DK (| 1—1 | )ulr)

f ¢t ()d’r
<pP(vy, (29)

Q.E.D. The fourth part of the theorem, that for P,
follows trivially from (8), the last part for P, results
from proving an inclusion theorem for the quantity
V(P,—P,) from (16), and then using the already proven
result for P..

5.2. Another class of results arising from the com-
parison of different solids is expressed by:

Theorem 2. P, Py, P., and P, all increase under Steiner
symmetrization. By® decreases under Steiner symmelriza-
tion.

Proof. The proof of this theorem must be accom-
plished by two separate techniques. The first suffices
to prove the theorem for the transport-theoretic quan-
tities P, P., and P,, while the second is reserved for the
diffusion-theoretic quantities B¢ and Pas. Let us begin
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with P, in the form (8). Let us break the solid V up into
paraxial differential cylindrical volume elements all of
which are perpendicular to the plane of symmetrization,
which for simplicity we take to be the xy plane. Let two
of these cylindrical volume elements lie at x,y; and sy,
and have base areas dxidy, and dx.dy,, respectively.
Let them intersect the surface of the (convex) solid V
inz," and 2,”, 25/, and 25, respectively. The contribution
of this pair to the multiple integral in (8) is

dx1dydxsdy a’t ="
echaiaicd f i
V 21’ 29!
XK ([ (21— x2)*+ (31— y2)*+ (21— 22)%]}).  (30a)
This can be rewritten as
dxldyldedyg +o +oo
ch=——7*‘—‘ f dzlf dZ2f1(Zl)f2(Zg)
XK ([(#1—x2)*+ (y1—¥2)*+ (21— 22)*]%), (30b)

where f1(z1)=1 for z,' <2<z and zero otherwise, and
similarly for fo. Now let us rearrange the functions fy
and fo In symmetrical decreasing order, ie., let us
replace fi(z1) by a new function fi(z;) which (i) is
symmetric around z;=0; (ii) is monotone decreasing;
and (iii) has values between w and w-+dw over a set
of the same measure as that for which f; has values
between w and w+dw; and similarly with f,. Since in
(30b) K is a monotone decreasing function of |z;—2s],
by theorem 380 of Hardy et al.,** this rearrangement
increases the integral of (30b). The result of this rear-
rangement can also be seen to be just the integral

_ drdydrady, prel? +5/2
ch = f d21f d22
V —

—a (2 bi2

XK (L(x1— 22>+ (1= 32)*+ (21— 22)*]), (31)
where a=2,""—2, and b=2,"—2,". But this is precisely
the result of Steiner symmetrization, since the infini-
tesimal cylinders now have their midpoints in the plane
of symmetrization. Thus, P, increases under Steiner
symmetrization.

The proofs for P and P, follow similar lines. For P
this is the procedure: If ¢*(r) is the exact solution of
(1) in V, then

f oy f B (DK (| 1= ' )$*(r)
P(V): v v

(32)
f [o* () Fdr
v

4 G, H. Hardy, J. E. Littlewood, and G. Pélya, I'nequalities
(Cambridge University Press, London and New York, 1934).
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On the other hand, for any arbitrary function ¢'(r)
in V1, the Steiner symmetrized solid

j;f darj;’r Er'et(NK ([ r—r'[)ei(r)

PV . (33)

R

To obtain ¢'(r) we again divide the solid V into
infinitesimal cylinders whose axes are perpendicular to
the plane of symmetrization (. ¢f(r) is obtained by
sliding each of these cylinders with the value of ¢(r)
fixed in the cylinder until all the midpoints lie in Q,
and then rearranging ¢*(r) along each of these cylinders
in symmetrical decreasing order with the midpoints
of the cylinders as the centers of symmetry. Since rear-
ranging of a function in symmetrical decreasing order
does not alter the measure of the set over which it lies
between specified values, the denominators of the rhs’s
of (32) and (33) are clearly equal. However (since ¢*
and ¢' are 20), by a repetition of the argument given
above in connection with P, it can be shown that the
numerator of the rhs of (33) exceeds that of (32). Thus
P(VHzP(V), QED.

A very similar method applied to (16), together with
the already proven result for P, yields the announced
result for P..

For B¢ and P,q the approach is roughly similar but
does not involve the notion of “‘symmetrical rearrange-
ment in decreasing order.” Instead a function ¢! in V
is used in (17) and (28b) which is obtained from ¢%*,
the exact flux in V, by symmetrizing its level surfaces.
That is to say, if $*=C on the surface Sy of Vi then
¢'=C on the surface S; of the symmetrized solid V.
From this definition it easily follows that

f G(#* (1) dr= f RO A

where G is any function. However, as we shall presently

see
f}V«;b*Pd%’gf | Vot | 2dPr,
v vl

From these last two equations the desired results for
B¢ and P,y easily follow.

Rather than (35) we shall prove a more general
theorem, due to Pélya and Szegé,* whose method we
follow without change: Let F(x) be a concave-upwards,
monotone increasing function of x. Then, with ¢' and
¢* related as above,

(35)

I= f F(|Vé*|)drz f P ar=. (30

LAWRENCE DRESNER

To prove (36) we proceed as follows: Let S be a level
surface of ¢* on which ¢*=C; on S let ¢'=C. Let an
infinitesimal cylinder perpendicular to the plane of
symmetrization (now chosen as the xy plane) and with
base area d4=dxdy intersect S at 2; and 2,, and S at
=+20. Let us compare the contributions to I and I from
the respective volumes lying inside dxdy and corre-
sponding, respectively, to values of ¢* and ¢' between
C and C+dC. In V there are two such volumes, one at
21 of volume dV=dAdC|dz/dC|, and one at 2z, of
volume dV =dAdC|dz,/dC)|. At z, the value of | V¢*| is

ac

le

1

b
Nzy

where 72, is the 2 component of the outward normal to
S at (x,y,21), and similarly at z;. The contribution of the

two volumes to [ is then just
1 1
dl=[ F( ——)+ F( —)]dAdC.
N2y HNzy
37

Since F is concave upwards, we may write according to
theorem 204 of Hardy et al.,4

arzr(([+-)/
+‘%’ )dAdC. (38)

ac

dZ2

le
ac

de

aC
ac

dz

le

ac

“(

Next we note that 2z=z,—2;. Hence,

de
dcC

dz 1
ac

dZQ d21

ac dc

dZo
2

— . (39a)
ac

Since dz2/dC and dz/dC must have opposite signs,
(39a) can be rewritten

dzo dzs dz;
2l—|=|— —l. (39b)
ac ac ac
Furthermore, since
(920 [e323 (92'1
22— = (40a)
dx oJx oOx
dgo 02 0%
22— = (40b)
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we have by application of Minkowski’s inequality
930\ 2 920\ * i
(+()+())
dy dy
02y 021 dze 0Oz
(22
ox Ox dy dy
029 022
(+()+G))
621
() E)):

But (41b) is simply the equation
2 1 1
_é"+—7
Nzy Nzy RNz

(41a)

(42)

since for any surface

() (2))

Substituting (39b) and (42) in (38), and using the
monotonicity of F, we obtain

dC dZo

1
— ——) —1dAdC.
dZo 720 ac

Comparing the rhs of (43) with that of (37), we see
it is just the contribution to dI from the volume 4V
lying inside d4 for which C<¢'<C+dC. Thus, dI=dl
and Iz1, Q.E.D.

It is worth noting that (41) and (42) express the
essential step in showing that the surface is decreased
by Steiner symmetrization; for further discussion of
this as well as the preceding proof the reader is referred
to reference 4.

5.3. In cylindrical and rectangular coordinates,
among others, the diffusion equation is separable, so
that solutions to problems involving right cylinders and
rectangular parallelepipeds may be expressed in terms
of results applicable to slabs and infinite cylinders. For
two of the transport-theoretic quantities considered in
this paper, viz., P and P., results are available which
have to some extent the same effect. The first of these is:

ar= ZF( (43)

Theorem 3. If V is the volume common lo (1) lwo per-
pendicular slabs S1 and S, or (i) three mutually per-
pendicular slabs S, So, and Ss, or (1i1) an infinite right
cylinder C and a slab S perpendicular to it, then

(1) Po(S1) and Po(S2)Z Po(V)Z P (S1)Ps(S2).

(1)) P.(S1) and P.(S2) and P,(S3)=P.(V)=P.(S1)
XPC(S2)PC(SS)

(iii) P(C) and P (S)=P (V)= P (C)P.(S); where
P.(S)) is the value of P, for the slab Sy, etc. The same
results also hold for P.
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Proof. We shall first prove the theorem for P,: Let
us introduce the characteristic function f(r) of V

defined by
f()=1 rinV

=0 otherwise (44)

and its Fourier transform
f(k)=f etk 13y s f(r)=(27r)—3f F(K)e— & 3k, (45a)
v ©

Introducing these into (8) one can show after some
simple manipulation that

arctan k
VPo= (2m) f | 7(k) |2 Sk (462)

Here, use has been made of the fact that

arctan &

(45b)

If in (8) one replaces K(r) of 4(r), the Dirac delta
function, (46a) becomes

V= (2n) f | F(R) 2. (46b)

o0

Let us first consider part (i) of the theorem. Let V
be a rectangular parallelepiped of sides by, b, and bs.
Then,

3 +bj/2 3
f)=II ettizide;=T] f;(ks),

i=1Jpj2 i=1

(47)

where x; are the cartesian coordinates of r, and k; are
the cartesian coordinates of k. Now if 4; and &; become
very large, f(k) is only appreciable when k2 and k; are
near zero. Hence, for large b; and b;, & =k, and

3 = n kg,
(2m)VP,= g |4k k———dk (482)
Heo arctan k;
— (2m)b2(2m)bs f ) 2 P
o By
(48h)

The second equality follows from the one-dimensional
analog of (46b). If we let b, and b; approach infinity,
we then have

+o arctan &
(2m)biPo(by) = f Ak, (4%)

where P.(by) is the value of P, for a slab of thickness &,.
On the other hand, if only &; becomes infinite,

2 +eo

(21r)2b162Pc= I=Il [ fJ(kJ) 12

—dk,, (49b)

—00
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where £2= k,>+£%,* and P, is appropriate to the volume
common to two perpendicular slabs. With £ so defined
it is true that

arctan k; arctan ks,
— and ——2=

k1 k2

arctan £ arctan k; arctan k.
= . . (50)
k k1 ks

Substitution of (50) in (49b) and use of (49a) yields
the conclusion P.(b1) and P.(by)=P.= P.(b1)- P.(bs),
Q.E.D. Parts (i) and (iii) of the theorem for P, are
treated similarly.

For P we proceed as follows: If we introduce the
Fourier transforms

o (k)= fV B (D), o

$(0)= (2m)" f p(k)eix ik

of any trial function ¢(r) whick vanishes outside of V,
then it follows from (4) that

k
Pz f l¢<k)f23m—f3—d3k / [1stre 62

Let us choose V to be the same rectangular parallelepiped
as before. As a trial function, ¢(r), let us choose
I ¢;(x;) where ¢;(x;) is the exact solution of (1)
in a slab of thickness b;, and therefore vanishes for
|x;] >3b;. Then

"’(“)=1i£ o, k). (53)

It now follows from (52) and (53) by reasoning quite
similar to that used previously in connection with P.
that

Pz P(5:)P(b2)P (bs), (54)

where P(b;) is the critical first-collision probability for
a slab of thickness 6;. This is the second inequality of
part (ii) for P. Since P(b;) approaches unity as b
becomes infinite, (54) also gives the second inequality
of part (i). The second inequality of part (iii) follows
similarly. For P the first inequality follows from
theorem 1.

5.4. The potentialities of this method are not yet
exhausted and a slightly more subtle application of it
yields the following very beautiful and powerful
theorem for P.:

Theorem 4. Part 1. Consider o convex solid V and an
arbitrary line L in space. Let the position of a point on L
be measured by a coordinate z. Let the intersection of V
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and ¢ plane Q perpendicular to L at z be denoted by
A(z). Let P.(2) be the collision probability of an infinite
right cylinder with A(z) as base and L as axis. Then

b
P.(V)E V‘lf dzA (3)P.(3),

where 6 and b are the limils determined by the planes
tangent to 'V and perpendicular to L.

Theorem 4. Part 2. Consider o convex solid V and an
arbitrary plane Q in space. Let the position of a point on
Q be measured by a coordinate two-vector o. Let the inter-
section of V and a normal L to Q at ¢ be a line segment of
length t(g). Let P.(o) be the collision probability of a slab
of thickness t(p). Then

PUV)< V- fA dot(0)P-(0),

where A is the projected area of V on Q.

Proof. To prove this theorem we again employ the
method of characteristic functions introduced above.
For the first part of the theorem let us write the Fourier
transform f(k) of the characteristic function of V as

b

1= [ emwis [ dpexplibye), (550
a A(z)

where ¢ is the coordinate two-vector in the plane (.

Substituting (55a) in (46a) and rearranging the order
of integration we obtain

b
" kst
e 3"de é H“dzfdk,,
a o0

X f de exp(ik, o)

A(z)

QryPVP(V)

400
[

—o0

b

% f do’ exp(—ik, ¢)K (k). (56)
A(z")

Since the integrand with respect to % in (56) is positive
for all k we can insert K (k,)= K (k) on the right-hand
side, perform the k; and #’ integrations in that order,
and obtain

5
QrPVP.(V) < (27) f dz[ f dk, [ doexp(ik, o)

A(2)

X do’ exp(—ik,- 9')K(kp)]- (57)
A(z)

If we let @ approach — e and & approach -+ and
imagine A4 (2) is a fixed area, we obtain, by now familiar
reasoning, the result that the square bracket in (57) is
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just (2m)24(z)P.(z). But then

b

VPU(V)éf dzA (2) P.(2)

a

(58)

Q.E.D. The second part of theorem 3 is proven in an
exactly similar manner, except we write f(k) as

b(p)
f(k)= f exp(ik,- g)dgf eikardy, (35b)
A a(p)

where a(p) and b(p) are the intersections of the normal
L to Q at p with V, interchange the order of integration
so that k,, p and, ¢’ are last,and substitute K (k3)= K (k)
for K(k).

5.5. With a somewhat different use of Fourier trans-
forms one can prove the following theorem:

Theorem 5. PZ B arctan By, where B¢® defined by
(3) is the buckling of the solid V to which P refers.

This theorem is related to the so-called “second
fundamental theorem of reactor physics” 15; more will
be said about this connection in Sec. 6.

Proof. If the angular integrals in (52) are performed
it becomes

arctan &

P2 f W (k) ik,
. p

(59)

where W (k) is a positive normalized weighting function
of % only. Now k~'arctan %k is a convex-downwards
decreasing function of k%; thus by theorem 204 of
Hardy et al.*

i arctan k arctan ko
f W (k) dk= X
0 k ko

(60)
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where

k= f " Wk (61a)

- f |6 (k) |k / f |6 (k) |*d*%. (61b)

If we invert the transforms in Eq. (61b), noting that

V(1) = (2r) f ke (K)e—ix-*d%, (62)

k= fv [Ve (1) Tdr / fv S(0dr,

Equation (62) can only converge if ¢(r)=0 on S
the surface of V; for, otherwise, since ¢(r)=0 outside
of V [see (51)7], V¢ (r) will have an infinite singularity
on .S. Now, since 27! arctan k is a monotone decreasing
function, the best value for k¢* will be the smallest
possible. But it follows from (63) and (17) that
(k) min=B¢. Thus combining this result, (59), and
(60) we have P= B¢ arctan By, Q.E.D.

5.6. As noted in the introduction, a rich source of
inequalities are the variational representations of the
different quantities; e.g., by the simple choice of a
constant trial function ¢=1in (4) and (16) one obtains
the following two theorems immediately!®:

Theorem 6. PZ P..

Theorem 7. P,z (1—c)P./(1—cP.).

By combining the variational technique with an
application of Schwarz’s inequality, one can further-
more prove:

Theorem 8. P, < (1—c)P./(1—cP).
Proof. Let ¢=¢*, the exact solution of (13). Then

we find
(63)

c{ V“‘f d’r { &r'o*(n)K(jr—r'|) }2
Pu=(1—¢) | — v +P, (64a)
\V“j; [qs*(r)]?dsr—cV‘lj;d%j; Bre*(nK(lr—1'|)e*(r)
rcV*2 fd“rf d3r’K([r——r’[)Hfd3rf d3r’¢*(r)K(|r—r’|)¢*(r’)}
<(1-0) i U —— 4P|,  (64b)
V_lj; [¢*(r)]2d3r—cV—1j;d%j;d‘*r’d)*(r)K([r—r'[)¢*(r’) J

The application of Schwarz’s inequality here is made in
the same way as in (11). Dividing the numerator and
denominator in (64b) by

cV—1Ld3rﬂlﬁr'¢*(r)K(|r— r'[eo*(r')

18 A, M. Weinberg and E. P. Wigner, reference 8, pp. 397-406.

and using (4) and (8) one finds P, (1—¢)P./(1—cP),
Q.E.D. By exactly the same technique as above applied
to (28b) one can prove:

6 Theorem 6 is due to P. A. M. Dirac, “Approximate rate of
neutron multiplication for a solid of arbitrary shape and uniform
density,” declassified British Report MS-D-5, Part I, 1943,
Theorem 7 is originally due to H. Hurwitz, Jr., according to N. C.
Francis et al. (reference 2); see also: G. W. Stuart, Nuclear Sci.
and Eng. 2, 617 (1957).
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Theorem 9. Py = (14 Bd%/x2)~%,
Noting that in diffusion theory the critical first-
collision probability

P;=(14+DB&) =14+ (1—c)(B#/«%))7,
the last theorem can be rewritten as
Pad__<-_ (1—6)Pd/(1—CPd).

(Here ¢ means only the fraction of scattering per col-
lision.) In a sense this statement is weaker than that
of theorem 8, since there P is replaced by P,£P in the
numerator resulting in a lower upper-bound. Also
somewhat weaker than the theorems already proved
and a consequence of them are the physically obvious
inequalities P=P,= P, and Py= Pog.

5.7. For the strictly transport-theoretic quantities
which can be variationally represented, viz., P and P,,
use of more complicated trial functions than those
mentioned above leads to great difficulties [although
theorem 3 results in a manner of speaking from the use
of a diffusion-theoretic trial function in (4)]. For the
diffusion-theoretic quantities the case is otherwise, and
some elegant and useful results can be obtained by
suitable choice of trial fluxes. These results can most
easily be expressed in terms of a certain “effective
radius” of a solid Ry, which is defined by

1
Ri?=— f f (r-n)-1dS,
3V

where V is the volume of the solid, r is the radius
vector from some fixed point O in the interior of V to
any point Q on the surface, n is the outward normal at
Q, and dS is the infinitesimal element of surface at Q.
When V has a center of symmetry it will be chosen as O,
otherwise the choice is left open and R, will be a

(65)

function of O. In terms of this ‘“radius” one can prove:

Theorem 10. For any finite solid V, B <7/ R

Proof. We use the method of prescribed level surfaces
described by Pélya and Szegs*: With O as origin let
the equation of the surface § of V be r=R(e), where
is a unit vector giving the direction of r, and  is the
latter’s magnitude. Let us choose the level surfaces of
the trial flux ¢(r) to be the surfaces r=uR(w) where
0=<u=<1. (The point =0 is O, the surface u=1 is S.)
Furthermore, let us set ¢(#R(w))=f(«), where f(1)=0
and f(u) is as yet otherwise undetermined.

Now the volume dV between the surfaces # and u+du
and lying inside an infinitesimal cone whose apex is at
O and whose intersection with .S is 4S5, is given by
dV =u*du(r-n)dS. Furthermore, at Q, | V¢ | is given by
|df/du| (r-n)~. Using these relations in (17) gives
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f 1(df/du)Quzdu f f (r-n)"dS

Bfs
L‘leu?duff(r-n)dS
f 1(d 1/ du)*u*du
=———————Ri? (66)
f 1 Sutdu
since '

V=flu'lduff(r-n)d5=%ff(r-n)dS.

The best choice of f(#) is that function which will
make the rhs of (66) a minimum. We can formulate the
requirements on f(#) conveniently through the vari-
ational equations

5 f (df/duyidu=0, (67a)
f " Pdu=1, (67b)
#(1)=0, (67¢)

The corresponding Euler-Lagrange differential equation
for f(u) is
a@f 2df
—t——+y*f=0,

du® udu

(68)

where v is an undetermined Lagrange multiplier. The
regular solution of (68) is

fu)=w"T3(yu) < u* sinyn. (69)

To satisfy the requirement f(1)=0, v must be chosen
as w. Furthermore, by a partial integration the ratio
Jo(df/du)*urdu/ [ f*'udu can be shown to equal
vi=x2 if f(u) satisfies (68). Substituting this value in
(66) gives the desired result. Finally, equality occurs
when V is a sphere. By an exact repetition of the fore-
going argument one can prove:

Theorem 11. For any infinite right cylinder,
Bi=c?/(R('),

where a is the first root of the Bessel function Jy
(=2.405), and R is defined by

(Ry)2=(24)" f (r-n)~ds. (70)

Here A is the base area of the cylinder, r is the two-
dimensional radius vector from some arbitrary fixed
point O in the interior of 4 to a point Q on the perimeter
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of A, n is the outward normal at Q, and ds is the infini-
tesimal element of perimeter at Q. Equality occurs here
for right circular cylinders.

5.8. With a very similar technique one can prove
the theorems:

Theorem 12. For any finite solid,
3 1
Puz 1———‘ COthKRo"'—].
kR kR,
Theorem 13. For any infinite right cylinder,
2 I(xRY)
KRo I o(KRo )

Proof. By using the same level lines as in the last
section (5.7) in (28b) we can rewrite it in the case of a

finite solid as
1 2
3( f fu"’du)
[}

Pz )
f Frutdu+ (kRo)? f (df/du)*u?du

\

(711)

where f(#) is again undetermined, save f(1)=0. The
requirement that f(x) be so chosen as to make the rhs
of (71) a maximum leads to the Euler-Lagrange equation

&f 2df
— —— (f—y)PR¢*=
du2+u du (=)

0; f(1)=0, (72)

where v is again an undetermined constant. It enters
f(%) however, only as a multiplicative factor and hence
does not affect the rhs of (71). Indeed,

sinh (kRou) } 3)

f=f1-—2=L

# sinh (kRy)
With the help of this expression and a partial integra-
tion, the rhs of (71) can be evaluated and yields the
theorem as stated. Equality occurs again for spheres.
When the solid is an infinite right cylinder the proof
is similar. In theorem 13 equality occurs for right cir-
cular cylinders.

5.9. For the buckling, the variational treatment can
be extended by application of the method of Weinstein.
To carry this method through we must not only cal-
culate the Rayleigh quotient R, as is done in the last
section, but also the quantity W of (20). Choosing ¢
exactly as in Sec. 5.7 [i.e., choosing f(%) given by (69)
in the case of finite solids, etc.], we find that for finite
solids and infinite right cylinders, respectively,

=74/R;* (finite solids),
=ao!/(R/)

(74a)

(infinite right cylinders), (74b)
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where

(75a)

R1—4=%V—1ff(r-n)‘3d5

(R)-4=4 4" f (r-n)=%dS

and
(75b)

We have not stated these results in the form of a
theorem because of the somewhat uncertain nature of
our application of Weinstein’s method. The proof of
(74) is as follows:

Proof. We consider only finite solids; the proof for
cylinders is very similar. Since H=—V?, we need an
expression for V2 in terms of the variable . This we
obtain by noting first that, from our previous expres-
sions for 4V and | V¢|, it follows that

f V- VodV = f f (r-n)-1dS f ———u“’du (76)

where ¢(r)=f(#) and ¢(r)=g(»). An integration by
parts in both sides of (76) gives [since both ¢(r) and
¢ (r) vanish on S]:

~ f YVpdV

~— [ [fasten- f g(u){d—u—-l-;—u]u?du (772)

a2

d
— f dS(r- n)wdu- g(u)- {—fﬁi}(r )=, (77b)

du? wudu

Since the first factor in the integrand on the rhs of
(77b) is dV, and the second factor is ¥, whick is arbitrary,
it must be that

af 24
V2¢={ _i+_i}(r.n>—2. (18)
dur udu
Then yef 24 |
S Gl ean ] [ wonras
- (19)

f ' fdu f f (r-n)dS

If we furthermore require f to satisfy (68) with y=m,

we get
W=1r4ff(r-n)—3dS/3V,

which is identical with (74a), Q.E.D.

5.10. The variational theorems of the last three
sections explicitly state relations between B¢? and Pag
and certain effective “radii.” A similar theorem for P,
which has an origin quite different from a variational
principle is:

(80)
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Theorem 14. P.= 1—1"'(1—exp(=1)); I—4V/S.

Proof. The proof is based on the use of the following
inequality of Hardy ef al.** (theorem 184) in (9):

f f (l)e"dlzeXp[— f f(l)ldl]

if f(J) is a normalized probability density.

(81)

6. DISCUSSION AND EXAMPLES

6.1. A number of remarks will be given below con-
cerning the question of when a particular theorem can
be expected to yield a limit close to the actual value of
the quantity being estimated and when not. All of
these remarks, however, only apply in extreme cases
and, in general, the limits supplied by the various
theorems must be compared to see which are best.

Theorem 1. This “inclusion” theorem works best when
the volumes of the solids being compared are not too
different. Thus inscribing a sphere in a cube may give
fairly good limits while inscribing one in a long, thin
cylinder should give rather bad limits.

Theorem 2. When using the isoperimetric corollary to
theorem 2, viz., “Of all finite solids of a given volume
the sphere has maximum P, P,, P,, Pa, and minimum
B, the best results will be obtained with equilateral
or ‘“sphere-like” solids. Thus cubes, cylinders with
height and diameter equal, or ellipsoids of low eccen-
tricity are all suitable for the application of theorem 2,
while solids which are much longer in some directions
than in others are quite unsuitable. Similar remarks
refer to the isoperimetric corollary for cylinders.

Theorem 3. In discussing this theorem let us consider
for the sake of argument situation (iii) of the hypothesis,
viz., the perpendicular intersection of a cylinder C and
a slab S. Furthermore, although we only discuss P, in
what follows, similar remarks apply to P. If the radius
of the cylinder C is large, then P.(S) will be a very good
upper limit and P.(S)P.(C) a very good lower limit for
P, of the intersection solid. This is simply because P,(C)
does not differ very much from unity, and thus the
upper and lower limits do not differ very much from
each other. Quite a similar conclusion holds if the slab
is very thick. On the other hand, if the thickness and
radius are both small, then it immediately follows that
P.(C)-P.(S) will be a very bad lower limit since the
value of the product of the two P.’s falls much more
rapidly with decreasing size than the P, of the inter-
section solid. One expects that the upper limit in this
latter case will also not be very close to the exact value
for the following reason: In the intersection solid
neutrons born at any point and with any direction of
velocity are within a short flight of the edge. In the
bounding solids, i.e., cylinder or slab, however, neutrons
whose velocity is nearly parallel to the elements of the
surface are removed by a long flight from the edge. In
sum, theorem 3 will work best for large solids.
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Theorem 4. This theorem essentially generalizes the
upper limits obtainable from theorem 3, and roughly
similar remarks apply to it.

Theorem 5. This theorem is based essentially on the
choice of a diffusion-theoretic trial function in the
variational expression for P. Thus it ought to be a close
underestimate for relatively large reactors where dif-
fusion theory is approximately valid. This tendency is
reinforced by the fact that for large reactors both P
and Byt arctan By approach unity.

Theorem 5 is related to the so-called “‘second funda-
mental theorem of reactor theory” !* which, for a one-
velocity, bare reactor with isotropic scattering, equates
P and By arctan By, but which permits adjustment of
B, through the introduction of an extrapolated surface.
The requirement that the flux vanish on an extra-
polated surface has the effect of decreasing By and
raising the value of B¢~ arctan By. This will, in general,
prolong agreement of this latter formula with P to
much smaller sizes than otherwise, but render the sign
of the error uncertain. Moreover the choice of an extra-
polated surface is arbitrary although quite reasonable
procedures can be worked out based on the extrapola-
tion distance one obtains in Milne’s problem. This
arbitrariness renders the existence of any general
inequality involving P and an extrapolated buckling
unlikely, so that theorem 5 seems the strongest theorem
we can prove in this direction.

Theorem 6. Theorem 6 is based on the choice of a flat
trial flux and therefore should be best for small solids,
in which the curvature of the true flux is not too large.
Furthermore, since both P and P. must both approach
unity for large solids, this theorem may even provide
useful estimates for large solids.

Theorems 7, 8. These two theorems are discussed to-
gether because: If P and P, are close to one another,
then ceteris paribus the upper and lower limits provided
by these theorems should also be close. This will occur
particularly for small solids as mentioned in the last
paragraph although it should be pointed out, for ex-
ample, that for slabs of any thickness P and P, never
differ by more than 39%,. Trouble can develop, however,
when ¢, the scattering fraction, is near unity and the
solid is large, so that P is near unity, too. Then the
upper limit provided by theorem 8 may grow incon-
veniently large.

Theorem 9. Theorem 9 has the same meaning in dif-
fusion theory as theorem 8 has in the strict transport
theory. One expects therefore, that for small solids the
two sides of the inequality are not widely different in
analogy with the discussion above. This can be directly
supported as follows: Aside from the use of Schwarz’s
inequality, the chief step in the derivation of theorem 9
(or for that matter 8 too) is the use of the flux originating
from a uniform isotropic source as a trial value for the
critical flux (i.e., as a trial flux in the variational prin-
ciple for B¢ or P). Since the first of these fluxes is
concave upwards and the second concave downwards,
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Fic. 2. Limits for P. of cubes as a function of the length of the
side. The limits shown are: 1, the lower limit from theorem 14;
2, the cube of P, of the circumscribing slab; 3, P, of the volume
equivalent sphere; and 4, P. of the circumscribing slab. The true
value must lie in the cross-hatched area.

one can be a good trial value for the other only when
the curvature of both is negligible. This happens, how-
ever, only in small solids. Furthermore, when the flux
is essentially flat, the use made of Schwarz’s inequality
also entails little error.

Theorems 10~13. Since in theorems 10 and 12 equality
holds for spheres, these theorems should give very close
limits for “sphere-like” solids. However, these need not
be the only solids for which they give close limits,
since the trial fluxes we have used are quite reasonable
for many solids. Similar remarks apply to theorems 11
and 13.

Theorem 14. Regrettably little else can be said about
when to expect close estimates from this theorem, save
that it has the right values for very large and very
small bodies.

6.2. As our first example let us consider the estimation
of P, for cubes. According to theorem 2 the value of P,
for the volume equivalent sphere is an upper limit for
P, of a cube. Another upper limit is P, for a circum-
scribing slab, that is a slab of thickness equal to the
cube’s side. This follows from theorem 3. Theorem 3
also gives a lower limit, namely the cube of P, for the
circumscribing slab. Finally, theorem 14 gives a lower
limit. These limits are plotted in Fig. 2 as a function of
the cube’s side; the true value of P, for a cube must
lie in the shaded region.

A number of observations concerning this figure are
relevant. In the first place, for cubes, P, of the circum-
scribing slab is a very bad overestimate as one might
originally have expected. Indeed, in the range of sides
from 0.2 to 8.0 m.f.p., this upper limit is much larger
than that given by the volume equivalent sphere. On
the other hand, for cubes one expects P, for the volume
equivalent sphere to be a fairly close over-estimate and
this is borne out in the case at hand by its nearness to
the lower limits in Fig. 2. For large cubes the under-
estimate provided by the cube of P, of the circum-
scribing slab is the better of the two considered;
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Fic. 3. Limits for P, of 3 m.f.p. thick disks of various radii. The
limits shown are: 1, the lower limit from theorem 14; 2, the
product of the P.’s of the circumscribing slab and cylinder; 3, P.
of the circumscribing slab; 4, P of the volume equivalent sphere;
5, P. of the circumscribing cylinder. The true value must lie in
the cross-hatched area.

however, for small cubes for which P, of the circum-
scribing slab becomes small, its cube becomes extremely
small and provides a rather useless limit. Thus, for
cubes whose side is less than 2.0 m.f.p., the better
lower limit is that of theorem 14.

For solids which are not “sphere-like” P, of the
volume equivalent sphere is usually a gross over-
estimate. This can be clearly seen in Fig. 3 where limits
for P, of disks ¢ m.f.p. thick and of various radii are
plotted. These limits are: P, for a slab § m.f.p. thick
{(an upper limit by theorem 3) ; P, for an infinite cylinder
of radius equal to the disk radius (an upper limit by
theorem 3); the product of these two numbers (a lower
limit by theorem 3); P. for the volume equivalent
sphere (an upper limit by theorem 2); and the lower
limit given by theorem 14. For disks for which the
radius is very much greater than the thickness, P, for
the volume equivalent sphere is much larger than P,
for the circumscribing slab, whereas when the thickness
and radii are comparable this situation is reversed. Not
surprising is the further fact that the lower limit from
theorem 14 is better than that from theorem 3 when the
disk radius is small and worse when the disk radius is
large.

Cubes and disks belong to that special class of solids
which can be formed by the orthogonal intersection of
slabs and cylinders. When we consider solids not
belonging to this class we can no longer use theorem 3;
however, we can use theorem 4 instead. The latter,
however, supplies only an upper limit; hence, we have
for the upper limit but two choices: the one just men-
tioned (theorem 4) and P, of the volume equivalent
sphere. For a lower limit we can use only theorem 14
in general.

Oblate spheroids are an excellent example of solids
not belonging to this special class. A simple and useful
upper limit for P, for them can be obtained from
theorem 4, part 2 by choosing the plane Q perpendicular
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FiG. 4. Limits for P. of oblate spheroids whose minor axes are
1 mf.p. long as a function of eccentricity. The limits shown are:
1, a lower limit based on the P, of certain hemispheres related to
the spheroids by Steiner symmetrization (see text); 2, the lower
limit from theorem 14; 3, P. of the volume equivalent sphere;
4, an upper limit from the factorization theorem 4. The true
value must lie in the cross-hatched area. Given also are three
exact values available from reference 3.

to the minor axis of the spheroid. If the half-length of
the minor axis is b it can then be shown from theorem 4
that

1
P.<3 f WP, (2bu)du, (82)
0

where P, is the value of P, for a slab of thickness 2bu.
Interestingly enough, this limit depends only on the
length 2b of the minor axis and not at all on the eccen-
tricity of the spheroid!

In Fig. 4 the limit (82), the value of P, for the volume
equivalent sphere, and the limit from theorem 14 have
been plotted as functions of the eccentricity e for oblate
spheroids with 2b=1 m.f.p. ¢ is defined by

e=1—b/a? (83)
where @ is the semi-major axis of the spheroid. The limit
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F1c. 5. Limits for P of cubes as a function of the length of the
side. The limits shown are: 1, the lower limit for P. taken from
Fig. 2; 2, By! arctan By; 3, P of the inscribed sphere; 4, the
cube of P of the circumscribing slab; 5, P of the volume equivalent
sphere; and 6, P of the circumscribing slab. The true value must
lie in the cross-hatched area.
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of theorem 14 has been calculated with the aid of the

relations?:
I=(8/3)b/F(e), (84a)
F(e)=1+¢e1(1—¢) tanh e (84b)

In addition to these limits one other can be derived
which is applicable only to spheroids. If P,(V) is the
first-collision probability for a hemisphere of volume V,
we can write for oblate spheroids:

P.(b=%; =P.(V; = P.(V; e=V3/2)2 P,(V)
if e<v3/2. (85)

The first inequality follows from the monotonic de-
creasing behavior of the first-collision probability for
spheroids with eccentricity proved in Sec. 3.4; the
second from the fact that an oblate spheroid of eccen-
tricity v3/2 results from Steiner symmetrizing a hemi-
sphere in its diametral plane (Sec. 3.5). When ¢2V3/2

e
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F16. 6. Limits for P of § m.f.p. thick disks of various radii, The
limits shown are: 1, P of the inscribed sphere; 2, the lower limit
for P, taken from Fig. 3; P of the volume equivalent sphere; and
P of the circumscribing slab. The true value must lie in the cross-
hatched area.

we can furthermore write
P,(b=3%;¢)

2 Po(b=};V3/2)2P.(V') if e2V3/2, (86)
4(1—¢€)
where V'’ is the volume of an oblate spheroid with =%
and e=V3/2. Here, the first inequality comes from the
inclusion theorem (theorem 1), and the second again
from the Steiner symmetrization process. Since P, is
tabulated,? this limit can be realized and is also plotted
in Fig. 4.

Included in the diagram are three exact values of P.
corresponding to ratios a¢/b equal to 5/3, 5/2, and 5
which have been taken from the work of Case et al.3
They indicate that for values of ¢X0,7 at least the
value of P, is very close to that of the volume equivalent
sphere. The upper limit of theorem 4 under these cir-
cumstances (i.e. €X0,7) is much too high. However,
when the eccentricity approaches 1 with the minor axis
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remaining fixed, the volume increases rapidly and P,
for the volume equivalent sphere rapidly approaches 1.
Finally for the most eccentric spheroids the upper limit
of theorem 4 becomes applicable. Since when 1—eK<1,
F(e) is very close to unity in this case the upper and
lower limits depend only on b.

6.3. In the estimation of P, somewhat similar indi-
cations apply. Shown in Fig. 5 are the following limits
for the P of cubes: (i) P of the circumscribing slab
(upper limit by theorem 3 or theorem 1); (ii) the cube
of P of the circumscribing slab (lower limit by theorem
3); (iii) P of the volume equivalent sphere (upper limit
by theorem 2); (iv) By arctan By (lower limit by
theorem 5); (v) the lower limit given by theorems 6
and 14; and (vi) P for the inscribed sphere (lower limit
by theorem 1). (i) and (iii) are upper limits of which
(iif) is much the lower of the two due to the equilateral
nature of the cube. For large cubes (ii) gives the best
lower limit; for small ones it is a gross underestimate
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Fic. 7. Limits for P of oblate spheroids whose minor axis is
1 m.i.p. long as a function of eccentricity. The limits shown are:
1, P of the inscribed sphere; 2, the lower limit for P, taken from
Fig. 4; 3, P of the volume equivalent sphere; and 4, P of the cir-
cumscribing slab. The true value must lie in the cross-hatched
area.

an (vi) is the best lower limit. (ii) and (vi) together
cover the range plotted and for the best estimate in
this case it is not necessary to use (iv) and (v).

In Figs. 6 and 7 are shown the following limits for P
of the disks and spheroids we discussed in the last
section: (i) P of the circumscribing slab, (i) P of the
volume equivalent sphere, (iii) P of the inscribed
sphere, and (iv) the previously calculated lower limit
to P.. The first two are upper limits, the second two are
lower limits.

In Fig. 6, both of the limits (i) and (ii) are used,
(i) for the larger radii and (ii) for the smaller exactly
as in Fig. 3. The lower limit consists mainly of (iv)
except for the smallest cylinders where (iii) was used.
In Fig. 7, the situation is quite similar to that of Fig. 4.
For small eccentricities, (ii) was used for the upper
limit; while for large eccentricities (i), which is the
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Fi1G. 8. A comparison of P with P, and B, ! arctan B, for spheres.
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analog of the upper limit in Fig. 4 from theorem 4,
was used. For large eccentricities, (iv) was used for a
lower limit ; while for small eccentricities, (iil) was used.
Figure 7 shows clearly the extremely slow variation of
P with eccentricity for small eccentricity.

In neither of these last two figures was By arctan By
used as a lower limit for P. In the case of the oblate
spheroids, this is because the calculation of By presents
difficulties, and indeed the estimation of B¢? for spheroids
forms the subject of one of the later paragraphs of this
paper. In the case of the disks, however, By~ arctan By
was calculated and found always to be less than limit
(iv) above. This is due to the fact that theorem 5 is
always unsuitable for a disk of thickness 3 m.f.p., since
such small dimensions preclude the use of diffusion
theory.

The expectation that P, should be the closer lower
limit to P for small solids and By arctan By the closer
lower limit to P for large solids has already been
alluded to in the discussion of paragraph 6.1. Presented
in Figs. 8 and 9 are comparisons of these two limits
with the exact values of P for spheres and slabs, at
once confirming this expectation and showing the rather
good accuracy attainable with these variationally derived
limits.
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F16. 9. A comparison of P with P, and By! arctan Bo for slabs.
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F16. 10, Limits for the buckling of prolate spheroids as a function
of eccentricity. Plotted as ordinate 1s the ratio of the buckling of
the spheroid to that of the volume equivalent sphere. The limits
shown are: 1, that derived from the volume equivalent sphere, i.c.,
unity; 2, that derived from the circumscribed cylinder; 3, that
derived from Weinstein’s method, i.e., from (25) and (87); and
4, that derived from theorem 10. The true value must lie in the
cross-hatched area; if curve 3 is admitted as a lower limit the
true value must then lie in the smaller doubly cross-hatched area.

6.4. We shall study but one more example, this one
chosen to illustrate the technique of estimating the
diffusion-theoretic quantities. We consider estimating
the buckling of a prolate spheroid: From theorem 10
and (65) a short calculation shows that

B¢  1—1é
< (8)
By (1—é)}

where Byes is the buckling of the volume equivalent
sphere and e is the eccentricity again defined by (83).
From theorem 2 it follows that By= By, so that the
lhs of (87) is always greater than or equal to unity.
This last limit we expect to be a good one near e=0, but
to become quite useless for highly eccentric spheroids.
The only remedy we have for this situation must be
found in theorem 1, the inclusion theorem, since no
other one can be directly applied to the estimation of
Bo. For eccentric prolate spheroids a suitable solid for
comparison is the circumscribed cylinder, i.e., that one
with the semi-minor axis as radius and the major axis
as height. It follows from the properties of this solid
and theorem 1 that

By  4o¥/m+(1—¢€)
> .

B Y (88)

The limits (87) and (88) for the ratio Bo/Bves have been
plotted in Fig. 10 as functions of the eccentricity. Also
plotted is the lower limit unity. Finally, a lower limit
based on the method of Weinstein is plotted. This curve
was obtained by using (25) with the further assumption
that A\y=4R (correct when e=0). W, which is given by
(74) and (75), can easily be evaluated explicitly and is
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given by
W 1—Ze+Le

= . (89)
Byest (1— et

Under these circumstances the estimate given by (25)
differs from B¢ by a quantity of order €. This high
accuracy is reflected in the fact that for small e the
curve based on (89) and that on theorem 10 (which
also differs from B¢® by order e!) nearly coincide. Of
course, the limit based on (88) is not a proven lower
limit because of the inexact value of A; used to obtain
it, and its inclusion in Fig. 10 is to some extent contrary
to the spirit of the rest of the paper.

6.5. What remains to be done? Very much indeed
the author believes, so that when it is all mentioned
the present paper will appear, as it properly should
only as a beginning.

In the first place, the notion of seeking inequalities
rather than equalities, and the rather exotic techniques
(at least for physicists) this notion brings with it, such
as Steiner symmetrization or rearrangement of a
function in symmetrical decreasing order, have only
been very slightly applied to physical problems. It is
doubtless true that this enlargement of the conventional
point of view will be a very fruitful one.

In the second place, even if we confine ourselves to
the framework of neutron transport phenomena, the
present paper is little more than a start. For example,
our considerations here have been based on the presup-
position that the scattering process is isotropic. But
surely it is true that Steiner symmetrization decreases
the critical multiplication even in a solid in which scat-
tering is anisotropic. And quite probably there is some
inequality similar to theorem 5 in media with anisotropic
scattering, too.

Not only must a generalization to anisotropic scat-
tering be made, but reflected media must be considered
as well. Indeed, a start in this direction has already
been made by Ackroyd and Ball,® who essentially
consider the effect of Steiner symmetrization on critical
multiplication for reflected systems.

Finally, even within the restricted milieu of bare,
one-velocity reactors with isotropic scattering there are
a number of open questions. For example: Does a
factorization theorem like theorem 3 hold for P, or not?
Are the multiple collision probabilities from a uniform,
isotropic source increased by Steiner symmetrization?
(The answer here seems intuitively clear; the basic
difficulty is generalizing theorem 380 of Hardy et al.})
Does a factorization theorem hold for these multiple
collision probabilities or not?
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APPENDIX

By a positive operator is meant one for which
(f,Hf)=0 for all f. If H is both positive and Hermitian
then for any A

0= (f+Ag H{f+Ng})

= (LHf)+2 Re [M(f,Hg) 1+ [\|*(g,Hg). (A1)

1If we now choose argh= —arg(f,Hyg), it is easy to verify
that
2 Re[\(f,Hg)1=2|A| (f,Hg) |- (A2)
Combining (A1) and (A2) gives the identity in |A|:
N2 (g, He)+2| (f,Hg)| IN + (f,Hf) z0.

For (A3) to hold for all values of the modulus |\}], the
discriminant must never be positive, l.e.,

(A3)

(A4)

which is a generalization of the usual Schwarz inequality.
The first of the operators for which (A4) is to be
applied is (15). To prove it is positive we first expand

f(r) as

F)= g aupn(D)+ (1), (A5)

where p(r) is orthogonal to all the ¢,(r). Then we use
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the Hilbert-Schmidt series (5) for K(]r—r'|) to obtain

EN= [ 1@ Per=cE |arf?/en
v n==()
= 2Py — 3 an|?
2 [ 10ler—% lo

- [ 1swarz0 (A6)
4

Here use has been made of the fact that ¢, the fraction
of scattering, is by definition less than one, while ¢, by
virtue of its definition as a critical multiplication, must
be larger than one,.

The second operator to which (A4) is to be applied
is K(|r—r']) itself; from (5) and (AS5) is trivially
follows that

(KD = T | anl¥/ca20.

n=0

(AT)

The third operator to which (A4) is to be applied is the
operator —V2+4+«? in the volume V, with vanishing
boundary condition on the surface S of V. Then by a
simple application of Green’s theorem, '

(f,Hf) = f PR = V) (O
v

= [P+l @ narzo. (a8)
v
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The probability distribution in phase space is obtained for particles in a small part of the total volume
of a classical monatomic fluid in thermal equilibrium. It is shown that the distribution reduces to that
obtained from a grand canonical ensemble as this part of the volume increases in size. The Debye-Huckel
pair distribution function is obtained in the proper limit for the Coulomb case. The distribution is in the
form of a first approximation with an infinite series of correction terms.

I. INTRODUCTION

N classical statistical mechanics, the assumption is
generally made that, for an isolated system in
equilibrium, the representative point is equally likely
to be found in any of equal elements of volume of the
phase space that is available to the system. An argument
for this assumption has been made by Kinchin from
the work of Birkhoff! and has been used to justify the
use of the grand canonical distribution for subsystems
of such a system when they are weakly interacting.??

We shall not assume weakly interacting subsystems
here but shall take, instead, an isolated system made up
of a fluid composed of atoms of one kind whose interac-
tions are pairwise. Although it is not clear that this
system can be broken up into weakly interacting
subsystems, many quantities, such as the radial distri-
bution function, depend only upon the probability
distribution of particles in a small region of the fluid.
1t is the purpose of this paper to develop a method for
obtaining this probability distribution function for a
given small region which will be referred to as the
“Inner region” with volume 7;. The remainder of the
volume of the fluid will be called the “outer region”
with volume .

Since the particles of the fluid can move between the
two regions, the probability distribution that we shall
obtain corresponds to the grand canonical distribution
for weakly interacting systems. The procedure for
obtaining it must involve an integration over the
positions and momenta of all the NV particles in the
outer region for each given number M in the inner
region where the total number N;=M+N is fixed.
Methods for carrying out such integrations have been
developed from the theory of collective coordinates
proposed by Pines and Bohm.?* Such a method was
worked out by the author® in connection with the
problem of obtaining the probability distribution of
electric fields on ions in a plasma. The procedure we
shall use here is not identical to the one used there® but

* This work was supported in part by the National Science
Foundation.

1 A, I. Kinchin, Mathematical Foundations of Statistical Mechan-
ics (Dover Publications, Inc., New York, 1949), pp. 28-29.

2 Terrell L. Hill, Statistical Mechanics (McGraw-Hill Book
Company, Inc., New York, 1956).

3D. J. Candlin, Nuovo cimento 15, 856 (1960).

4D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

5 A. A. Broyles, Z, Physik 151, 187 (1958).

is similar enough so that some of the results of that
paper indicate what we might expect for calculations
using the method described here. It will become
apparent later that the theory presented here reduces
to that of Debye and Huckel for electrolytes in the
Coulomb case and in the proper limit.

It is necessary for this treatment to assume that any
singularity in the pair interaction potential is integrable.
The Coulomb potential, of course, satisfies this criterion.
The Lennard-Jones and hard sphere potentials do
not. Where unallowable singularities occur, they must
be eliminated by an artificial cutoff or by a procedure of
separation into long and short range interactions such
as that in reference 5.

With integrable pair interaction potentials, a small
constant or integrable function of the order of !
can be subtracted to make the integral of the pair
potential over the whole volume be zero. This is often
done in the case of Coulomb particles by providing a
uniform background charge of opposite sign to that of
the particles. It will be assumed that something of this
sort has been done for all pair potentials.

At the end of the derivation presented here, the
limit should be taken such that the total number of
particles and the total volume of the system approaches
infinity with the average number per unit volume
remaining constant.

II. NOTATION

A=nmatrix in second degree term in expansion of
fin Eq. (28).
a=column submatrix of A in Eq. (II-2).
B=submatrix of A in Eq. (II-3).
b=column matrix involving X,/ w(R—R))
described following Eq. (10).
b.=column matrix involving >, ¥ U*(R—K;)
in Eq. (46).
C=arbitrary square matrix.
E=energy of the entire system.
f=In, of the integrand of J defined in Eq. (17).
g=definition in Eq. (15).
go=g at the point of steepest descents.
Hy,=Hamiltonian for the outer region.
H,=Hamiltonian for the inner region.
Hy =interaction energy between inner and outer
regions.

848



PROBABILITY DISTRIBUTION FOR CLASSICAL FLUIDS

H,'=effective interaction energy in Eq. (60).
I=integral over outer region in Eq. (4).
I,=integral over whole volume in Eq. (5).
1=subscript indicating inner region.
J=integral in Eq. (14).
k=Fourier transform variable.
l="Fourier transform variable.
M =number of particles in the inner region.
m=mass of particles in the fluid.
N=number of particles in the outer region.
N;=number of particles in the entire system.
n,=number of particles in cell centered at r.
o=order of t and C.
P;=momentum of particle j.
P(R,,Py,- - - ,Rur, Par)=probability distribution in phase
space of the inner region.
(Q=position vector in configuration space.
Q1- - -Qy=quantities defined in Eq. (11-4).
q=center of a cell in configuration space.
R=position vector in configuration space.
r=center of a cell in configuration space.
5= go.
t=arbitrary matrix.
{=subscript referring to total volume.
U=shielded potential in Eq. (42).
U*=same as U except é* is omitted from Eq. (42).
U,=shielded potential defined over the whole
volume in Eq. (43).
Un=same as U with (&/7) reduced by a factor A.
W =matrix obtained from w by averaging over
cells and setting diagonal elements equal to
Zero.
w=pair potential energy.
y=column matrix defined in Eq. (25).
B=1 times the value of / at the point of steepest
descents.
y=coefficient of M in P in Eq. (59).
3(x)=Dirac delta function.
§(N,M)=Kronecker delta.
E=E—H:.
e=size of elementary cell.
A=parameter in Eq. (II-29).
p(R)=function defined in Eq. (49).
r=volume of the outer region.
r:=volume of the inner region.
¢=rshielded potential given by Eq. (24).
{Jo=differential operation defined in Eq. (27).

A dot over a letter indicates a diagonal matrix.
See footnote 7.

III. MATHEMATICAL DEVELOPMENT

We shall assume that the entire fluid is confined to
an energy shell of energy E in phase space and that its
representative point is equally likely to be found at any
point in this shell.® The total energy of the system is

8 For a discussion of the reasonableness of this assumption, see

Richard C. Tolman, The Principles of Statistical M echanics
(Oxford University Press, New York, 1938), first edition, Sec. 26.
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equal to the Hamiltonian which we shall split into three
parts, namely

M
Hi=3% (P 2m)+ X w(R—Ry, (1)
i=1 1<i<i<M
M4+N
Ho= Y (Ps*/2m)+ > w(R.—~R,;), (2)
F=M+1 M<i<j<M+N
and
M N+M
Ho= 2 2 w(R.—R)), 3)
=1 j=M41

where w(R;—R;) is the potential energy of the interac-
tion between particles ¢ and j. Here, H, is the energy
of the particles in the inner region, H, is the energy of
those in the outer region, and H,, is the interaction
between the two.

We would like to obtain the probability distribution,
P(Ry,Py,- - - RyPyr), that there will be M particles in
the inner region at the positions Ry, -+-, Ry and
momenta Py, -+, Py. We do not care which particle
is at each position but only that some particle is there.
To obtain this probability, it is necessary to evaluate the
integrals,

I(Ry,Pi- - -RyPy)

N+M
- f fa@_yo—;zm) IT dRidP; (4)
j=M+1
and

N4+M
Iz=f" fé(E_HI—HO_HOI) II dR]'dPJ', (5)
t =1

where E is defined by
E=E—H,;. (6)

The delta functions are those used by Dirac and the
subscript ¢ indicates that the R integrations are to be
taken over the entire volume of the system. No sub-
scripts means the R integrations are to be taken only
over the outer region. The integration over each
component of the P’s extends from minus infinity to
plus infinity. '

The ratio I(Rl,Pl' .- RMPM)H,'=1M dR]dP,/It is the
fraction of the total volume of the energy shell allowed
to the system when particles 1 through M are specified
to lie in the elements of volume and momentum around
Rl, P1 to RMPM

Since we are not concerned with which particle lies
at each position, we must permute these M particles
among the M positions and add the volumes in phase
space. This is equivalent to multiplying the above
ratio by M! to obtain the volume fraction. Exchanging
particles between the inner and outer regions increases
the fraction of the shell volume allowed by a factor
(N4+M)I/(NH(M!). Since N is very large, Sterling’s
approximation may be used to replace (N4+M)!/N!
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by N™. This fraction of the shell volume allowed is the
required probability, so we have

P(Ry,Py,- - RyPar) =NYI (R, Py, - - Ry, Por) /L, (7)

Instead of evaluating the constant I, we shall determine
the dependence of P on the R’s, P’s, and M and leave
the normalization to be done in connection with any
specific problem.

If we replace the Dirac delta function in Eq. (4) by
its Fourler transform, we have

I=(2n)1 [ :e“E f f exp{ ~il[Hoy+Ho]}

M+N
X II dPdRdl. (8)

j=M+1

The integration over momenta may be performed in
Eq. (8). If we also divide all space into cells of volume
¢, Eq. (8) becomes

I=(2x) ' (2em/i)*¥ " lim f [T3NI2gaE
e—0

X Y exp{—il[3#Wn+3nT]}
{n} =0

XN YTT: 5 DSV, s me)dle™,  (9)

where
W= f f w(R—0Q)dQdR
—6r,qffw(R—Q)deR, (10)

r specifies the center of each cell, n is a column matrix
whose components #. are the number of particles in the
cell, Wisamatrix whose components W q are the averages
of the potential energy w(R—Q) of a particle in cell r
over the cell and a particle in cell g over that cell except
that the diagonal elements are zero, b is a column matrix
whose element , is the average of Rin 3" ;- w(R—R))
over the cell whose center is at r, and the delta is the
Kronecker delta. The diagonal elements of W are zero
to account for the 7= j term omission in Eq. (2). The
symbol {n} under the summation sign in Eq. (9) means
that the summation is a multiple one over all possible
values of the n,’s. Each #, can vary from zero to infinity.

The multiple sum in Eq. (9) would separate into a
product of sums if the exponent were linear in n. A
Fourier transform will linearize it with the help of the
equation

exp(—3ICt)
— (2m)-o2| |2 f f exp(iTk—1ECk)dk. (1)

—o0

Here t, k, and C are matrices of order o and |C| is
the determinant of C. To apply this to Eq. (9), we

A. A. BROYLES

must make the identifications,

t=(il)'n (12)

C1=W. (13)

Now the order o of these matrices is 7/ since this is
the number of cells in the outside region, and the matrix
multiplications in Eq. (9) involve summations only
over cells in this region.

If we substitute Egs. (11)-(13) into (9), the multiple
sum factors and Eq. (9) becomes

I= (27r)(3N/2)—-(1/2s)—-1i—3N/2m3N/2lW[—% lim eNf, (14)
0

and

where

©

J= f JaNIzgie f f exp(— 1EW-k)gVakdl,

l=—c —o0

and
g=2_r exp{ —ilb~+1:k,}.

IV. STEEPEST DESCENTS APPROXIMATION

(15)

The integral J may be approximately evaluated by
the method of steepest descents. To apply this method,
we write J in the form,

J=ff---fefdkdl,
where

f=—03N/2) In())+4E—1kW-k+N In(g), (17)

and expand f in a Taylor’s series around the point of
steepest descents. This point is located in the usual
manner by setting the first partial derivatives equal to
zero. In this way, we obtain the equations

(16)

(%i;)o= - (3A\7/210)+iE+(N/go)(Z—gl) =0, (18)

0

(gl{>0= —Wkot (N/go)(%)ozo_

Here d/0k is a column matrix operator with elements
9/0k;.

Tt is useful at this point to introduce new quantities
to replace /o and ko. They are

(19)

B=1ily, (20)
go=35, (21)

and
¢= ilob—ﬁlo%ko. (22)

We shall see later that 8 corresponds to (¥7)~! and ¢
is a shielded interaction which, for example, becomes,
in certain limits, the solution to the nonlinear equation
for the potential of mean force (multiplied by 8) in
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the Debye-Huckel theory for particles interacting with
a Coulomb force.

Eliminating /, and ko from Eqs. (18) and (19) with
the aid of Egs. (20)-(22) leaves us with?

(3N/28)—E+(N/285) (Bb+¢)e*=0  (23)
and
¢=8b+(N/5)8We~,

where the derivatives of g have been obtained and
substituted. (See Appendix I.) The matrix e has
elements ¢ #r.

It is convenient at this point to define a column
matrix y with (r/€)+1 elements with the relations

yrzkr—kOr,
ylzl—lo.

(24)

(25)

The Taylor’s expansion of f around the point of
steepest descent now becomes

f=exp(3 o) f (o, ko),

where [ Jo is the column matrix of order (r/¢)+41
defined by the relations

DO( = a/ akOr,

Do 1= 3 / 610.
The first degree terms in the Taylor’s expansion of f
must vanish because we are expanding around the
point of steepest descents. The second degree term may

be more easily written with the aid of the matrix A
defined as the negative of the direct product of two

[ Jo’s operating on f,
A=—ToX[Tof (lo, ko).

Expanding the exponential operator in Eq. (26) and
substituting into Eq. (16), we have

J=exp{f(lo,ko)}

(26)

27

(28)

% f_ . f expl § (D G0 f (o o))
Xexp(—3yAy)dy.

The first two operations by [ o on fin Eq. (29) will
yield — A according to Eq. (28). We can write, therefore,

(29)

> ()7 G0 k)

- L GIGEW~5AY. (30

The last exponential under the integral in Eq. (29)
is symmetric with respect to the simultaneous change of

7 A function of a column or row matrix is here defined to be a
column or row matrix whose elements are the function of the
corresponding elements of the argument. Thus we have (€7¢):
=g %r,
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sign of all components of y. If the preceding exponential
is expanded in series, only terms having an even number
of y’s will survive the integrations. Such terms can be
obtained by differentiating the last exponential with
respect to components of the matrix A. Thus

)
Vryq exp(—3¥Ay)=—2 exp(—3yAy). (31)

ra

If we substitute Egs. (30) and (31) into (29), we
find the equation

J=exp{f(lo,ko)}

2 (nm) ()]

X(21r)(f/2‘>+%| Al—%’ (32)

Xexpl

where Eq. (11) has been used to write the results of
the integration over y. Here 9/9A is a square matrix
with components

(6/6A),.1=6/6A rq- (33)

In Eq. (32), [Jo's operate only on A, and 9/0A’s
operate only on |A].

The steepest descents approximation is obtained from
Eq. (32) by replacing the second exponential by unity.
Eliminating /, and k¢ and s in Eq. (17) by using Egs.
(20)-(22) we obtain

J(Uoko)= (3N/2) In(9)— (3N/2) Inf+Be
+(26)7(¢—B0)W-'($—Fb)+ N In(s) (34)
with
s=2re = (r/g[1— (/). (1—er)].
The expression, $W—¢ appearing in Eq. (34) may
be rewritten with the aid of Eq. (24) to give
dW'g=86W-'b+ (N/s)6de .

Substituting s and ¢W—1¢ from Eqgs. (35) and (36)
into fin Eq. (34), fin turn into Eq. (32), and finally J
into 7 with the aid of Eq. (14) gives

(35)

(36)

N=NI= (2m) [ (2wm/B)}(r/N) ]V lim (W] A])~

X exp{BE—3¢W—'b+385W-'b
+N In[1—(¢/1)Z: (1—e7)]
+3(V/s)de Y. (37)
Equation (24) for ¢ may be used to obtain the relation
16W-1¢=385W-1b+-4 (V/s)Bbe~>.

Equation (38) together with Eqs. (6) and (1) for E may

(38)
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be used to reduce Eq. (37) to
N=NI= (2x)~A[ (2wm/B)}(r/N) ] lim (1WA

Xexp{BE—ﬁg: (P/2m)—B X w(Ri~Ry)

i=t i<i<M
~L(N/s5)Bbe—*+N In[1— (¢/7), (1—€%)]
+3(N/s)¢e*}.  (39)

In Eq. (39), a form like that given by the usual grand
canonical ensemble theory is becoming apparent. The
third term in the exponential contains the usual pair
interaction energy while the fourth term contains the
shielding by the particles in the outer region. The last
two terms will reduce, in the case of fluids, to surface
terms which can be neglected in the limit as 7; becomes
large. The parameter 8 occurs where we would expect
to see 1/kT, where £ is the Boltzmann constant, and
T is the temperature, Further evidence that § is 1/kT
comes from solving Egs. (6) and (23) to obtain

E=(3N/28)+H+ (N/28s) (8b+@)e*.

If the interaction between particles vanishes, Eq. (24)
shows that ¢ will vanish so that Eq. (40) reduces to

(40)

M
E— (3N/28)+ T Pi/2m. (41)
=1

This is just the relation we would expect between E
and 8 for an ideal gas.

V. SHIELDED PAIR POTENTIALS

There are pair potentials which are inconvenient to
use because of a long tail on them. The Coulomb
potential is a good example of this. For these cases it
is possible to introduce a shielded potential similar to
that obtained by Debye and Huckel for the Coulomb
case. In terms of the matrix notation that we have
been using, this shielded potential is given by the
equation,

U=W[i+(WV/s)Bé*WI
=[i+W/5)sWe+T"W, (42)

where the dot over a symbol indicates a diagonal matrix.
The matrix 1 is the unit square matrix and ¢ has the
same elements as € ® except that they are arranged
along the diagonal instead of in a column. A second
shielded potential U* may be defined by replacing ¢-¢
in Eq. (42) by 1.

Since the matrices appearing on the right-hand side
of Eq. (42) are symmetric, U and U* are symmetric.

The U defined in Eq. (42) does not reduce to the
Debye-Huckel shielded potential for the Coulomb case
if 7; is not zero. It can be found from an equation

A. A. BROYLES

involving such a matrix U; which is related to W by
Ui=W~ (N/)B(UW),, 43)

where the subscript ¢ on the parenthesis indicates that
the matrix multiplication involves a sum over the
total volume of the system. The U, may be used to find
U from the equation,

U=U4 (¥/5)8(U0,U),— (N/s)BU.é*U.

The substitution of U; from Eq. (43) in place of the
first and last U/s in Eq. (44) verifies that U satisfies
Eq. (42).

Equation (24) for ¢ may be rewritten in terms of U
instead of W to give

(44)

¢=3b.+ (N/5)8U*e~*+ 4], (45)
where b, is a column matrix given by
b.=[i+4V/5)8WTb. (46)

Vi. THE LIMIT AS ¢ APPROACHES ZERO

At this point it is convenient to examine the above
equations in the limit as e approaches zero. In this limit
the matrix W reduces to the pair potential w except for
the diagonal elements omitted from W. Thus we may
write

Xlim[e"‘ f f w(R,Q)deQ], (47)

cell

where the integrations are over the cells centered at r
and q and where the Dirac delta function is recognized
to be related to the Kronecker delta by

3(R~Q)= lim 8;/e. (48)

The coefficient of the Dirac delta function in Eq. (47)
will vanish as ¢ vanishes so that, for most cases, this
term can be ignored.

Also, in this limit Eq. (35) reduces to

s= lim (T/e)[1—f—l f p(R)dR], (35"

where

p(R)=1—exp{—~¢(R)}. (49)

It will become clear later on [see discussion following
Eq. (54)] that these terms in ¢(R), whose magnitudes
are of the order 7% behave like short ranged shielded
potentials. There are, in general, terms of order 1
also present in $(R). We shall also see that ¢(R) in the
outer region is large near the surface between the two
regions but falls off to a negligible value in a distance
the order of the average interparticle spacing. Since
p(R) will behave in a similar manner, the integral in
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Eq. (35") will have a magnitude the order of the area
of the inter-region surface measured in units of the
average interparticle spacing, Since 7 is the volume of
the outer region and is very large, we may neglect the
second term in the bracket in Eq. (35') altogether.

Substituting only the first term of Eq. (35) into
Eq. (43) for U, and taking the limit gives

U (R~Q)=w(R—Q)— (N/r)8 f U(R—R")

Xw(R'—Q)dR".

For the Coulomb case, the solution to Eq. (50) is the
Debye shielded potential. We expect, in general, that the
term in U, whose magnitude is of order r° will behave
like a short range shielded potential.

Equation {(44) becomes, in this limit,

(50)

U(RQ)=U.(R—Q)+(N/n)8 f U(R—R)

XU (R, Q)R+ (N/x)8 f U.(R-R)

Xp(RHYU(R,Q)R’.  (51)
We have already seen that U,(R—~Q) is likely to have a
short range (the Debye length for the Coulomb case).
The second term on the right-hand side (rhs) of Eq. (51)
must become small if R is very far from the inner region
because U,(R—R’) will vanish. It will become clear
in the next paragraph that ¢(R) must become small if
R is very far from the inner region. Since U,(R—R") is
small if R is very far from R’, the last term on the rhs
of Eq. (51) must vanish if R is very far from the inner
region. Since U(R,Q) is symmetric in R and Q, the
above statements must also hold for Q. We conclude,
then that U(R,Q) becomes equal to U;(R—Q) for R
or Q very far from the inner region. It therefore has a
range the order of unity when compared to 7% if it is
correct to assume that ¢(R) has a short range. Integrat-
ing R in Eq. (50) over the total volume of the system
gives

f U,(R—Q)dR=0 (52)

because the integral of w has been assumed to vanish.
The same integration may be performed in Eq. (51)
to show that the corresponding integral for U will also
vanish.

Equation (45) for ¢ becomes, in the limit as ¢ — 0,

$R=8 T UHRR)+(V/78 [ THRQ)

7=

X[e*+¢(Q)14Q,
where the definition of &, following Eq. (10) has been

(53)
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used together with Eq. (42). Equation (52) may now
be used to rewrite Eq. (53) as

M

¢(R)=ﬁ[ %, rR-R)— (/) [ U*(R,oyzo]

pa}

(/)8 f U*RO)4(Q)—p(@)10. (54)

The arguments made above for the short range nature
of other functions may now be made for ¢ in Eq. (54),
and it is clear that the assumption of the short range
nature of ¢ is consistent with this equation. In the outer
region, ¢(R) falls off to a very small value in some
distance corresponding to a few times the Debye
length in a Coulomb system.

We are now in a position to show that ¢ satisfies the
Debye-Huckel-Poisson-Boltzmann equation® in the
Coulomb problem where the particles of the system all
have like charges of magnitude 3, but move in a uniform
background charge of the opposite sign so that the
whole system is neutral. This can most easily be done
starting from Eq. (24) which becomes

M
$(R)=8 T w(R—R;)— (/)8 f w(R~Q)p(Q)dQ

=1

— (/)8 f w(R—Q)dQ. (55)

The pair potential satisfies Poisson’s equation
V2w (R— Q)= —4r28(R— Q) +4nz/ 7.
Operating on Eq. (55) with V? gives

(56)

Vi(R)=—4rz 3" 5(R—R,)+dmz(NV/7)8(R) (57)

i=1

if Ris in the outer region and terms of order ! are
neglected. In the inner region, the second term on the
rths has unity in place of p(R). When M is unity,
Eq. (57) reduces to the Debye-Huckel-Poisson-
Boltzmann equation. This makes it even more reason-
able to believe that ¢ is a shielded potential falling off
rapidly as we depart from the surface of the inner
region.

Since the integral of U'* over the entire volume of the
system vanishes, the same integral of ¢ must also vanish.
This can be proved by integrating both sides of Eq. (53)
over the entire volume.

VII, THE GRAND CANONICAL DISTRIBUTION
FUNCTION

So far the question of evaluating the determinants
|W||A| appearing in Eq. (39) has been avoided. The

#R. H. Fowler and E. A. Gugenheim, Statistical Thermody-
namics (The Macmillan Company, New York, 1939), ist ed.,
p. 390, Eq. (910,6).
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procedure for dealing with it is so tedious that it seems
wise to relegate it to Appendix II. From Eq. (II-33),
we obtain,

WJLA] = ¥ (5/48) exp[ ~ /e [ 2

% f f U,X(R—Q)w(Q—R)deRdA}, (58)

where U, is tiven by Eq. (50) except that (¥/7) is
replaced by A(NV/7).

The most interesting factors in N~VI are those
depending upon the positions and momenta of particles
in the inner region and the number of particles M in
this region. The other factors may be omitted and the
normalization determined later by integration. In this
sense Eqgs. (7) and (39) reduce to

P(RuPy- - RuuPr) exp[ M= BH—BHa

(V) f [1—co—3ée*ldR |, (59)
v=In((2zm/B)4r/N )+ (N/7)8*

X f \ f Un(R)w(R)IRAN, (60)

M
H01,=%(tvt/7) Z_: w(R_ RJ)[l—p(R)]dR

Here, use has been made of the fact that the total
number of particles in the system XV, is a constant of
the order of r and that ¥=X¥,—M. Substitutions have
also been made from Egs. (1) and (38).

Equation (59) gives the desired probability distribu-
tion corresponding to that given by the grand canonical
ensemble except for additional terms involving integrals
over functions of ¢ and w. These terms are important if
the inner region is small. In particular, the term Hy'
adds shielding to the pair potentials due to the particles
in the outer region.

It is interesting to see if Eq. (59) reduces to that
given by the grand canonical ensemble in the limit of
a large inner region. Equation (54) shows that ¢(R) will
depend only on the positions of particles in the inner
region that lie within the range of U from R. Thus all
those integrals in Eq. (59), depending upon particle
positions through ¢ alone, can only be affected by
particles within a distance, of the order of the range of
U, from the surface of the inner region. Thus, if the
inner region is increased in size, this number of particles
will increase like the surface area while other terms in
Eq. (59) will involve all the particles throughout the
volume of the inner region. Furthermore, ¢(R) has a
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short range so that the integrands of these integrals
extend into the outer region for only a short distance.
Thus the value of the integrals will only increase as the
surface area of the inner region, while other terms of
Eq. (39) are proportional to the volume of the inner
region.

These arguments do not apply so readily to Ho,' in
Eq. (60) unless w is a short ranged function. If, on the
other hand, w is a Coulomb potential, the integral in
H,,' 1s analogous to the potential acting on a particle
due to a charge, proportional to p(R)—1, distributed
through the outer region. If the inner region is spher-
ically symmetric, this potential could be expected to be
roughly constant for those particles far from the
surface of the inner region. Retaining this shielding
term but dropping those discussed in the previous
paragraph, we can write for P in the limit of a large

inner region.
Pocexp{—yM—BH,—pBH,'}. (61)

This has almost the same form as Hill’s? equation (6.6)
for the grand canonical ensemble if allowance is made
for differences in notation.

VIII. THE RADIAL DISTRIBUTION FUNCTION

An expression for the radial (or pair) distribution
function may be obtained by choosing the inner region
to be a long tube of infinitesimal cross section containing
two particles. From Egs. (59) and (60) it is possible
to obtain the relation,

P(Ry,P; R, Py)

« eXp[ -8 22: [(Pf"’/ZM)

i=1

s f w(R—Rf)p(R)dR]-Bw(RI— Ry)

—(N/7) f [1— —¢—%¢e—¢]dk}. (62)

The integrations in Eq. (62) now extend over almost
the entire volume of the system.
In analogy with Eq. (55), we may define ¢, by

#1(Ro— Ry =Bw(R.—Ry)

— (V) f w(R—Ro)p: (R)dR, (63)

where

p1(R)=1—exp{—¢:(R)}

which is a shielded potential function at R, due to
the particle at R;. Because of symmetry we can write

#1(Re—R1)=¢:(R,—Ry).

(64)

(65)
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With the aid of this function ¢1, Eq. (62) becomes
P(R,P,R,P;)

« exp[ ~8 £ (P/2m)=6:(Re=R)
— v/ [a—ee—tprar}. (o0

It has already been shown in Egs. (55)-(57) that ¢y
is the solution to the Poisson-Boltzmann equation
used by Debye and Huckel.

In the Debye-Huckel theory, the exponential e~ is
expanded and all terms beyond the first two are
neglected. In Eq. (53) for ¢, this is equivalent to
neglecting the integral on the rhs. Under this approxi-
mation, ¢ is given by

i=1,2

(67)

where U* is the Debye-Huckel shielded potential. In
the case where w is a Coulomb potential,

U*Coutomb {R) = weoutombe B, (68)

where N is the Debye shielding length.

If the exponentials in the integrand of the last term
in the exponent in Eq. (66) are expanded to the second
degree in ¢, the integral vanishes since the integral
over ¢ vanishes,

Thus Eq. (66) gives a radial distribution function
identical to that obtained by Debye and Huckel.

IX. SUMMARY AND CONCLUSIONS

With the mathematical techniques presented here,
we have derived an approximation to the probability
distribution of particles in a region of a classical fluid
of monatomic particles in thermal equilibrium. This
distribution is given by Eq. (59) where p, U, ¢, and v
are given by Eqs. (49)-(51), (55), and (60).

We have seen that this probability distribution
reduces, in the limit of a large inner region, to Eq. (61)
which is that given by the grand canonical ensemble.
The additional term which represents shielding of the
inner particles by the particles outside the region
surely becomes negligible for short ranged pair poten-
tials, and it seems quite likely that it is negligible when
the interactions are Coulomb in the limit of large volume.

From this probability distribution we have derived
the radial distribution function obtained by Debye and
Huckel with a correction as shown in Eq. (66).

Since the probability distribution given in Egq. (59)
is an approximate one, it is worthwhile considering how
correction terms for it might be obtained. These
correction terms are available from the exponential
operator in Eq. (32) by expanding it in a power series
where it 1s understood that terms where (8/8A) occur
to a nonintegral power must be set equal to zero. The
first term in this expansion leads to Eq. (59).
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Higher terms in Eq. (32) must bear some similarity
to those evaluated in reference 5. Figure 5 of that
reference presents information that indicates that
higher terms increase in magnitude as the temperature
and size of the inner region are decreased.

APPENDIX I—DERIVATIVES OF ¢

The quantity s is defined in Eq. (25) and related to
g through Eq. (21). To obtain the derivatives of s
entering Eqgs. (18), (19), and (32), it is convenient to
use the relations

9 980 3. 9
3l 313 3l 3¢,
3 8
=i[——+(2ﬁ)‘](¢»+ﬁb)—] (1)
a8 ¢
and
3 B9 _ b, 9
e Y )
Ok kOB Ok: Ao, 96

The derivatives of 8 and ¢ in the above equations have
been obtained from Egs. (20) and (22). Here 8/9¢ has
components 8/9¢,.
Using these relations, we obtain for the first deriva-
tives of s,
(I-3)

(I-4)

ds/0l=—i(28)"(¢+Bb)e*
and
9s/0k=1iple?,

where Eq. (35) has been used for s.
Applying Egs. (I-1) and (I-2) a second time gives

3%/0l = (481 —g+Bb+ (6+8b) ($+8b)}e~, (I-5)
(3/01)(3/3k)s= (28)"1(¢+Bb—1)e®,  (I-6)

and
(6/0k) X (8/k)s= —Bé—. (1-7)

APPENDIX II-DETERMINANT OF A

The matrix A is defined in Eq. (28). To compute its
elements, we need the second derivatives of f. The first
derivatives have already been written as Egs. (18) and
(19). From these we obtain, by differentiation,

e () e (). o
e () o ().
(),

() (2, o

Alr

Ay=—3Nl;*
(11-2)

and

B=W-—x

where the element B;,qis 4. 4 and a.=
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We may now use Eqgs. (20) and (21) to eliminate /o
and go and the formulas in Appendix I to evaluate the
derivatives. The results may be more conveniently
written in terms of the nine quantities,

Q.= Ngs—2e—+Ue,
Qo=s1(¢+8B)e*—1,
Qs=s5"1(¢—Bb)e?,

Qu=5"1(¢+65) (¢-+Bb)e,
Qs=Nps2e—*U(¢+Bb)e,

Qo= NBs2&—*($+8b) U(¢+Bb)e,
0:= (N2/485%) 6~ U2 Ue,

Qs= (NV?/4858)2~*U(¢+Bb)¢ Ve,

(11-4)

and
Qo= (V*/485)& U ($+pb)%é*# Ve,
where U is defined by Eq. (42). We can now write,

Au=3NB2+ (N/48)[Qs— 05— (Q+1)7], (II-5)
a=— (N/28%) (¢+Bb+Q:1)e, (I1-6)

and
B=W-1{ Ns—1gé¢—NBs~%e¢Xe ¢,  (II-7)

By expanding |A| in terms of the elements of the
first column and their cofactors, we have,

[ A[ = l B [ [A”——dB’la+ Tr(a'2B‘1)], (II-S)
where
B;,;'=| B|Xcofactor of B, q
has been used.
From Eq. (42), it is clear that the first two terms of
Eq. (I1-7) combine to give

B=U"1—-NpBs%e¢Xe .

(I1-9)

(11-10)

If we factor U~ from the expression on the right of
Eq. (IT-10) and take the reciprocal, we obtain

B1=[1—Ngs2(Ue?) Xe*U.

Expanding the bracket in a power series and multiplying
by the U gives

(I1-11)

B=U(i+K), (I1-12)
where
K=nNBs2(1—01)e~¢ X (Ue2). (I1-13)
To obtain | B|, we use the expression
n|i+K|=— % j'Tr(=K)  (II-14)
=1

which can be obtained from the equations on page 121
of reference 9. Raising K to the jth power gives
Ki=[Ngs*(1— Q) Je*X (¢7*Ue~*)iUe*

=K/ 1(1—Qy— . (1I-15)

9 W. V. Lovitt, Linear Integral Equations (Dover Publications,
Inc., New York, 1950).
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From Egs. (II-4) and (I1-13), we obtain
TI‘K=Q1(1'—Q1)—1.

Thus we have finally, from Eqs. (II-12) and (II-14)-
(II-16),

(11-16)

| B =[Ul(1—Q1) (II-17)

To write out | A|, we still must find @Ba— T'r(a@2B—).
The second term subtracts those elements of the first
term involving the diagonal elements of B-!. Thus,
if we define U, to be the same as U except that its
diagonal elements are zero, we may write,

aBla—Tr(@?B1)=aU,a+NBs2(1—Qy)*
X[(@Ue#)2—e—4Ua2Ue*] (II-18)

where Egs. (IT-12) and (1I-13) have been used.
Taking a from Eq. (II-6), we obtain

adUza= (V/48%) (01201205021 Cs2), (11-19)

where the x subscripts indicate that U, replaces U.
Similarly we find

aUe~*= (s/26%) (0s+0:02) (I1-20)

and

é*Ud?Ue = s(Q702*+20:0s+ Qo).

Collecting the expressions in Egs. (II-5), (II-17),
(I1-18), (I1-19), (I1-20), and (II-21) and substituting
them into Eq. (II-8) we have,

[A] = (V/46%) | U7 (1—Q0{6+[0s—Qs— (Q2+1)%]
— Q1024205024 Q62) — (1— Q1)
X[{(Qs+0:102)

—45783(Q702*+2Q:0s+Q5) 1}

The expression in Eq. (1I-22) is very long. To reduce
it, let us consider the order of the terms between the
braces under the assumption that U/ and ¢ are shielded
potentials of ranges not far different from the average
interparticle spacing. Let us further assume that the
interparticle spacing is of order unity in the units we
have taken and that the inner region is only a few
interparticle spacings across. Thus we shall consider an
integral over U, ¢, or p=1—¢~* to be of order unity.

In the limit as e approaches zero, the expression for
Q1 in Eq. (IT-4) becomes

(I1-21)

(I1-22)

Q=g [ [T1-o(R)]

XU(R,Q)[1-»(Q)]¢R4Q. (II-23)

Since the integral of U over the entire volume of the
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system is zero, Eq. (II-23) may be rewritten as

Q=8 (v/7)r- f f U(RQ)dRdQ
+2fom) f U(RQ)aRIQ

+[ [omu®p@Ra0]. (129

Each of these integrals must be of order unity since
p(R) becomes negligible within a range of order unity
of the surface of the inner region. Thus Q, is of order
7. By this same procedure it is possible to prove that
Q.+1 and Q; through @ in Eq. (II-4) are of order 7%

In order to prove that some of the above quantities
are of order =7, it was necessary to assume that w
becomes negligible in a distance the order of unity.
This is not true for the Coulomb potential. In this case
integrals, assumed to be of order unity, may be of
order 7} but this will not alter the evaluation of |A]|
that will be made below.

Some of the (s appearing in Eq. (II-22) have the
subscript x indicating that U, replaces U. Since we know

Uarq=Urq— U:gds,g, (11-25)
in the limit as e approaches zero, we must have
U.(RQ)=U(R,Q)—U(R,Q)5(R—Q).

Thus, in any integration of U.(RyRs) over R; or R,,
we will obtain one integral involving U(Ry,R;) and a
second one multiplied by e which vanishes. We can,
for this reason, drop the x subscripts in Eq. (1I-22).

We are now in a position to eliminate several terms
in Eq. (II-22). Since we have been taking s to be
(¢/7), the term containing it in Eq. (1I-22) will vanish
as ¢ approaches zero. Keeping only terms of lowest
order in 771, we may write,

[A[=|U|7(5/9)NB (11-27)

To determine |U|™! in Eq. (II-27), we use Eq. (42)
to obtain

U= (W[ i+ (V/s)sWee|.  (11-28)

The second determinant on the rhs may be evaluated
with the aid of a matrix U, given by -

Uh=W->x (N/s)ﬂU)\é""W.

This determinant may be written as

(I1-26)

(11-29)

In] i+ (V/5)8Weé| = (V/5)8 f (TrUré)dr.  (T1-30)
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Equation (I1-30) may be checked by iterating Eq.
(I1-29) to obtain a series very much like Eq. (I1T-14).

Substituting U from Eq. (II-29) into the trace in
Eq. (I1-30) gives

Tr(Uré#)=—A(N/s5)8 Tr(Ure*We—¢). (II-31)

The first term on the rhs of Eq. (II-29) contributes
nothing since the diagonal elements of W are zero. In
the limit as e approaches zero, Eq. (II-30) becomes,
substituting from Eq. (1I-31),

lim In| 14+(N/s)8Wés|

— (N/)5? f A f f UA(RQ)W (Q— R)aRiQ

—2(V /) f » [ [r®r@u@we-rira

— (V/ ) f A [ [ore@

XW(Q—-R)p(R)dRIQ. (11-32)

The last two terms in Eq. (II-32) are smaller by a
factor the order of 7! than the other terms since p(Q)
becomes negligible if Q is far from the inner region.
We will neglect them for this reason.

Equation (I1-29) for U, can be obtained from Eq. (42)
for U except for the A multiplying (N/s). Thus Uy is
identical to U if the number of particles is reduced by
the factor A, A function Uy can be defined as the solution
to Eq. (50) with NV reduced by A and Eq. (51) may be
used to relate Uy and U,. Equation (51) can be used to
justify using Ua in Eq. (II-32) in place of U, since all
but a negligible part of the integration occurs in a
region where there is essentially no difference between
them.

With the aid of Eqgs. (II-28) and (II-32), it is possible
to rewrite Eq. (IT-27), omitting terms of higher order
in 771 as

1

A] =N wWJ—lexp[—(sz)w [

% f f Utx(R—Q)W(Q—R)deRdA}. (I1-33)

Note added in proof: The author is indebted to H. L.
Sahlin for pointing out several errors in the original
manuscript,
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The A-B-L theorem states that for almost all density functions the time-averaged probability of a system
being in a region R of an energy shell in phase space is mr/m, where m is the volume of the energy shell
and mg, is the volume of R. In the present note a stronger form of the A-B-L theorem is proved. It is proved
that for almost all density functions, the probability of the system being in R is mg/m. In particular, it
is proved that the time averaging of the original A-B-L theorem is unnecessary.

I. INTRODUCTION

NE approach to classical equilibrium statistical
mechanics is via ergodic theory. The object of
ergodic theory is to relate observable time averages
of phase functions to calculable phase averages
of phase functions. The possibility of making this
connection depends on a knowledge of the ‘“‘metric
indecomposability” of phase space, and since this
knowledge is usually lacking, the ergodic approach is
unsatisfactory.

Albertoni, Bocchieri, and Loinger' attempted to
remedy this situation by giving a new kind of averaging
theorem. They introduced an average over a function
space, the space of density functions. The probability
Pr(t) of a system being in a certain region R of phase
space at a certain time can be expressed in terms of
the density function. Let R be a subset of volume mg
of the energy shell of volume m. The A-B-L theorem
says that the functional average of the time average
of [Pr(t)— (mr/m)? is zero. In other words, for
“almost all” density functions the time-averaged
probability of the system being in R is mg/m. This is
also the probability when the density function is a
constant.

The object of this note is to show that the time
averaging of the A-B-L theorem is irrelevant and
unnecessary; 1.e., that the functional average of
[Pz(t)— (mzr/m) P is zero. In other words, at all times,
and for almost all density functions, the probability of
the system being in R is mg/m. Thus the theorem of
this note is stronger than the A-B-L theorem.

Since no time average is involved, the use of this
theorem in place of ergodic theory becomes rather
unclear.

IIl. THE A-B-L AVERAGING PROCESS

The A-B-L averaging process will first be described
in a slightly more general context than is necessary.?

Suppose we are given a space on which integration
is defined (e.g., a real finite-dimensional Euclidean

1 S. Albertoni, P. Bocchieri, and A. Loinger, J. Math. Phys. 1,
244 (1960).

2 A similar integration process was discussed by K. O.
Friedrichs, “Integration of functionals” (Notes, New York
University, 1957).

space), and that .S is a subset of finite, nonzero volume
m which can be partitioned into any finite number of
subsets of equal volume. Let C be the class of all real
nonnegative, integrable, point functions f on S which

have
[
s

Let II be a partition of .S into N subsets of equal
volume, and let ®; be the characteristic function?® of
the ith subset. Then the function

(2.1)

N
g=z ai‘bi) (22)

i=1

where

N
Y a=N/m a0

i=1

(2.3)

is in class C. The functions g belonging to a given
partition IT form a class C(II).
If F[ {7 is any functional defined on C, then

F[g:lz 5(0,1,(12, o ',dN).

An average of F over C(IT) can now be defined. If T is
the section of the hyperplane

(2.4)

N
Z a¢'=LV m (25)
i==1
in N-dimensional a space determined by
(1,‘20 (1:2:172;' : ')N)) (2'6)

and if 47T is the Euclidean volume element of T, then
the A-B-L average of F over C(Il) is

f dff(al,az,- N ,GN)
T

'de
T

if the integral exists. The A-B-L average of F over C is

BO[F]= (2.7)

3®;=1 on the 7th subset, =0 elsewhere.
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defined by
B[F]=A17im BUO[F]

f ds:(alya% Tt 7a’N)
T

f ar
T
if the limit exists.*

It may be noted that B[ cF|=c¢B[F]if ¢ is a constant,
and B[F,+F,]=B[F:]+B[F:]. Also if F[f]=1 then
B[F]=1.

= lim

N

III. CALCULATION OF A-B-L AVERAGES
It was shown by A-B-L! that

Nt N\
f iT= (—) , (3.1)
dedi
T 1
_— (3.2)
m
[or
r
de(l,'?
T N 2
= R (3'3)
N(N+1) m?
de
T
dea,-aj
T N? 1
(3.4)

TNV
[or
T

Let R be any subset of S, let ®& be the characteristic
function of R, and let % be a bounded (| %] < k), complex,
function on .S with integrable real and imaginary parts.
We shall now evaluate the A-B-L average of the
functional

/1= f I, 3.5)

We have

g(al,az’. .o

==l

,llN)_—‘Fl:g]:% a; f h‘I’Rq),‘ (36)

SO

1 »
BM[Fl=—3% | hdrd;

M i=1 o

—fhch

* It should be noted that there may be many partitions belonging
to a given NV and that § depends on II as well as on N.

(3.7)
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Hence, .
B[F]=— f . (3.8)
mYs
when F has the form (3.5).
Now let ,
FLf1- { ) h«be} . (3.9)
s
We have
g(alyd% e ,(IN) =F|:g]
2
{Z a; f h®rd , (3.10)
=1
Let
hR,=f hPr®;, (3.11)
s
'ng=f CPR(I),'. (312)
s
Then
ff(al,ag, ,aN) 2 Z a,a,hg;hg, +Z ajg th y (313)
>7
80
N2 2
BW[Fl=——————73 hrihg;
N(N+1)y m?i>;
N? 2
b S ha?
N(NA1) m?
N2
— _(Z #i)”
N(N+1) m? i
N? 1
b — % b
NN+ m? i
N(N—H) m2(f )
1
—|———~—-— — 3 ket (3.14)
N(N41) m?
If & is an upper bound of /% then
| hri| < hmg: < hm/N. (3.15)
Hence, _ _
N h2m2 N h‘ZmZ )
hrd| < = . 3.16
l?;l R I X e El N (

Thus the last term of (3.14) vanishes in the limit, and
we see that when F has the form (3.9)

B[F]=(—:; fs ;m)z.

(3.17)
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1IV. THE A-B-L ENSEMBLE THEOREM

We shall now let the space be a finite-dimensional
phase space (of a conservative classical system of
point masses), and the subset .S be an energy shell in
the phase space. The class C will be the class of density
functions at =0, and R will be a subset of the energy
shell with positive volume. We shall assume the
existence of a unitary operator U(#) which describes
the evolution of the system with time, and which
operates in the Hilbert space of square integrable
functions on the phase space.

The probability Pr(f) of a system being in R at
time £ is

Pa()= [ #mo(t)
- f 22U (1)p(0)
S

=f p(O) U (1)®p. (4.1)

If we now consider Pr(f) as a functional of p(0) and
apply the A-B-L averaging process we have by (3.8)
[letting k= U-1(t)®g, and replacing ®z in (3.8) by &,

LOMONT

the characteristic function of 5]

1
BLP()]=— f SU-1 (1)

mg
1
_ f BRU (). (4.2)
mYg
Since®
U(Ho=9, (4.3)
we have
B[ Pr()]=mgr/m, (4.4)

where mp is the volume of R. Similarly® (using 3.17),

B[PR%OJ:B[( f p<0>U—1(r><1>R)2]

= (mp/m)%. (4.5)
Hence, we have the result
BL(Pr(t)—mr/m)*]=0. (4.6)

Thus Pr(t)=mgr/m for almost all initial density
functions at all times. This is the strong form of the
A-B-L theorem.

8 E(very function of the energy is an invariant eigenfunction
of U(@®).

81t h=U—(t)®r is not bounded the derivation of (3.17) can
be altered slightly to take advantage of the properties of Hilbert
space. Then

| gl = | (| @r®i)) < 4]} |@20:l) = |4l s < ||l / N
Then £ is replaced by /%] and the proof goes through as before.
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The lattice is a special rooted Cayley tree, generated by IV successive m-fold branchings. With each point
of the tree are associated a mass M and a position coordinate x;. All end points are held fixed at x;=0.
The potential energy is V=3% Z; ; K;;(x;—x;)?, where K;;= K if i and j are connected neighbors and neither
is an end point, Ki;;=caK if 7 and j are connected neighbors and either is a branch tip point, and K;;=0
if ¢ and j are not connected neighbors. The allowed frequencies of vibration are obtained for two different
cases: In the first case all springs are identical (¢=1), and in the second case the springs connecting interior
points to the branch tips are cut (a=0). In the case in which all force constants are the same, the allowed
frequencies of vibration, in the limit of infinite N, are given by w(r) = (K/M)¥{m-+1—2m? cosrx ]}, where
r is any rational number between zero and one. The fraction of all normal modes having precisely the value
w(r)is pLw(r)]= (m—1)2/(m21—1), wherer is expressed as the ratio r = p /g of relatively prime integers p and ¢.
The frequency spectrum is dense within the interval (mt—1, mt41); and p[w] is discontinuous at every «

for which it does not vanish.

ERHAPS the readers of this journal will be

interested in some curious results we have obtained
concerning the frequencies of small vibration of a
number of mass points connected by springs as in a
special rooted Cayley tree.! An example is shown in
Fig. 1.

The Cayley tree that we are concerned with is
made by starting with the trunk connecting the root
point O to the point 1,, and adding m branches to the
point 1; to produce m new branch tip points 1:2,,
1,25, -+, 1:2,,. Then m branches are added to each of
these branch tips to produce the m? new points 1,2,3;,
<o, 14243, 112034, ¢+ -, 112,,3,; and so on. This branch-
ing process, when repeated IV times, results in an Nth-
order tree whose m" branch tip points are labeled
1:2;- - - (N+1);. We shall refer to m as the branching
number. Figure 1 shows a fourth-order tree with a
branching number of two. We are concerned especially
with an Nth-order tree with a branching number
m>2 as N becomes indefinitely large.

The root point 0 and the points at the branch tips
are called end points, and the others are interior points.
Each end point is connected to one neighboring point,
and each interior point is connected to m-1 neighbors.
Thus m-1 is the coordination number of the lattice.

It is interesting to note that an Nth-order tree has
(m¥—1)/(m—1) interior points and m¥-+1 end points.
For large N, the fraction of points on the surface of
the tree, i.e., branch tip points, is (m—1)/m.

With each point of the tree we associate a mass M
and a position coordinate x;. All end points are held
fixed to the values x;=0. We suppose the potential
energy of interaction of the mass points to be

V=43 ¥ Kij(xi—x;)*

i

—1T T AGj)ea; 8

1 This sort of lattice was brought to the attention of RJR by
Dr. Michael Fisher. It is of interest in the study of cooperative
phenomena and has been called a Bethe lattice by C. Domb,
Phil. Mag. Suppl. 9, 149 (1960).

The coefficients K;; are

K. if 4 and § are neighbors, and neither is a
branch tip;
K;=<aK, if 7 and § are neighbors, and either is a
branch tip;
0, if 4 and § are not neighbors.

The coefficients A4 (4,7) are determined by these K;.

By setting « equal to zero, the interior points are
entirely disconnected from the branch tips, and the
Nth-order tree with fixed tips becomes an (N—1)th-
order tree with free tips. When a equals one, the
interaction of interior points with branch tips is the
same as the interaction of interior points with each
other.

Our principal results, concerning the frequency
spectrum of the tree in the case a=1, are the following.

The allowed frequencies of vibration of the tree, in
the limit of indefinitely large IV, are given by

w(r)= (K/M)Y{m-+1—2m} cosrr}}, (2)

where r is any rational number greater than zero and
less than one. The frequency spectrum is dense within
the interval

K/ MMmi—1} <o <(K/M)¥m*+1}.  (3)

The fraction of all normal modes having precisely
the frequency w(r) is

plw(r)]=(m—1)"/ (mi—1), m=>2, 4)

Fie. 1. A fourth-order
tree with a branching num-
ber of two.
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where we have supposed 7 to be expressed as the ratio
r=p/q )

of relatively prime integers p and g. Within the stated
interval, p[w(r)] vanishes for irrational r, and is
discontinuous at every rational 7.

We proceed now to the derivation of the frequency
spectrum. The allowed frequencies of vibration of
coupled oscillators can be found by solving for the
roots of a secular equation. This equation, for an Nth-
order tree, is

Dy=det[ 4 (i,§) — Mw:,]=0. )

The order of the determinant Dy is (m¥—1)/(m—1)
X (m¥—1)/(m—1). The potential energy matrix A4 (z,7)
is positive definite; therefore, the secular equation has
(m? —1)/(m—1) positive roots, here denoted by w?.

For convenience we shall suppose that K and M are
equal to one; this amounts to measuring frequency in
units of (K/M)3.

The general structure of the secular determinant is
shown in Fig. 2. The z in the upper left corner is

z=m+1—u?; (7

the entry 4(11,1;)=m-+1 contains the contribution of
the m—-1 springs attached to the first branching point
1,. This point is connected to 1,2, - -+, 1:2,,, (and to
no other points), by 4(11,1:21)=---=4(1,1,2,,)=—1.
These elements comprise the nonzero entries in the
top row and left column of Dy (z) in Fig. 2.

In the secular determinant, the points 1,2y, - -+, 152,
now may be regarded as the first branching points of
m independent trees of order N—1. Thus Dy(z) is
filled in, on the diagonal, with m smaller determinants
Dy_1(z). Each Dy_, has the same general structure as
Dy, including D,

5 -1 —1 =1 .- —1
-1 D, 0 0 .0
Do |=1 0 Dy 0 0l. 8
R 0 0 Dy 0
—1 0 0 e D

The determinant D, consists of the single element

Di=14ma—o’ O]

RUBIN AND R.

ZWANZIG

If the springs leading to the branch tips are identical
with the springs connecting interior points, then D;=3.

By Laplace’s expansion, one may easily verify that,
for N>2,

DN (Z) = ZDN_lm (Z) - 7’”/1)N—1m—1 (Z)DN—‘zm (Z) .

The recurrence formula (10) is correct for N=2 also,
provided we define Dy(z) to be identically one.

It is noteworthy that in the special case m=1,
i.e,, for the familiar one-dimensional chain, the
recurrence formula reduces to the well-known linear
form, Dy (2) =2Dy_1(3) — Dx—2(2).

The general recurrence formula or difference equation
(10), although nonlinear, turns out to have a remark-
ably simple solution. We observe first that, by its
definition, Dy(2) is a polynomial in z From the
recurrence formula we obtain

Dy (2)/Dy—1y"" () =2Dy-1(z) —mDy_s(z); (11)
Dy (z)/Dy—1"1(z) is also a polynomial in z. But if this
is a polynomial, then so is Dy_1(2)/Dy_¢™""(z). Thus,

Dy (2)/[ Dy-1(3)Dy_2(z) J*!
= ZDN—J(Z)/DN_Z"L—I (Z) —mDn_s (Z) (12)

is a polynomial; and so forth.
The preceding observation suggests the substitution

Dy(2)={D1(2)Ds(3) - - Dn—1(2)}" Py (2), (13)

where Py(2) is a polynomial of the Nth degree in z.
Substituting (13) into the recurrence formula (10),
once for Dy, once for Dy..1, and once for Dy._», we find

{Di\Dy- - - Dy_1}™ Py
=2Dy_1"Y{D1Dy- - - Dy_o}™ *Py_1
—mDy_ 1" Dysm Y D1Ds: - - Dy_3}" Py, (14)

Evidently, {DiD;-:-Dy_1}™! can be factored from
each term, leaving the linear recurrence formula

PN(Z)=ZPN_1(Z)—WLPN_2<Z). (15)

Using the known values of Dy and D,, we observe that
the P sequence can be started with

P0=D0=1,
Pi=Di=z—m(1—aq).

(10)

(16)

The structure of the recurrence formula for Py
suggests that a solution may be found by means of
Tchebycheff polynomials. We have done so; the
solution, easily verified by substitution, is

sin(n+41)6 sinné
P.(z2)=mr?} ——————mi(1—q) EY))
sinf sinf
where 8 is defined by
z=2m} cosf=m—+1—c?. (18)

The relation between the determinant Dy and the
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polynomials Py can be found by repeated application
of (13);it is

Dy(z)= Pn(2) IE {P,(z)} (mDmN=r1, (6"

This relation, together with (17) and (18), provides
an exact evaluation of the secular determinant. (Even
the linear case, m=1, in which the product over r in
(6') reduces to unity, is included here.)

The problem of finding the distribution of the
frequencies of vibration of the tree (for m>2) is now
reduced to (1) locating the zeros of the polynomials
P, n=1,2 --- N, and (2) accounting for the multi-
plicity of these zeros, considered as roots of Dy. We
shall first treat the case a=1, in which the branch tip
springs are identical with the other springs. Then we
shall consider what modifications are called for when
a=0, in which case the interior points are completely
detached from the branch tips.

When a=1, the expression for P, is simply

P,=m"?sin(n+1)8/sind. (19)
The #n zeros of P, are located at
6 =krr/(n+1),

It follows that the frequencies of vibration obtained
from (18)

1<k<Ln.

1<kLn

—_ ="

ISMSN,

w={m~+1—2m* cos,»}* (20)

fill the interval m#*—1 <w<m¥+1 in the limit of large V.
Now we consider the distribution of frequencies
within this interval. In the limit N — o, there is a
frequency associated with every rational multiple of ,
w(r)={m—+1—2m?* cosrr}?, (20"
where 0<r<1. By writing 6=rr as 6, =pn/q,
where p and q are relatively prime integers, it is clear
that 6, 1@ =rris a root of Py, Pog 1, -+ *, Ppg1, - -
Since the total number of roots of Dy is
(m"¥—1)/(m—1), the fraction of all frequencies having
precisely the value w(r) is

N 1 —1
()
=

X{(m—1)m"=14(m—1)m 20+ -} (21)
In the limit N — oo, the value of p[w(r); N]is
ple(r)]= lim plw(r); V]
= (m—1)*/(mi—1); m22. (22)

We shall refer to p[w(r)] as the fractional multiplicity
of the frequency w(r).
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The numerical value of p[w(r)] is independent of ,
except that p must be less than ¢ and relatively prime
to g. Then we also have p[w(r)]=p[w(1—7)]; the two
frequencies w(r)= (m+1—2m! cosrm)} and w(l—7)
= (m—+142m* cosrr)? have the same fractional multi-
plicity. The frequency w(})=(m+1)} which is also
the frequency of a tree of order one (and a=1) has
the largest multiplicity, namely

plo@)]= (m—1)/(m+1). (23)

Thus there is a band of allowed frequencies of
vibration, specified by

mi—1<w<mi+1,

such that the frequency w(r)= (m~+1—2m! cosrn)?
within the band has a fractional multiplicity

plw(r)]

(m—1)2/(m2—1), if 0<r<1 is rational and equal
to p/q where p and ¢ are
relatively prime integers, p <g;

0, if 0<r<1 is irrational.

We now consider the case @=0, in which the interior
points are not attached to the branch tips. The resulting
transcendental equation for the roots of P, is

\ sin(n+1)6

sinnf
3

P,=m =0, m>2. (24)

—m
sinf sinf

Although we have not been able to find explicit ex-
pressions for all the roots of all the P,’s defined by
(24), we can nevertheless draw certain qualitative
conclusions.

First, according to (16), we observe that P;=D;=
1—w? or w=11s a root of Dy.

Second, with one exception, it can be verified that
for n>2, P, in (24) has n—1 real roots, 8,z, and one
imaginary root ¢, (see Appendix for details). The
single exception occurs for Ps when m=2, in which
case P, has two real roots fy; and s2. The frequencies
corresponding to the real roots fill the same open
interval as before, m*~1<w<mi+1, in the limit of
large N. The imaginary root i¢, of (24), which is
determined conveniently from the equivalent expression

= (mt—e=?)/ (mi—e?) (24))
corresponds to a frequency
w(pn) = (m-+1—2m? coshe,)?.
This frequency lies in the interval 0<w(¢p) <mP—1,
n>2.

From examination of (24'), it can be seen that the
root ¢, is such that 1<e¢»<mt The ¢,’s are distinct,
with ¢,>¢, for #>m; and as n— o, e*»— m}. The
frequency associated with this limiting value is

() =0.
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In this way we find, in the case =0, that the
frequency spectrum consists of: (1) a band of fre-
quencies in the interval mt*—1<w<m*41, and (2) a
discrete spectrum in the gap interval 0<w<m?—1.
The frequency w=0 is a limit point of the discrete
spectrum. For m>5, the frequency w=1 obtained
from P;=0 lies in the gap interval, and constitutes an
upper bound for the discrete spectrum.

We have not been able to determine the fractional
multiplicity of the frequencies in the band (for a=0),
i.e., to account for possible coincidences of the real
roots of different P,’s. However, the fractional multi-
plicity of the frequencies in the discrete spectrum can
be obtained easily. It is

_1 N—1—n —1\2
oo ]lim DD

N (mN_l)/(m_l)_ el

n>2.

It follows also that the fraction ¢ of all frequencies
lying in the open interval 0 <w<mt—1 is

(m—1)/m?, m=234
o=
(m—1)/m, m>5.

RUBIN AND R. ZWANZIG

APPENDIX
The roots of

P, (6)=m™2{sin(n+1)6/sinf—m? sinnd/sind} for m>2,

where 2mt cosb=m—41—w?.

P,(0) is a polynomial in ? possessing » real roots
wni?. The expression for m—"/2P,(6) is the difference of
two Tchebycheff polynomials, sin(n+1)8/sinf and
sinnf/sinf. Because the n—1 roots of sinnd/sing
(in the interval 0<6<w) interlace the # roots of
sin(n—+1)8/sind, the difference polynomial,

sin(n+1)8/sinf—m? sinnf/sing,

has a real zero between every adjacent pair of zeros of
sin(n+1)8/sind. Thus there is a total of #—1 of these
real roots 6,;. With one exception, the last or nth root
of P,(f) is obtained from Eq. (24')

n = (mi—4)/ (m—e¥),

where ip=0. The exception can be traced to the fact
that for e<1/%, sin(n+1)e/sine<m! sinne/sine save in
the case n=2, m=2. For m=2, the roots of P, are
021= 71!'/12 and 022=7r/12.
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The general constitutive equations for galvanomagnetic effects in isotropic materials are applied to
the study of electrical conduction in rods. It is shown that, in general, rectilinear current flow is not possible,
unless the rod has a circular cross section or is an infinite parallel-sided slab.

1. INTRODUCTION

N a previous paper' the constitutive equations for

galvanomagnetic effects in isotropic materials were
derived from an initial assumption that the electric
current density J and the magnetic field H are functions
of the electric field E and the magnetic induction B.
We now consider the flow of current in an infinitely
long cylindrical rod of such material when a constant
potential difference is maintained between its ends.
It will be shown that rectilinear flow of current is not,
in general, possible.

It is natural to assume that the current in a long
cylindrical conductor will flow in straight lines parallel
to the axis of the cylinder, producing a magnetic field
which has no component in the axial direction. However,
in materials of the type considered, the assumption of
rectilinear flow leads to a system of three partial
differential equations for the two nonzero components
of the magnetic field. These three equations are
independent unless the conducting material is of a
certain special type. This special class of materials
includes, of course, those which obey the classical
Ohm’s law.

It is found that if the three equations are independ-
ent, the magnetic field inside the conductor must form
concentric circles or parallel straight lines. On the other
hand, the external field is of the usual solenoidal and
irrotational type. Presumably, the internal and external
fields cannot be joined properly at the conductor
boundary unless the boundary has a special shape, and
therefore rectilinear flow is not generally possible.
We show, in the case when the material and surrounding
dielectric have equal, constant permeabilities, that recti-
linear current flow is possible only in circular rods and
tubes and in infinite slabs. This result is probably also
true in general, when the permeabilities are not equal.

The present problem is somewhat similar to that of
the flow of non-Newtonian fluids through tubes.
Ericksen? pointed out that unless the fluid is of a
special type, or the tube has a special cross-sectional
shape, rectilinear motion is not possible. For sufficiently
small deviations from rectilinear flow, Green and
Rivlin® have shown that the fluid then flows with a
helical motion. In the present case, we expect a similar

LA, C. Pipkin and R. S. Rivlin, J. Math. Phys. 1, 542 (1960).

2 J. L. Ericksen, Quart, J. Appl. Math. 14, 318 (1956).

8 ;\ E. Green and R. S. Rivlin, Quart. J. Appl. Math. 14, 299
(1956).

result; that the electrical current will flow in a helical
path when rectilinear flow is not possible.

2. CONSTITUTIVE EQUATIONS

It has been shown! that the constitutive equations
describing galvanomagnetic effects in holohedral iso-
tropic materials must be expressible in the forms

J=0;E+ (a:E- B)B+a:EXB
H=v:B+E. B(y.E4+v:EXB),

(2.1)
and
(2.2)

-, v3 are functions of

(2.3)

where the coefficients ay, as, - -
E-E, B-B, and (E-B)

For the purposes of the present paper, it is more
convenient to use the inverse equations in which E and
B are given in terms of J and H. These may be obtained,
by an argument analogous to that employed in obtain-
ing Egs. (2.1) and (2.2), as

E=a,J4 (. H)H+ eI XH (2.4)
and B=cH+J - H(cJ+c: I XH), (2.5)
where a4, as, - -+, ¢3 are functions of

J.J, H-H, and (J-H) (2.6)

Equations of the forms (2.4) and (2.5) can also be
obtained by solving (2.1) and (2.2) for E and B in
the manner described in the Appendix.

3. RECTILINEAR CURRENT WITH NO
AXJAL MAGNETIC FIELD

We consider a straight cylindrical rod of arbitrary,
but uniform, cross-section lying parallel to the z axis of
a rectangular Cartesian coordinate system #, y, 2. The
rod is composed of a homogeneous, isotropic conducting
material for which the constitutive equations (2.4) and
(2.5) are valid. The medium surrounding the rod is a
perfect insulator of infinite extent, so that in it

J=0 and B=yH, 3.1)
where g is a constant.

If the flow of current in the rod is steady, then
Maxwell’s equations, which are valid everywhere, take
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the form
vxXH=], (3.2)
v-B=0, (3.3)
v XE=0. (3.4)

The tangential component of H and the normal
component of B are continuous across the boundary of
the conductor. At points in the insulator sufficiently
distant from the conductor, H=0(1/7), where r is the
distance of the point considered from the conductor.

We might expect that if a uniform electric field is
applied to the rod in the direction of the z axis, the
resulting current will be in the same direction and
produce a magnetic field for which the z component is
zero, so that

Jo=J,=H,=0. (3.5)

We will show that if the validity of (3.5) is assumed,
the resulting mathematical problem for the determina-
tion of the distribution of current and magnetic field
is overdetermined and, in general, does not possess a
solution.

From (3.5) and (3.2), it follows that J and H are
independent of z. We may therefore write

J.=J(x,y). (3.6

From (2.5) and (3.1), it follows that B is independent of
% everywhere and from (2.4) it follows that E is in-
dependent of z inside the rod. With E/dz=0, Eq. (3.4)
implies that E, is a constant E (say):

E.=E. (3.7
With (3.5), Egs. (2.4) yield
E,=—Ja;H, E,=JasH, E,=Ja, (3.8
and Egs. (2.3) yield
Bz=61[11, By=61Hy, Bz=0, (39)
where, from (2.6), a1, a3, and ¢, are functions of
J.J=r, H-H=H+H2=H (say)
and (J-H)2=0. (3.10)
By using Egs. (3.1) and (3.9) in (3.3), we obtain
v-(c;H)=0 (conductor) (3.11)
and
wVv-H=0 (insulator). (3.12)

Since J and H are independent of z, Eq. (3.2) yields
(3.13)
(3.14)

oH, o8H, { J  (conductor)
dx 9y 0 (insulator).
Equation (3.7), with the last of equations (3.8), yields

Ja:(J2,H%0)=E (constant). (3.15)

RIVLIN

We note that Eqgs. (3.11)-(3.15), with /=0 in the
insulator, provide three equations valid in the conductor
and three valid in the insulator. It appears that, together
with the boundary conditions on the surface of the con-
ductor and at infinity mentioned earlier, they should be
sufficient for the determination of H, H, and J.
However, Eq. (3.15) is not the only consequence of
Eq. (3.4). By using (3.8) in (3.4), we also obtain

v-(Ja;H)=0. (3.16)

We shall show that solutions of (3.11)~(3.15) cannot
also satisfy Eq. (3.16) unless certain restrictions are
imposed on the constitutive equations which are valid
for the material of the rod or on its cross-sectional shape.

4. DEGENERATE MATERIALS

We may regard Eq. (3.15) as determining J as a
function of H?. With J=J(H?), the coefficients ¢; and
Jaz in Egs. (3.11) and (3.16) can also be regarded as
functions of H2 Equations (3.11) and (3.16) can then
be written in the forms

dCl
av-H+ H-vH2=0 (4.1)
d(H?)
and
d(]da)
Jayv-H+- H -vH?=0, (4.2
d(H?)
Together, these equations imply that either
H-vH?=0 (4.3)
and
v-H=0, (4.4)
or
d(]dg) dCl
(4.3)

Cr =Jay .
d(H?) d(H?)

In the degenerate class of materials for which (4.5) is
satisfied, Eqs. (4.1) and (4.2) are compatible and the
problem is presumably not overdetermined. For
example, if the material obeys Ohm’s law, then a;=0
and Eq. (4.5) is satisfied.

5. OVERDETERMINATION

If Eq. (4.5) is not satisfied for the material considered,
then the magnetic field inside the conductor must
satisfy the independent equations (4.3), (4.4), and
(3.13). In (3.13), J is regarded as a known function of
H2, obtained from (3.15). We thus have three equations
for the two unknowns H, and H,.

Let t and n denote unit vectors, tangential and
normal, respectively, to the lines of flux and so oriented
that n, t, and the direction of the z axis form a right-
handed triad at each point. Then,

(t-¥)t=—n/r and (t-V)n=t/r, (5.1)
and

(n-v)n=—t/p and (n-V)t=n/p, (5.2)
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where r and p are the radii of curvature to the line of
flux and to the orthogonal trajectory of the lines of
flux at the point considered. From (5.1) and (5.2), it
can be shown, bearing in mind that t and n are unit
vectors, that

n-v)(t-9)+r1{t-V)=(t-V)(n-V)+p1(n-v). (5.3)

Bearing in mind that H=Ht, we can now rewrite
Eqgs. (4.3), (4.4), and (3.13) as

Ht-vH:=0, (5.4)
v -(Ht)=t-VH+H/p=0, (5.5)

and
V- (Hn)=n-VH+H/r=J(H2). (5.6)

Denoting by s distance measured along a line of flux,
Eq. (5.4) may be rewritten as

HO(H?)/35=0. (5.7)

It follows that either H=0 or dH/ds=0. If H=0, it
follows from (5.5) that 8H/ds=0. Hence, H is constant
along each line of flux.

From (5.5), with dH/ds=0, we see that if H>=0, then
1/p=0. The orthogonal trajectories of the lines of
flux are therefore straight lines and the lines of flux
are a family of involutes.

By operating on Eq. (5.6) with t- ¥, we obtain

t-9)(n-V)H+rt-VH—Hr2t-vr=t-VJ(H?). (5.8)

By using Eq. (5.3) to interchange the order of the
operators t-¥ and n-V in (5.8), we obtain

(m-v){(t-V)H+2r 't VH—p 'n- VH—Hr2t-vr

=t-vJ(I?). (5.9)
Since t- VH=9H/9s=0 and 1/p=0, Eq. (5.9) yields
H H or
—t-Vr=——=0. (5.10)
r? r? ds

If H>0, then either 1/7=0 or 9r/ds=0. A line of flux
for which 1/r=0 is a straight line. A line of flux for
which dr/ds=0 is a circle. Thus, the lines of flux are
circles of finite or infinite radius.

A family of circular involutes is a family of concentric
circles, or degenerately a family of parallel straight
lines. In (5.6), n- Vv may now be replaced by d/dr and
we obtain

dH/dr+H/r=J (H>). (5.11)

We conclude that the lines of flux inside the conductor
are concentric circular arcs. The magnitude of H is
constant along each line of flux and satisfies Eq. (5.11),
where 7 is the radius of the line of flux passing through
the point considered.

It is clear that if H is determined both inside and
outside the conductor by using Egs. (3.11)-(3.15) and
the appropriate boundary conditions, the lines of flux
inside the conductor will not generally be concentric

IN A NONCIRCULAR ROD 867
circles. This contradicts the results of this section,
obtained by using Eq. (3.16) as well. In the cases in
which this contradiction arises, our initial assumption
expressed by Eq. (3.5) must be incorrect.

6. DEGENERATE CROSS-SECTIONAL SHAPES

For materials for which Eq. (4.5) is not valid, we
have shown that if there exists a solution of the system
of equations (3.11) to (3.16), the lines of flux inside the
conductor are concentric circles and the magnitude of
H is constant along each line of flux. It is apparent that
these conditions cannot be satisfied in a conducting
rod of arbitrary cross-sectional shape. However, if
the cross section of the rod is bounded by a circle or
by a set of concentric circles, then we may expect the
lines of flux to be circular. We wish to show that these
are the only possible exceptions. In order to do this,
we must show that the solution of Egs. (3.11)-(3.16)
for the interior of the rod, which has already been
constructed, cannot be continued into the exterior
region, unless the cross-section is circular.

Let the common center of the flux circles in the rod
be used as the origin of coordinates. Let the curve C
bounding the conductor be given parametrically in
terms of the arc length s by x=x(s), y=y(s). Inside C,
H is given by

He=—HG)y/r, H=HOx/r, (61
where
rr=at412,

and where H (r) satisfies Eq. (5.11).
By using (6.1) in the condition that the tangential
component of H is continuous across C, we obtain

H'(5)+Hyy (s)= (H/N)[—yx'(s)+2y'(5)], (6.3)

where H, and H, are now the components of the
external field, evaluated on C. Similarly, since B=¢,H
inside C and B=gH outside C, continuity of the normal
component of B requires that on C,

w[—H.y' (s)+Hya' () ]= (el /1)[yy (5)+-aa'(s)]. (6.4)

The boundary values on C of H, and H,, to be used in
determining the field outside the rod are obtained from
(6.3) and (6.4) as

(6.2)

H.= (H/n)[x' (xy —yx')— (e/w)y’ (x3"+3y")],  (6.5)
and
H,=(H/NY (xy —y2')+ (ci/w)x’ (xa’+9y)]. (6.6)

Outside C, H satisfies Egs. (3.12) and (3.14). From
them it follows that H.—iH, is an analytic function of
2=x-+1y, so that

H,—iH,=w(z) (say). (6.7)

The condition that H, and H, are O(1/r) at infinity
implies that zw(z) is regular at infinity. The conditions
(6.5) and (6.6) can be combined, by using zZ=7* and
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dzdZ= (ds)%, to yield

a1 1\ 72 dz\?
zw(z)=—%irH[1+——(1———)(-—) ] (6.8)
I I r ds

Since (6.8) determines both the real and imaginary parts
of w(z) on C, the problem is, in general, overdetermined.
In the particular case when ¢; is a constant and equal
to g, it is easy to show that (6.8) can be satisfied only if
the cross-section of the rod is circular. Introducing
c1=p into (6.8), we obtain
sw(z)=—irH on C. (6.9)
Since R (zw)=0 on C and is regular outside C and at
infinity, ®(zw)=0 outside C. Therefore, 9 (zw)=con-
stant outside C. On C, d(zw)=—rH. Hence, H=A/r,
where A is a constant, on C. Let ry be the radial distance
from the origin to the nearest point of the boundary.
Then, inside C, for r>r,, we have H=A/r. By using
this result in Eq. (5.11), we obtain J=0, for >r,.
This implies that =r,is the boundary of the conductor.
If the cross section of the conductor is not simply
connected, then Eq. (6.9) also holds on each interior
boundary and by analogous reasoning it can be seen
that each interior boundary is also a circle with center
at the origin.

In the more general case when ¢, is a function of H?,
which in turn is a function of 7, we have so far not
succeeded in proving rigorously that (6.8) can be
satisfied only if C is circular. However, if C is the
circle |z|=ry, then dz/ds=—ir¢/3z on C and (6.8)
becomes

zw(z)= —irH (ro). (6.10)
This boundary condition implies directly its own
analytic continuation into the region outside C.
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APPENDIX. INVERSION OF CONSTITUTIVE
EQUATIONS

In this section, we show how Egs. (2.4) and (2.5)
may be obtained directly from (2.1) and (2.2). From
(2.1) and (2.2) we obtain

JXH=[8:(E-B)*+8,B-BJ]E

— (B1E-E+8:)(E-B)B+8:EXB, (7.1)

PIPKIN AND R. S.

RIVLIN

where
Br1=orys—azys, (7.2)
32=a2‘Ys(E' B)2—a3'y], (7-3)
and
Bs=ayy1—azy:(E- B)% (7.4)

Equations (2.1), (2.2), and (7.1) are linear equations
for E, B, and EXB in terms of J, H, and JxXH, with
scalar coefficients. Solving them, we obtain

E=(4:/8)— (4:/A)(E- BYHA+(8:/A)JXH  (7.5)

and

B=(4:/A)H—E-B[(44/A)J+(8:,/A)IXH], (7.6)
where

Arv=vB85+7v:(8:1E- E+48,) (E- B)?, (1.7)

As=0asBs+a3(8:E- E48s), (7.8)

As=aBs—as[81(E- B)*+4.B- B, (7.9)

4 As=vs83—7s[8:(E- B)*+8,B-B], (7.10)

an A=|8:(E-B)E+8,B|2487. (7.11)

If A=0, then E, B, J, and H are all in the same direction
and the inverse equations are nonunique.
From (2.1) and (2.2), we also obtain
J-H=4,E-B,
As=artaryE- E4+azyiB- B+ayy:(E- B)?
+asvs[(E-E)(B-B)— (E-B)*].
By using (7.12) in (7.5) and (7.6), we obtain
E=(4,/8)J—(4:/4:8)J-H)H+ (8,/A)IXH  (7.13)
and

B=(4s/AYH~J-H[(4,/4:0)]
+(8/4:0)IXH].  (7.14)

Equations (7.13) and (7.14) are of the forms (2.4)
and (2.5), respectively, except that the scalar coeffi-
cientsin (7.13) and (7.14) are functions of the invariants
(2.3) rather than of the invariants (2.6). It is necessary
to find expressions for the quantities (2.6) in terms of
the quantities (2.3). The equations to be used are
(7.12) and the following, obtained from (2.1) and (2.2):

J-J=02E-E+a2(E-B2B-B+o [ (E-E)(B-B)

(7.12)

—(E-Bp14+2a10:(E- B, (7.15)
H-H=7¢B- B++2(E-B)’E- E+~s(E- B)?
X[(E-E)(B-B)—(E- B)*]
+27172(E'B)2~ (7-16)

The inversion cannot be completed until the forms of
ay, ay, - -+, y3 have been specified.
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A method for calculation of “principal modes” of linear or nonlinear systems is discussed. The physical
definition of ‘‘principal modes” is formulated mathematically in two ways. The trial solution of the differen-
tial equation of the motion of the system is taken in an appropriate structure. The calculation of principal
modes leads to infinite determinants of Hill's and von Koch’s type, which are analyzed. The above method
yields the possibility of getting the “principal modes” in the form of a series, all the coefficients of which

can be calculated.

1. INTRODUCTION

HE concept of “principal modes” plays the
predominant role in the analysis of the oscillatory
systems, no matter what field the systems occur in.

The principal modes of linear systems are, by defini-
tion the fundamental set of solutions of which a linear
combination gives the general solution of the linear
differential equations, which govern the motion of the
linear system. This means that any kind of oscillations
in linear systems can be discussed in terms of some
special modes of oscillation of the system, the “principal
modes” of the system.

This definition of “principal modes” is meaningless
in nonlinear systems, since the “principle of superposi-
tion”” does not hold in those systems.

The study of the principal modes of systems, either
linear or nonlinear, may be made by using two defini-
tions, namely the ‘“proportionality definition” of prin-
cipal modes and their definition as solutions of “initial
value problems” of special type. Calculations, based on
these definitions, are shown for a nonlinear ‘“‘dual-mode”
system. If the solution of the differential equations of
this system is taken as an exponential series with com-
plex coefficients, the calculation of the frequency w and
the coefficients of the series leads to a recursion formula,
which gives rise to “infinite determinants” of special
type. The analysis of the infinite determinants involved,
and the solution in its final form is discussed. The non-
unit elements of the determinants contain the coefficient
of the nonlinearity as a common factor, and, for a weak
nonlinearity, we can get an expansion of these deter-
minants in powers of the coefficient, then an appropriate
approximation of them. Thus the “frequency equation,”
in an infinite determinantal form, is reduced to a
quartic in «?, and the ratio of the determinants of the
coefficients of the series to unit.

The solution given is in accordance with both defini-
tions of ‘“principal modes,” and imposes a relation
between the initial displacements of the masses, and
this relation and the condition for the initial velocities
to be zero distinguished the special initial value
problems appropriate for the “principal modes.”

A brief discussion of the present paper has been

published in the Proceedings of National Academy of
Sciences.!®b

2. THE DEFINITION OF PRINCIPAL MODES, ITS
APPLICATION TO A FREE NONLINEAR SYS-
TEM OF TWO DEGREES OF FREEDOM,
AND THE RECURSION FORMULA
FOR THE SOLUTION

By using the terminology of mechanical systems with
s degrees of freedom, the principal modes of oscillations
of the system are defined as those oscillations of the
system for which the nonzero amplitudes of the funda-
mental and the corresponding harmonics of the dis-
placements of any two of the oscillating masses have,
separately, a constant ratio. For such motions, the
masses all oscillate about their equilibrium positions,
where they pass at the same time. Their common
frequency is the “principal frequency” of the system.

If x;,4=1, 2, ---s are the displacements of the
masses m;,7=1, 2, - - - s from their equilibrium positions,
and %, ¥i» the corresponding amplitudes of the nth
harmonic of the displacements «x;, x;-, of the two masses
m;, my, and if there exist constants ¢, such that the
conditions

i+ #0, 0 (1)

are satisfied, then these motions are, by definition, the
“principal modes’ of the system.

We restrict ourselves, without loss of generality, to a
two-degrees-of-freedom nonlinear system; namely, we
get—as a mechanical model—the ‘‘two-masses-three-
springs” system with one of the anchor springs nonlinear
and such that the corresponding restoring force is an
odd-cubic function of the distance, or—as an electrical
model—the “two-inductances—three-capacitances” sys-
tem with one capacitance variable and the others
constant, Fig. 1 (a), (b). _

If m1 and m, are the oscillating masses, K= K14+ux?,
K; and K, the stiffnesses of the first and second anchor
springs and of the coupling, u a constant which charac-
terizes the nonlinearity, and x and y the displacements
of m; and m, from their equilibrium positions, the equa-

-
Xin/ Xirn= Cn, t,1'=1,2, -5,

1 (a) D. G. Magiros, Proc. Natl. Acad. Sci. U. S., Dec. (1960).
(b) D. G. Magiros, Proc. Natl. Acad. Sci. U. S., June (1961).
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Ly ©y cy L,
l ), Icz m
iy T iz
(2) (b)
T16. 1. (a) The mechanical model. (b) The electrical model.

tions of motion of this sytem are:

jé+w12x+)\1x3—)\zy= O,

e @)
Jtwfy—Agx=0,
where
K,+K, K,+K;
wy?= » wg?= y
my Mo
U K, K,
}\1———, )\2=—, A3=—-, (23)
my my mo

We proceed to find the solutions x(¢) and y(¢) of
(2) with one fundamental frequency  for both oscil-
lators by imposing a certain organic structure for the
functions x(f) and y(f). Assume solutions of (2) of
the form

D= T aem, y)= 5 Aot (3)

n=—ow n=—00

The coefficients «, and 4, are complex, then they
include the phase angle.

_For the reality of the solution, one takes &, =a.,,
A,=A_,, where &, and A, are conjugates of a, and 4.
Also assume that

S lanl<e, 3 [da <,

n=—00 n=—w

)3 12, <, i n2| A, <.

n=—00 n=—0o0

The first two of these inequalities guarantee the conver-
gence of the series (3), while the second ones the
existence of the second derivatives &, 4.

By using the first of (3), «? is given by

20 o0 o0

= Z Z Z ap1ap2apgei(”1+92+"3)‘°‘,
p1=--00 pg=——0 p3==-—00

which can be written as follows:

=3 3 3 api0pan—p—ppe™"
no pl p2

(3a)

Inserting (3) and (3a) into (2), the following system

G. MAGIROS

results:

Aok
wi—n¥w’— — Ja.+
w22__ nZwZ

M Z Z Qp1Qprqin —p1-—o2=0, (43)
1 p2
A nfan=A3/ (we?—n?w?), (4b)

where %, p1, p2 are integers. This nonlinear system
consists of infinitely many nonlinear (A\;#0) homo-
geneous equations for the infinitely many unknown
coefficients a, and 4.,.

The equation (4b) expresses the definition of principal
modes applied to the above dual-mode system, and by
(4b) the calculation of 4, is deduced from «,, then the
calculation of principal modes of the system is deduced
from ., by using (4a). If a; is the dominant coefficient
of the sequence {a,}, then the approximate value of the
double series of (4a), see Appendix I, is given by

3ala,_s+6|a; l 2,438 %00, (3

with an error o(a:?).

Inserting the expression (5) into the place of the
double series of (4a), we can get the following recursion
formula:

pnan—2+an+Qnan+2=07 (6)
where
3)\10(12 3)\1&12
Pa= ) (]n= ’
kn+6)\lla1[2 kn+6>\1!al[2
A2>\3
kn=w12——n2 21— (63')
w22_n2 2

It is the recursion formula (6) which will be used for
the calculation of the “principal frequency” w and the
coefficients a, of the solution (3). We notice here that
for the convergence of the series (3) it is necessary,
according to (4b), that (ws®—#%»w?) is neither zero nor
very small, i.e., w must not be either a submultiple w,
or very close to a submultiple of ws.

3. CALCULATION OF THE PRINCIPAL
FREQUENCY o
The recursion formula (6) gives infinitely many
homogeneous equations for the infinitely many un-
knowns a,. The corresponding infinite matrix of the
coefficients of these equations is

For nonzero unknowns a,, the corresponding infinite
determinant must be zero. This doubly infinite deter-
minant, by taking = arbitrary integer, becomes one-
sided infinite determinant, and we can write

An,o)=0, (N
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where the infinite determinant A(n,) is given by the limit

1 0 g¢n 0 0 0
0 1 0 gqui O 0 0
LimA (n,m) = papz 0 1 Gnt2 0 0
n=1ixed INTEGEr ||« v vt rrre e . (8)
m=0,1,2,3,---/| 0 O 0 1 0 Gugme
m— @ 0 0 Prtm-1 0O 1 0
0 0 0 Prym O 1

Consider a weak nonlinearity, ie., Ai|%|3&w?|%|, or
M2 (K14 K o) /mi. From the first of (3) we get

oo 2 o o0
maxx?=| ¥ an] = 3 > oanap,
n=—ow pl=—w pg=—00
and since a; is considered as dominant element of that of
the sequence {a,}, when max x?=2a,?, then

)\1<<(K1+K2)/(2m1a12). (9&)
For a weak nonlinearity we can write
3)\1(112 3)\10112
Pn= =
e VI TI L
6|a]? 6]ar|?)?
Xi1=Ay +)\12( ) —]
ka kn
302 18cy% |1 |?
=N A+ -, (9)
ko k2
3a;? 1832 ] ay |2
gn=Ar—=—=M\"
ka ka2

All the elements not in the main diagonal of the
determinant (8) have the small coefficient A, as a
common factor. Then, by applying formula (B) of
Appendix II, and taking the first terms of p, and g,
from formulas (9), the determinant (8) can be written
approximately as

A(n,w)=1—9)\12[061[4i

m=0)

+0(\?).

n+mivnt-m4-2

(10)

ks, given by (6a), is an even function of 7. To examine
the convergence of the series in (10) we confine ourselves
to non-negative integers 7. Since {|k:|} is a sequence
with positive terms monotonically increasing with 7,
and {k;| — «, as 71— o, the series in (10) converges.
Convergence requirements of the series in (10) neces-
sitates the w® must not be a zero of &;(w?); hence

1
w2 =!=wo:|:2= 2—_2{w12+w22:|: [(w12—w22)2+4)\2)\3]‘5} . (1 1)
n

The principal frequency « can be determined from (7)
by using (10).

Then, if we confine ourselves to the first term of the
series in (10) and put n=1, the principal frequency w
is approximately a root of

k1k3=9)\12]a1‘4,
or root of

A2z

Aﬂx{i
(w12—w2—— )(w12—9w2—————)
wol—w? wo?—9w?

—9)\12]0“‘4:0,

(12)

which is quartic in «?. Formula (12) gives the principal
frequency w of order O(A:%). For values of the principal
frequency of order higher than O(\?), we find in the
expansion of A(n,») terms of order higher than
O(A?),? and continue in the same way to find the
corresponding algebraic equation.

4. CALCULATION OF THE COEFFICIENTS

To calculate the coefficients ., we use in the recursion
formula (6) the notation

unzan/an—2, (13)
when we can get
Pn
Up=
1+Qn“n+2
which leads to the infinite continued fraction
(42 Pn
Ap—2 pﬂr+2g"
Prtdad nt2

where the p’s and ¢’s are given by (9). The formula
(14) is written as

(15)

? W. Magnus, “Infinite determinants in the theory of Mathieu’s
and Hill’s equations,” Research Report No. BR-1, Mathematical
Research Group, Washington Square College of Arts and Science,
New York University, 1953,

an/aw—2= —PnZn,oo,
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2—

(TR

wles 1
|

X

FiG. 2. The domain D in the X, ¥, Z space is the appropriate
one for the convergence of the continued fraction (16).

where
1
Zn,eo__
Xn,l
1+
Xn,2
1+ . (16)
14
Xn,m= — Prtemnt2(m—1), (163-)

n=fixed integer, m=1,2,3, - -.

1 —1 0
—Pnt2dn 1 -1
0 " Prtadn+2 1
B 1= | eeeeae e
0 0 -
0 0--

The numerator A,,m—1 of the ratio can be obtained
from (18) if we omit its first row and first column.
Taking the limit as m — «, we obtain

an, A(n+2, )
=—pr (19)
A(n,»)

Ap_2
where

Z(’ﬂ,w)= lim B,,,m~1,

—>

A(n+2, ©)= lim 4., n1

m—e

(19a)

The determinants of (19) are of von Koch’s type and
they converge by von Koch’s rule, that is, when the
series X .|pngn—2| converges, which happens here, as
was pointed out at the discussion of the convergence of
the series of (10).

Since a,=&,, we may restrict ourselves to non-
negative integers for the calculation of the coefficients

DEMETRIOS G. MAGIROS

Since the elements X, » of (16) are functions of the
real variable w, the regions E, V, V, defined in Appendix
III, are segments of lines, and according to von Koch’s?
and Worpitzky’s theorems, as stated in Appendix III,

E: —

[ Sl

<Xawm<t

V: 0<Y,n=2 | Xunl <1, (17
m=2

V:

colw

<Znn<2.

Consider a Cartesian coordinate system in space, and
let us take the region element on the X axis, the series
region on the ¥ axis, and the value region on the Z
axis. The inequalities (17) correspond then to the
interior of the orthogonal parallelepiped D, Fig. 2,
which is an open domain.

The domain

is the appropriate one for the continued fraction (16).

To evaluate the continued fraction (16) we apply
the theory of Appendix III. The denominator of the
ratio, which gives the mth approximant Z, of the
continued fraction (16) is

0 0 0

0 0 0

0 0 0
...................................... (18)
— Pnt2(m—1)d nt 2(m—2) 1 —1

—Prt2m{nt2(m—1) 1

a,. Formula (19) suggests starting with #=2; then ap
and ey are arbitrary. The induction procedure applied
to (19) for the coefficients with even index gives

A(2n+2, =)
A(2,e)
n=1,2,3--.

az2n=(—1)"agpsps- * *pan

(20)

For the determination of the coefficients with odd
index, we first calculate the coefficient 3. This, accord-
ing to Appendix I, is an exception.

If, according to Appendix I, we take a.® instead of
the double series of the formula (4a), and we apply
this formula for n=3, there results

az= — (Me/ k), (21)

where
k3=w12-—9w2— [)\2)\3/(0)22—90)2)].
3 H. von Koch, Compt. rend., 120, 144 (1895).

(21a)
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Now, by applying the induction procedure to (19)
starting from the coefficient a; and using the value
of a3 given by (21), one can get

)\1(!13 Z(2n+3, °°)
agpp1= (— )" P——pspr- - - popyr——,
ks A(5,)
n=2,34---. (22)

By applying formula (B) of Appendix II to the deter-
minants of (20) and (22), there is obtained

R(2n+2, =) 1

=1—9A12[a1l4z

Z(Z)OC) m=0 k2n+2+mk2n+4+m
1
———)+o0w),
k2+m 4+ m
Z(2n+5, 00) o0
= 1= D
A(oyoc) m=0 k2n+5+mk2n+7+m

1
——)+ow>. (23)

k5+m T+m

The formulas (21), (20), and (22) give the coefficients
of the first of the series (3) for any positive #, with
arbitrary e and a;. For the determination of the coeffi-
cients a_, we use the property a_,=&,. The coefficient
ap is real, and «; in general complex, a1=|ai|e#1. If
we take ay real, the solution (3) can be written as
follows:

2(8) = ap+2a; coswt— 2a;3 cos3wi+2 Y ay cosNuwt,

)\3 2)\3 2)\3
y()=—aot+ 01 COSwi— az cosdwi  (24)
ws? wa?—w? wo?~— 3%w?
+23 ay cosNwt
w wol— N2 ’

where the coefficients as, ay—2q, @y—2r41 are given by
the formulas (21), (20), (22), respectively. The formulas
(24) give the solution in its final form, and the formulas
{20)-(23) can be used for the calculation of as many
coefficients of the solution (24) as we want in terms of
powers of Ay

We can easily see that for the calculation of the co-
efficients, in terms of powers of Ay, does not need but
only the unit as value of the ratios of the determinants
(23). The first two terms of the solution (24) are
independent of A;. For terms of order O(X,), we take the
first term of p, of (9) and combining it with (20) for
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n=1 we get the 2nd harmonic, which, with (21), gives

3aay?

cos2wi

%() = oo+ 2a; coswi— 2>\1{

2

3

oy
+—k— cos3wt |>+O()\12),

3

(25)
)\3 2)\3 3%3(10(112
y(t) =—apt———a; coswi— 2>\1{ ——cos2w!
ws? wyl—w? ko (wy?— 2%0?)

)\30[13
- cos3wt |+0()\12). (25)

ky(ws?— 3%w?)

If we take the terms of p, of (9) up to the order O(A:2),
and combine them with (22) for #=2 we obtain the
4th harmonic terms of order O0(\:2):

agot

18,2

0100114)\3

cosdwi, 18\,°

cosdwt,
k2k4 k2k4(w22—42w2)

(25a)

of xz(t) and y(¢), respectively. The above procedure
indicates how we can get higher harmonics in terms of
higher powers of A\;. The solution (24), constructed as
indicated above, must be convergent and its coefficient
of the fundamental term must be much larger than any
other coefficient. These requirements imply that the
following conditions are satisfied:

Ki+Ky k: ks

)
2m1(112 2a0a1 a12

apKa;, A<<min

For the second condition, the inequality (6a) was taken
into account. The 4th, Sth, --- harmonic terms are
of order O(A\2), O(\?®), ---, and the convergence is
guaranteed.

Since a; is much larger compared to aqg, the solution
in the linear case is approximately

%(2) = 201 coswi,

s (25b)

o COSwY,

x()=2

(.022—602
and the motions of the oscillators are “in phase” for
ws<w, and “180° out of phase” for wa<w.

S. THE PRINCIPAL MODES AS SOLUTIONS OF
INITIAL VALUE PROBLEMS

Another approach for the determination of principal
modes may be based on the manner in which the system
is set into motion. This is equivalent to considering the
principal modes as solutions of special initial value
problems.

The differential equations of the ‘“dual-mode”
system are considered subject to the restriction that the
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masses are displaced from their equilibrium positions
either both up, or one up and the other down, by
amounts xo and y,, respectively, and released without
velocity; i.e.,

£(0)=y(0)=0, (27a)

#(0)=9(0)=0. (27b)

x(0)=x0, y(0)=1y,
x(0)=xo, y(0)= Yo,

If the initial displacements x, and y, are appropriately
related, then each one of these initial conditions gave
rise to special vibration modes, which are, by defini-
tion, the “principal modes” of the system. To calculate
the principal modes of our system utilizing infinite
determinants and using the above definition, assume a
solution in the form of complex exponential series (3),
as in the previous case. The calculation of the principal
frequency and the coefficients of the series has been
completed throughout the preceding sections and the
solution is found to be in the form given by (25).
An approximation of this solution is given by (26),
associated with the initial conditions

)\3960 2(11)\3
y0= —

(1)22*0.)2 w22_ (.02

(28)

Xo= 2011,

Formulas (28) give the relations of the initial dis-
placements required for the solution to be of “principal
modes” type. These sinusoidal motions are “in phase”
for the initial conditions (27a) if w<ws.

Both definitions of principal modes lead to the same
solution; they have the same physical interpretation
and they are equivalent.

The discussion here is based on two definitions of
principal modes and the final solution found by analyz-
ing the infinite determinants involved. It may be
mentioned that G. W. Hill, in his Lunar Theory brought
into notice the infinite determinants, and H. Poincaré
first gave conditions for their convergence.
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APPENDIX I. THE DOMINANT SUM OF
A DOUBLE SERIES

Suppose in the sequence {a,}, =0, 1, +2, ---
the complex elements have the property a.,=&,. If
a; and o ; are dominant elements in the sequence, then
it is easily seen that the dominant sum of the double
series of (4a) is given by

3aan_s16| a1 |?ant-3@ a0 2,

(A1)

where » is any integer except »=41, £3. For these
exceptions the dominant terms of the double series are

for n=-—1,
a® for n=3, a?

3&10!12 fOl‘ n=1, 3(11&12

for n=-3.

(A2)

G. MAGIROS

APPENDIX II. APPROXIMATE VALUE OF
AN INFINITE DETERMINANT

If in an infinite convergent determinant,
A=|[Bmal1Z,

the elements in the main diagonal are equal to unity,
and all the elements not in the main diagonal have a
small common factor® say e, ie., if Bmw=1, Bmax
=eBn., m¥n, we may get an expression of the
determinant in powers of e. The first term in this
expression is independent of e; it is the product of all
the elements in the main diagonal, that is 1. The next
terms in the expansion are in & and are obtained by
replacing the product J]nBm,~ the elements in the
main diagonal (m,m) and (#,#) by the elements not in
the main diagonal (m,n) and (n,m). These terms have
a minus sign, according to the laws of determinants, and
they are —& Y n Y nBm2Bun; the determinant A
can be written in the form

A=1_€2Z ZBm,an,m—i_O(es)' (B)

APPENDIX III. A CONTINUED FRACTION AS A
RATIO OF TWO INFINITE DETERMINANTS

Given the continued fraction

X,
X
14...

where the complex elements X are subject to specified
conditions, its mth approximant Z., obtained by
stopping with the mth partial quotient, can be estimated
If the elements X of the sequence {Xa} of (C1) have
arbitrary values in a region, the “region element” E,
then the correspondent series X 5 _o|Xn|, p=2, 3,
4, --- has its values in the “series region” ¥, and the
approximants Z,, have all their values in the value
region V. The following theorems give relationships
between the above regions.?

1+

(C1)

H. von Koch’s Theorem

llIf
P
Y: 3 |Xal<l, =234, (C2)
m=2
then: the continued fraction (C1) converges.”
Worpitzky’s Theorem
‘lIf
E: |Xn|<%, m=234--. (C3)
then
Vi |Za—$[<37 (C4)

4 L. Brillouin, Wave Propagation in Periodic Structures (Dover
Publications, New York, 1953), 2nd ed., pp- 34, 35.

SH. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrang Company, Inc., Princeton, New Jersey, 1948), pp. 26,
42, and S1.
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The mth approximant of (C1), Z,, can have the form
of a ratio of two determinants. To show that, one
associates the continued fraction (C1) a sequence of
linear transformations

Xi(0)=1, Xn.=1/(14+X,2),
If:

m=2,3,4, --.

XP#Oy P=2, 3; T, M XP=07
then the product of m of the above transformations is
1 vaA m—2+A m—1

Xy Xn9BmstBms

p>m,

Zm=X1X2' . ~Xm('u)=
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where the 4’s and B’s may be calculated by means of
the recursion formulas

Ap=Ap._1+XpAp—2, szBp——l'l_Xpo—?’
p= 1’ 2, 3’ LRI

(Co)

For the above we require the initial values

A=1, A¢=0, B_,=0, Be=1, X,=1.
The mth approximant of (C1), Z,, is given by (C3) if

»=0, then it is equal to the ratio Am_1/Bn-1.

14
+1+ The recursion formulas (C6) give two systems of
: homogeneous linear equations, one in the variables 4,
X the other in the variables B. These systems give rise
m! (C5) to two determinants, which give the values of the 4’s
1+X,9 and B’s. The B’s are given by the determinant
0 -1 0 o0 0
X, 1 -1 0 0
0 X 1 -1 0
2 e , (CT)
0 Xma 1 -1
0 0 X 1
m=2,3, ---.

The determinant for the 4’s can be obtained from the above determinant by omitting its first row and its first

column. These determinants are different from zero.

The value of the continued fraction (C1) is given, by definition, by the limit lim,..., (4,/B,).
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In this note the Lie algebra generated by the coefficient matrix of a system of ordinary, linear, first-order
differential equations is considered. A systematic discussion, based on some well-known results in the theory
of Lie albegras, is given for the reduction of the problem of integration of such a system. For the purposes
of this note the integration of a system of equations for which the coefficient matrix does not depend on
the independent variable is regarded as “elementary.”” It will be shown that the problem of integrating
any system of linear ordinary differential equations can be reduced to the problem of integrating a set of
such systems, each one of which has the property that the corresponding Lie algebra is simple, and in such
a way that the sum of the dimensionalities of the Lie algebras of the reduced systems in the set does not
exceed the dimensionality of the Lie algebra of the original system.

The application of the reduction principle to the equations of motion in classical mechanics and in quantum
mechanics is considered. It is shown that the principle in question applies to a class of Hamiltonian equations
of motion not customarily regarded as describing linear systems.

GROUP THEORETICAL INTERPRETATION OF THE
GENERAL SOLUTION OF A SYSTEM OF ORDINARY
LINEAR DIFFERENTIAL EQUATIONS

1

N this part we shall define the class of ordinary

linear differential equations which shall be the
primary object of our study, and review briefly some
well-known facts about such equations.

We consider a system E of linear ordinary differential
equations. Imagine the system in first-order form; the
problem of complete integration then consists in finding
an N-by-V matrix U (¢) such that

dU (1)/di=M QU (1), U@O)=I. (E)

Here, ¢ is the real independent variable, restricted
to an open interval .S, which we take to contain the
point {=0. The matrix M (¢), “the coefficient matrix,”
is defined on S5; for simplicity we shall furthermore
assume M (f) to be continuous on .S. This means no
essential loss of generality in the discussion to be given.

It is well-known that, under the stated assumptions,
a unique differentiable U(f) exists on .S, satisfying the
equation and boundary conditions given in (E).

2

Let V be the real vector space of matrices, spanned
by the matrices M () as ¢ varies on S. (The matrices
M () need nof, of course, be real). Let L(E) be the
real Lie algebra of matrices generated by the elements
of V, the Lie product being defined as the commutator.
Let G(E) be the group of matrices generated by the
exponentials of the elements of L(E).

As is well-known, the solution I/ (¢) of the system (E)
may be interpreted as a parametrization of a continuous
curve on the group manifold of G(E). To make the
matter clear, let L(E) be of dimensionality d, and

* Research supported in part by the National Science
Foundation.

let Bi, Bs, «--, Bq be a basis of L(E). We may then
write
d
M(t)=3 Bem(D), (1)
k=1

where the m,(f) are real continuous functions of ¢ on S.
Let % be any point of S. We define

W (t; to)=U @)U (k).
It follows that W satisfies the equation
AW (t; to)/dt=M (OW (t;t0); W(toste)=1 (2)

for all £in S.
In some neighborhood Vo of f, contained in S, W
will be sufficiently close to the identity so that

W (15 to) = exp(F (¢; b)), (3)

where F(t; 1) is an element of L(E), and a continuous
(matrix valued) function of ¢ in XN such that
F(to; 10)=0.

Let us write

F; )= Bufilt; 1), @)

k=l

As shown by Magnus,' the functions fi(¢; %) are
uniquely determined in the neighborhood N, as par-
ticular solutions of a set of first-order ordinary dif-
ferential equations, which in general are nonlinear.
These differential equations are determined solely by
the structure of the Lie algebra L(E), and by the
expansion coefficients (), through which M(2) is
expressed with respect to some basis, as in (1).

We may write U (f)=exp(F(¢; t))U(t) when ¢ is in
No. When ¢ varies on V,, the point U(#) in the group
manifold G(E) traces out a segment of a continuous
curve. This segment, by (4), is entirely determined by
the differential equations of Magnus, and hence by the

1 W, Magnus, Communs. Pure and Appl. Math. VII, 649 (1954).
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structure of L(E) and the expansion coefficients my(%).
No other properties of the matrix M (f) enter into
consideration.

3

In view of what has been said, the essence of the
system (E) is thus the structure of the Lie algebra
L(E), and the way in which, as in (1), the coefficient
matrix M (f) is expressed as an element of L(E).

Consider the Lie algebra of matrices L(E) as a
faithful representation of an abstract Lie algebra L.
Let R(L) be any faithful representation of L, such that
the group Gr generated by the exponentials of R(Z)
covers the group G(E). Let

Ma()=X. R(BIm).

k=1
Then the solution Ug(?) of the system, (¢ in S)

dUR(®)/di=Mr()Ur(t), Ur(0)=I (5)
uniquely determines U(¢) through the mapping of Gg
onto G(E). The system (5) is thus equivalent to the
system (E), and this procedure may be used in practice
to “simplify” the integration of (E). Actually, it is not
necessary that Gz covers G(E) since the curve U (1) on
G(E) is anyway uniquely determined by the curve
Uz(t) on Gg and vice versa, by the conditions that
both curves be continuous. We may thus solve the
system (E) by solving the system (5) where R(L) is
any faithful representation of L.

REDUCTION PRINCIPLES FOR THE SYSTEM (E)
4

In this note the term ‘reduction” is used in the
following sense: As before let L(E), or L, be the Lie
algebra generated by the coefficient matrix M (¢) of the
system (E), and let L be of dimensionality d. Suppose
that two other systems of differential equations (E)
and (E’) with corresponding Lie algebras L’ and L”
of dimensionalities d’>0 and d"”>0, respectively,
where d’4-d""=d, can be explicitly constructed, such
that the solution of (E) can be obtained by quadrature
from the solutions of (E’) and (E”); then we say that
the problem of integrating the system (E) has been
reduced to the problem of integrating the systems (E’)
and (E”). The systems (E’) and (E'’) possibly may be
further reduced. We will, in fact, show that the problem
of integrating any system of linear ordinary differential
equations can, in the above sense, be reduced to the
problem of integrating a set of systems of equations,
each one of which has the property that the cor-
responding Lie algebra is simple.
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5

Consider the system (E) and the associated Lie
algebra L(E). Suppose that L(E) is the direct sum of
two proper ideals L; and L; of L(E). Let L; and L be of
dimensionality d; and ds, respectively ; hence, d=d1+ds.
Let M(H)=M.()+M:()) such that M ()&L, and
M,(t)yEL,. M, and M, are clearly continuous on S.
Furthermore, for any ¢/, ¢’ in S

(M1 (), M2(¢") ]=0. (6)
Consider the two systems of differential equations
aUu,(t)/dt=M.(HU.(¥), U.(0)=1I,
aU()/di=M()U.(1), Us(0)=1I.

From (6) it follows that [U(#),Mo(#")]=0 for all ¢
and ¢ on S. Hence, U()=U1(f)U,(¢) is the solution
of (E).

Let Gy and G, be the matrix groups generated by
the exponentials of the elements of the algebras L; and
Ls. The group G(E) is then the direct product of the
two normal subgroups Gi and G.. U1(f) and Us(2) are
continuous curves on the group manifolds of Gy and Gs,
respectively ; these curves are the images of U (#) under
the homomorphisms G(E)—G: and G(E)— G,
respectively.

()

6

Let us now consider the case when L(E) is the
semidirect sum of the two Lie algebras L; and L. Let
thus L. be a proper ideal of L(E) such that the quotient
algebra L(E)/L, is isomorphic to the Lie subalgebra
L, of L(E), that is,

[Ls, L(E)]S L,
[Ly,L,]C L.

Again, let M®)=M ()+M(s), where M.()EL,
and M ()& Lo. Let U,(f) be defined by

AU/ dt=M()U L), U1(0)=1, )

and let Us(¥) be defined by U ()=U()U:(2).
It follows that

dUS()/dt=Ms()U(t), Us(0)=1,

(8)

(10)
where
My()=Ur ()Mo () Ua (D). (11)

Since L; is an ideal of L(E), it follows that M. ()& Ly
forall ¢in S.

Let Gy and G, be the two matrix groups generated
by the exponentials of L; and Ls. Then U;({)EG; and
U(£)EGs. The group G(E) is the semidirect product
of G, and G, such that G, is a normal subgroup of
G(E), and G, is a subgroup of G(E) isomorphic to
G(E)/G,.

We thus have the result that, if the solution of (9)
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is known, we may find M,(f); if we then solve (10), we
have in effect obtained the solution of (E). The two
equations (9) and (10) have associated with them
Lie algebras L; and L,, which, by our assumption, are
of lower dimensionalities than L(E). We therefore
consider the replacement of the original equation (E)
by Egs. (9)-(11) a reduction of the system (E).

7

We next consider two special cases of the reduction
principles of Secs. 5 and 6.

(a) Suppose L(E) is commutative. Then L(E) is the
direct sum of d one-dimensional Lie algebras. We have
the well-known solution

U(t)=exp(j:dsM(s)).

(b) Suppose L(E) is solvable. As is well-known, the
system (E) is soluble by quadrature in this case too.
To see this we may employ the procedure of Sec. 6, or,
much more simply, we may rely on the fact that every
representation of a solvable Lie algebra is similar to a
representation by triangular matrices. Hence, without
loss of generality we may assume that M (2) is triangular
for all z in S. Such an equation is, however, directly
soluble by quadrature.

(12)

8

Consider now the general case of Eq. (E). Let L be
the maximum solvable ideal of L(E). Then, by Levi’s
theorem,? there exists a Lie subalgebra L; of L(E)
which is isomorphic to the quotient algebra L(E)/Ls,
ie, L(E) is the semidirect sum of L; and L..
Furthermore, L, is semi-simple.

If Ly=L(E), then L;=0, and the discussion of
Sec. 7(b) applies and the system (E) is soluble by
quadrature.

Suppose now that L;#0 and L:#0. The reduction
principle of Sec. 6 applies. Notice that once the system
(9) has been solved, the system (10) can be solved by
quadrature, since the corresponding Lie algebra L,
by the assumption that L, is the maximum solvable
ideal of L(E), is solvable. In solving the system (E),
the essential problem is thus the solution of (9). The
system (9) is distinguished by the property that the
corresponding Lie algebra L, pgenerated by the
coefficient matrix, is semi-simple.

It may, of course, happen that L;=0, in which case
L(E) is semi-simple. Summarizing, we have the result
that, given an arbitrary system (E), the integration
problem is either trivial (if L(E) is solvable) or else
equivalent to the problem of integrating an analogous
system E’ with the property that L(E’) is semi-simple,
and such that dim(L(E")) <dim(L(E)).

2], H. C. Whitehead, Proc. Cambridge Phil. Soc. 32, 229 (1936).
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It may, however, be possible to carry the reduction
a step further. Every semi-simple Lie algebra is the
direct sum of simple Lie algebras; therefore, if L(E’) is
not simple, we may reduce the system (E’) by the
principles of Sec. 5. We thus have the general result:

Given an arbitrary system (E) of linear ordinary
first-order differential equations, unless the Lie algebra
L(E) is simple, then the problem of integrating (E)
always can be reduced as follows: (a) If L(E) is solvable,
then the system (E) issoluble by quadrature. (b) If L (E)
is not solvable the problem of integrating (E) can be re-
duced to the problem of integrating a set E®, E®@_ ...,
E® of systems of differential equations, each one of
which has the property that the corresponding Lie alge-
bra L(E®) is simple, and such that di4-ds+ - - - +d, = d,
where dp=dim(L(E®)), and d=dim(L(E)). In the
particular case that p=1 we have d;<d. This means
that once the solutions of the reduced systems E® are
all known, the solution of (E) may be obtained by
quadrature.

DISCUSSION OF THE EQUATIONS OF MOTION IN
CLASSICAL MECHANICS AND IN
QUANTUM MECHANICS

9

In this part we shall consider the equations of motion
of physical systems in the light of the theory presented
in the preceding parts. Our aim is to emphasize a
certain unifying point of view which is the following:
Consider a quantum mechanical system, or a classical
system within the framework of Hamiltonian mechanics.
The motion, or time-development, of the quantum
mechanical system is described by a one-parameter
family U(#) of unitary transformations defined on the
Hilbert space of all state vectors of the system, where
U(0)=1. The transformations U(f) are determined,
heuristically, by an equation of motion of the form (E),
with the matrix M (¢) replaced by (—4H), H being the
Hamiltonian. If H does not depend on the time ¢ ex-
plicitly, we have the case regarded as “trivial” in this
paper, namely U(Z) forms a one-dimensional continuous
(Abelian) group such that U(f)=exp(—itH(0)). If,
however, H=H (t) does depend on the time ¢ explicitly,
the group generated by the transformations U(#) is,
in general, not one dimensional. It may happen,
however, that the group generated by the trans-
formations U(f) is a finite dimensional Lie group G,
in which case the motion of the quantum mechanical
system is described by a continuous curve on Gg; to
every point of G, corresponds a unique unitary trans-
formation U on the Hilbert space of states. To deter-
mine the curve on G, we may employ the procedure
outlined in paragraph 3, according to which we re-
formulate the original equations of motion into Eq. (5),
where the finite dimensional matrices Mg(f) are
associated with any faithful finite dimensional rep-
resentation of the Lie algebra L of G, ie., with the
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Lie algebra generated by the operators (—:iH(2)) as ¢
varies on some interval S. In this manner, we may
determine the curve on G, and thus determine U () as
a group element of G, The problem of determining
how this group element acts explicitly on the Hilbert
space still remains and is “trivial” in about the same
sense as the solution of the equations of motion is

“trivial” when H does not depend on the time. .

Nevertheless, something has been gained as we shall
explain later.

In the case of a classical Hamiltonian system, we
have an analogous situation. The motion of the system
may be thought of as a motion of points in phase-space,
or as a one-parameter family of contact transformations.
Let us denote the contact transformations by U(#); it
is again of interest to consider the case when the
transformations U () generate a finite dimensional Lie
group G.. If this is the case, we may, by solving an
equation like Eq. (5), determine U(f) as a group
element of G, after which it remains to determine the
explicit action of U(¢) on the canonical variables, i.e.,
to find the explicit realization of G, as a group of
contact transformations. It should be noted that the
above discussion is ot restricted to a linear system,
ie., a dynamical system for which the canonical
variables satisfy linear equations of motion.

We may express the matter as follows: The equations
of motion, in classical as well as in quantum mechanics,
define a certain Lie group. If this group is finite
dimensional, we may solve the equations of motion in
the sense that we determine a curve on the group
manifold by solving an equation like Eq. (5). If the
problem of determining the explicit realization of the
group elements as transformations on all dynamical
variables is regarded as “trivial,” the essence of the
motion is thus the curve on the group manifold. This
is an old and well-established principle, both in classical
and quantum mechanics. Since it is a connecting link
between the two disciplines, we felt it worthwhile to
state it once more.

In view of what has been said, it is clear that the
reduction principles formulated in paragraphs 4-8 are
applicable to the equations of motion of a dynamical
system, provided the Lie algebra associated with the
equations of motion is finite dimensional.

10

Let us elaborate further on the equations of motion
of a system in classical dynamics.

The equations (E) arise naturally as the actual
equations of motion when we consider a linear dynami-
cal system with a finite number of degrees of freedom;
whether the system is described by a Hamiltonian or
not is immaterial. The equations of motion may, of
course, be inhomogeneous linear equations; if we then
adjoin a constant to the dynamical variables we may
achieve the homogeneous form (E). The well-known
procedure whereby the complete solution to a system

879

of inhomogeneous equations is obtained by quadrature
in terms of the general solution of the corresponding
homogeneous system and the ‘“‘driving forces” is a
special case of the reduction principle stated in para-
graph 6. In the particular case that the system is
described by a Hamiltonian function, the group G(E)
is either a subgroup of a real symplectic group (if H is
a homogeneous quadratic function of the canonical
coordinates and momenta), or else a subgroup of the
semidirect product of the symplectic group with
the translation group (if H is quadratic but not
homogeneous).

Consider next a dynamical system, described by a
Hamiltonian, and nonlinear in the sense that the
canonical variables (gx,px) do not satisfy linear equa-
tions of motion. This does not exclude the possibility
that we may be able to find a set of dynamical variables,
X, k=1,2, ---, N, which do satisfy linear equations of
motion. We are, of course, only interested in the case
when this set can be determined before the Hamiltonian
equations of motion have been integrated; otherwise
nothing is gained by studying the variables X.

Let us thus assume that a set Cx of linearly in-
dependent dynamical variables X;= Xy(q,p) can be
found such that the wvariables X, do not depend
explicitly on the time ¢, but oaly depend on ¢ through
their dependence on the canonical variables (gx,px),
and such that the linear vector space spanned by these
variables is closed under the Poisson-bracket operation
with the Hamiltonian H(g,p;?). In actual motion of
the system, the variables X;=Xj(f) then satisfy the
equations of motion

d No_
EXk(t)z [—H®), X:()] =2 Mu.()X.(1), (13)

n=1

where [, ]’ denotes the Poisson bracket. These equa-
tions have the solution

(14)
n=1
where the matrix U (¢) satisfies the equation
dU()/dt=M U (t); U@O)=1. (15)

11

Let us consider an arbitrary classical dynamical
system described by the Hamiltonian H(q,p; t)=H(1).
Suppose the system is such that the Lie algebra L
generated by H(¥) as ¢ varies on some interval S, and
where the Lie product is realized by the Poisson
bracket, is finite dimensional of dimensionality d. Let
U(t) denote the contact transformation which relates
the canonical variables (gx,px) at time ¢ to the canonical
variables at time ¢=0. U() is then a curve on the
group manifold of the finite dimensional Lie group G.
generated by the exponentials of L, and the differential
equation of the curve is given by Eq. (E), interpreted
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abstractly, provided we write M (f)=—H(t). To find
this curve, we may solve the matrix differential
equation (5) associated with a faithful representation
of L, exploiting the fact that such a representation
always exists.

Let us select a basis B,=Bi(g,p), k=1, 2, -+, d, of
L where the dynamical variables By do not depend on
the time ¢ explicitly. We then may write M (f)=—H (¢)
in the form given in Eq. (1).

A particular representation of L is the adjoint
representation on L; the dynamical variables B form
a set of variables with the properties of the set Cx
discussed in paragraph 10. By solving the correspond-
ing equations (13), we can thus obtain the time-
dependence in actual motion of the d variables B ; all
of these need however not be independent and the
number of constants of motion obtained in this manner
cannot exceed 4 but may be smaller.

Consider again any set Cx of linearly independent
dynamical variables as in paragraph 10. The Lie
algebra of matrices L generated by the matrices M (¢)
1s a representation of the Lie algebra L; precisely
stated L is isomorphic with the quotient algebra of L
with respect to the ideal J consisting of all dynamical
variables in L which have vanishing Poisson brackets
with all the Xj. If J is nonempty, the solution U (f) of
(15) thus, under no circumstances, can give us the
complete solution U () of the Hamiltonian equations.
It should be noted, however, that in many applications
the complete solution is not necessarily desired.

We may express the matter as follows: We cannot,
if we wish to obtain the complete solution, avoid
integrating the system (E). A contact transformation
which does not involve the time ¢ cannot, of course,
change the structure of L. Integrating equations like
(15) for a set of variables Cx, in effect, amounts to
integrating the equations which arise in the reduction

WICHMANN

procedure described in paragraphs 4-8. A time-
dependent contact transformation on the other hand
naturally changes the structure of L.

12

The situation described in paragraph 10 has its
exact analog in quantum mechanics. The unitary
transformations U(f) mentioned in paragraph 9 have
an action by conjugation on all dynamical variables
(operators); in the Heisenberg picture, U(#) describes
the time development of the observables. If it happens
that a finite dimensional real vector space spanned by
the Hermitean operators Xi(¢), k=1, 2, ---, N, is
stable under U(f), we have, in analogy with (13)

d N
;;Xk(t) =[GH(Y), X ()= }51 M ()X, (1), (16)

which equations are solved by U(f) given by Eq. (15).
The matrix group generated by U (¥) is a representation
of the group G, generated by U (%).

In case G, is finite dimensional, the discussion of
paragraph 11 applies with minor changes. In particular,
the method in which the adjoint representation is
exploited should be noted. This method is employed,
for instance, when one studies the precession of a
spinning particle in a time-dependent magnetic field;
i.e., the solutions are obtained from the solutions of the
“classical” equations.?
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is obtained in the form of an asymptotic series. Typically
the series takes the form
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where u is treated as a small positive constant. The
formal solution (2) reveals the well-known charac-
teristics of the nonlinear oscillator for small 4 including
the entrainment of harmonic, subharmonic, and
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abstractly, provided we write M (f)=—H(t). To find
this curve, we may solve the matrix differential
equation (5) associated with a faithful representation
of L, exploiting the fact that such a representation
always exists.

Let us select a basis B,=Bi(g,p), k=1, 2, -+, d, of
L where the dynamical variables By do not depend on
the time ¢ explicitly. We then may write M (f)=—H (¢)
in the form given in Eq. (1).

A particular representation of L is the adjoint
representation on L; the dynamical variables B form
a set of variables with the properties of the set Cx
discussed in paragraph 10. By solving the correspond-
ing equations (13), we can thus obtain the time-
dependence in actual motion of the d variables B ; all
of these need however not be independent and the
number of constants of motion obtained in this manner
cannot exceed 4 but may be smaller.

Consider again any set Cx of linearly independent
dynamical variables as in paragraph 10. The Lie
algebra of matrices L generated by the matrices M (¢)
1s a representation of the Lie algebra L; precisely
stated L is isomorphic with the quotient algebra of L
with respect to the ideal J consisting of all dynamical
variables in L which have vanishing Poisson brackets
with all the Xj. If J is nonempty, the solution U (f) of
(15) thus, under no circumstances, can give us the
complete solution U () of the Hamiltonian equations.
It should be noted, however, that in many applications
the complete solution is not necessarily desired.

We may express the matter as follows: We cannot,
if we wish to obtain the complete solution, avoid
integrating the system (E). A contact transformation
which does not involve the time ¢ cannot, of course,
change the structure of L. Integrating equations like
(15) for a set of variables Cx, in effect, amounts to
integrating the equations which arise in the reduction
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procedure described in paragraphs 4-8. A time-
dependent contact transformation on the other hand
naturally changes the structure of L.
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superharmonic responses. In addition, it reveals the
global operation of the system and the intricate
interplay of the system parameters.

The generality of the approach represents a departure
from previous studies! which have been devoted mainly
to the analysis of periodic or almost-periodic solutions
and their stability characteristics. These special
solutions are of first importance in applications but
reveal only a fraction of the total operational behavior
of a nonlinear system. Aside from their prime im-
portance in applications, they appear to have received
such overwhelming attention mainly due to the absence
of any really sound and workable techniques for
treating other cases. As a result, various formal pro-
cedures? have been introduced in an effort to exhibit
some of the intermediate or transient behavior. These
formal procedures often appear to indicate genuine
characteristics® but are limited to what one might call
“favorable cases”. In contrast, the asymptotic method
llustrated here provides for the study of the pertur-
bational characteristics of nearly linear oscillations in
almost complete generality. Thus, for example, one
may now understand the special role played by periodic
or almost-periodic responses, for these become imbedded
within the general solutions. The stability charac-
teristics, so important in applications, are revealed and
all transient and intermediate behavior is exhibited.
The basic limitation imposed by the method reflects the
perturbational character of the results which are
otherwise quite general.

The techniques employed in this paper were originally
developed for the study of the motion of artificial
satellites.* The application considered here serves to
illustrate these basic techniques in another important
area of nonlinear oscillation problems. Since our
principal purpose is to illustrate these basic techniques,
we have limited the discussion to those resonance
aspects already well established. In future papers we
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appropriate treatment of the small divisor problem,
but the situation is relatively simple owing to the
restriction to a single degree of freedom and to a single
input frequency. The procedure followed is related to a
number of well-known approximate methods. However,
it does not appear to be appropriate nor desirable in
this preliminary, illustrative work to emphasize these
relationships. In keeping with this view, we have
discussed a number of results which may be found
elsewhere and have made no special effort to single out
new results.

II. FREE OSCILLATIONS

It is instructive to first illustrate some of the features
of the method as applied to the free oscillations of (1).
We determine the asymptotic solution (2) by the
familiar process of successive approximations, with
certain innovations. For u=0, (2) yields the elementary
general solution x= A cos(f—w), where the amplitude 4
and phase w are arbitrary constants. For 470, we shall
permit variations in each of 4 and «w and proceed to
determine these variations successively to increasing
orders in powers of u together with the additive correc-
tions «y, &3, - - -, #x. Thus we employ both the variation
of parameters technique and a power series expansion
procedure in one and the same process. There appears
to be more degrees of freedom in our solution than the
system (1) warrants, but this turns out to be at the
very root of the success of the method. The extra
degrees of freedom are needed to appropriately dis-
tribute the perturbations. The two constants of inte-
gration for the general solution are conveniently
assigned to the variable parameters 4 and « and each
of the additive corrections %, x,, - - -, xx are to be ex-
pressed uniquely in terms of 4, w, and the independent
variable ¢ The term A cos(t—w) of the expansion (2)
will be referred to as the principal term.

With F=0, we write (1) in the form

shall discuss some of the more intricate resonance 2 dx
problems associated with almost-periodic forcing, —2+x =u(l—s?)—. (3)
multi-dimensional systems and related small divisor dt dt
problems. The study here hinges mainly upon an Then if we substitute (2) in (3), there results

dw 4 dwy? dw dAdde dA &’y
[2A—+———~ A (—) ] cos(t—w)—l—[A——{— — 2——] sin((—w)+p (———+x1)

dt 4 dt ar dt dt dt

d2x2 d2
+u2(d—t2+xz)+ e +u”( +xzv) =u{l—[4 cos(i—w)+pxr+- - - +uNan ]}
. dw . a4 dxy dxy
X{A sin((—w)——A4 sin({—w)+—— cos({—w)+u—->+- - - Fp¥— 4
dt dt dt dt

! For recent examples, see J. Hale, Ann. Math, 73, 496 (1961); L. Cesari, Ann. Math. Studies 45, 115 (1960); N. Bogoliubov and

I. Mitropolsky, Asymplotic Methods in the Theory of Nonlinear Osczllatwns, Gos. lzd. Fiz. Mat

Moscow (1958), 1. Malkin,

Some Problems in the Theory of Nonlinear Oscillations, AEC-Translation 3766 (1956); S. Dlhberto and G. Hufford, Ann..

Math. Studies 36, 207 (1956).

2 N. Minorsky, ' Introduction to Nonlinear Mechanics (Edwards Brothers, Inc., Ann Arbor, Michigan, 1947).

3. Ford, J. Math. Phys. 2, 387 (1961).
‘R Struble, Arch. Rational Mech. Anal. 7, 87 (1961).
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If we consider only the terms through the first power in 4, (4) reduces to

dw d?4 dw\* o dA do
[2A—+———A (—) ] cos(t—w)—l—[A——-l—

dt  de dt dr at di

3

d4 d?x;
— 2—] sin(t—w)+u (———i—xl)
dt ag

d:
= —EA (4— A% sin(t—w)+u— sin3(t—w)+ud sin(t—w)—S
4 4 di

U a4 u dA u dw
+-(4—342) cos(t—w)———A42 cos3 (f—w)—+-A43 sin3(t—w)—. (5)
4 d 4 dt 4 dt

An examination of the explicit terms in (5) suggests the
following distribution

do @A fdw
24— —————A( )=—(4 3A2)——

dt d?
©
dw dAde dA —uA
ol TR A2)+,uA—
a¢ dt dt dt 4 di
and
%z
——+x1—~ sin3(i—w) (1—-—)
ar
A? dA
——co83(t—w)—. (7)
4 dt

Equations such as in (6) will be called variational
equations while an equation such as (7) will be called a
perturbational equation. At any step of the process the
variational equations are always to be associated with
the fundamental harmonic terms cos (f—w) and sin({—w)
and the perturbational equation with the remaining
nonresonant terms.

Since we seek a solution of Eqgs. (6) which is correct
to first order in u, they may be reduced to

24 (des/dH) =0
2(dA/dl) = (uA/4) (4— 42).

Equations (8) yield the well-known first approximations

)

w=uwq, a constant,

o

with arbitrary ws and A¢>£0. The perturbational
equation (7) possesses the (approximate) particular

integral
x1=—(43/32) sin3(i—w) (10)

which is correct to first order in u, inasmuch as the
derivatives of 4 and w are each of at least first order
in u. Thus the solution for the free oscillation to first
order in y is given by the expression

x=A cos(i—w)—u(A43/32) sin3(t—w),

where 4 and w are given by (9). Nontrivial amplitudes
A always tend to the value 2 as t— o while 4=2
corresponds to a stationary solution of the amplitude
equation in (8). This is the familiar first approximation
to the amplitude of the unique asymptotically, orbitally
stable periodic solution of (3).

Using (10) in (4) and retaining all terms through
second order in u leads to the variational system

do &4 do\? ulA® u2d(4—342)(4— 42)
2A——+——-A(—)= .

di de dt 128 32
(11)
Pow dAdw dA —pud
)= (4 4Y),
ae dt dt dt 4
and the perturbational equation
d%xcy 9 dA ulds
u? ————{—x2) =p—A?— cos3(t—w)+ cos5 (t—w)
dr 16 dt 128
u2A3
'—E(P}—SA?) COS3(t'—w). (12)

Using (8), we may reduce the variational system to

do w2 u?
= (47— 4) (A2+4)+E(4—3A2) (4— A7)

dt 16 13)
dA u
—=—A(4— A%

dt 8

which retains accuracy to second order in u. The second
of these is as before while the first may be expressed
in the form

dw u? dA

—_—=— ———(4 7A2)——.

at 16 324

i 7 A2
w= wo—i——H- Ind —u—o-.
64

Hence

(14)

Equation (14) introduces a second-order correction in
the fundamental frequency of the periodic solution in
addition to a slowly varying ‘“‘phase” for the nonperiodic
solutions. The amplitude 4 to second order in u is
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given by (9). Using (8) on the right in (12) yields

d2x2 5A5 A3

+x0= cos5 (t—w)+——(A42+8) cos3(t—w) (15)
8 128

e
which in turn leads to the expression

54° A3
cosd({—w)—
1024

(A248) cos3(t—w) (16)

Xo= —

for the second-order additive correction. The complete
second-order solution is

AB
x=A4 COS(t-—w)—p; sin3 (—w)

3

243 2545

v
A48 3(f—w)—
( ) cos3(i—w) 072

cos5 (I—w),

(17)
1024

where 4 and w are given by (9) and (14), respectively.
Using (16) in (4) and retaining all terms through
third order in u leads to the variational system

dA ud 37 35 w?
__=___[ 2 A"’—uz——A4+(1+—-)A2—4]
dt 8L 1024 128 2
(18)
dw A4 2
— =yt (4—34%) (4 A47).
di 256 128

The amplitude of the periodic solution now appears
as a root of the algebraic equation

37 35
AS— 2 — A4
1024 128

2,

u?
1+?)A2—4=0. (19)

Of course, its absolute value is very nearly equal to 2.
In fact it can be shown?® that for 0<<0.5, the pertinent
root Ao of (19) satisfies the inequalities

4,2 4u?
———— <A <4+ .
3u2+64.064 3u?4-64

The third-order perturbational equation reduces to

d2x3 A3
——fwy=——T[ 74— 4242416 sin3 (t— )
dr 1025
As
——————[15424-280] sin5 ({—w)
(12)(1024)

747

P sin7(t—w) (20)

8 R, Struble and J. Fletcher, ERD-106 Tech. Memo. 7, North
Carolina State College, Raleigh, North Carolina.
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and yields the third-order additive correction

— 43

[742—4242416] sin3(t—w)

X3=

8192
A5
+ [154%+2807] sin5({—w)
294 912
s T(t—w). (21)
-+ sin7(t—w). (21
73728

Solutions of arbitrary order in u can be obtained in
a similar manner; however, the labor involved soon
becomes enormous. Clearly we view here an extension,
to general solutions, of the classical Lindstedt-Poincaré,®
procedure for the expansion of periodic solutions. In
this instance, the procedure is equivalent to the method
of higher approximations of Krylov and Bogoliubov.”
The certainty with which one may recognize the
resonant terms is a noteworthy feature of this type of
application.

II. FORCED OSCILLATIONS

We now turn our attention to the forced oscillations.
The versatility and generality of the asymptotic method
becomes particularly evident in this type of application.
We examine first the ‘“soft” forced case, where the
magnitude of the forcing term is small with u. Equation
(1) is written in the form

&x dx
—tx=p(1—a%)—puk cos)i, (22)
ag dat

where u, k, and N are positive constants. Substituting
the expansion (2) in (22) yields

do d?A dw\? Fo  dA
[2A~+——A(—) ]cos(t—-w)+[A——+2——
it dp dt a

d%x 1

dow dA
] sin{f—w)+u ——I—xl)—l— ce
ar

X 2—
& d

d®xxn ud
-i-uN( +xN) =puk cosN———(4— A?)
ar 4

A3

X sin(t—wH-“T sin3(i—w)+0(w2). (23)

On the right we have anticipated that the derivatives
dA/dt and dw/dt will be first order in u. The distribution
of the terms in (23) into variational equations and a
perturbational equation is no longer a straightforward

¢ H. Poincaré, Les Méthodes Nouvelles de la Méconique Céleste
(Gauthier-Villars, Paris, 1892); A. Lindstedt, Mem. Sci. St.
Petersbourg 31, 4 (1883).

7N. Krylov and N. Bogoliubov, Introduction to Nonlinear
Z\g Zg]lsanics (Princeton University Press, Princeton, New Jersey,
1 .



884 R. A.
matter. For if A is nearly equal to 1, the forcing term
wk cos\! is nearly resonant and would produce either
a small divisor or a secular term if incorporated into the
perturbational equation. In this case we write

uk coshi=pk{cos(t—w) cos[ A—1)i+w]
—sin({—w) sin[ A—1)i+w ]}

and in this form we may associate these terms with
the variational equations in an obvious manner. The
potentially small divisor or secular term is thus avoided.
The first-order variational system for (22) becomes

do @24 do\*
24—+——4 (—) =uk cos[ (\— 1)+,
dt e dt
Po  dAde dA (24)

+
a@  dt dt di
ud
=——(4— A —pk sin[(A\— 1)+ ],
4
and the perturbational equation becomes, as in the

unforced case,

d2x 1 A3

—+tx=— sin3 ({—w). (25)
di? 4
Each solution of the following reduced system
d4 A k
=g (4— A2+ p—— sin[(A— 1)i+a ],
da 8 A1
(26)
de k
A—=p—— cos[ \—1)t+w]
dt A1

will satisfy (24) to first order in u. The system (26),
therefore, is sufficient to depict the first-order variations
in amplitude 4 and phase w for the resonant or nearly
resonant case. We refer to this as the karmonic resonance
case since resonance occurs with the forcing frequency
near the frequency of the fundamental harmonic of the
free oscillation, The perturbational equation (25)
possesses the approximate particular integral (10).
Thus the resonant or nearly resonant solution to

first order in u is
3

x=A cos(t—w)—ug—z— sin3 (t—w), @27

as in the unforced case, where now, however, 4 and w
are determined to within integration constants by (26).
In Sec. IV we discuss the implications of the system
(26). In particular, we find the well-known phe-
nomenon of fundamental harmonic frequency entrain-
ment displayed.
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When the forcing frequency A is sufficiently different
from 1, we need not shift the forcing term to the varia-
tional equations. The perturbational equation is then
written

d2x1 A3

+x1=Fk cos)\t-l——4— sin3 (i—w) (28)

ar
and the variational equations, as for the free oscillation,
reduce to (8). The additive correction

A3
coshi—— sin3 ({—w)
32

x= (29)

1—A)2

will satisfy (28) to first order in u and consequently
we may accept, as a first-order nonresonant solution,

A3
x=A cos(t—w)—pu— sin3 ({—w)+u
32 1

- cosN,  (30)

where (nontrivial) 4 and w are given by (9). The
trivial solution 4=0 of (8) here corresponds to an
unstable periodic solution of frequency A. The solution
(30) contains both the forced and natural frequencies
superimposed as though the system were linear. Since
nontrivial 4 — 2, the free response generally dominates.
Using (27) and (8) in (22) and retaining terms
through second order in x leads again to the variational
system (13) and to the perturbational equation

d%xy 545 A3
——+xy=—cos5(t—w)+—(A42+8) cos3(t—w)
ar 128 128
- (2— A?) sinnt
2(1—-N)
A%2+N)
m sin[ (24-A)f— 20 ]
RO nLe—a-2], G
S — n I t._ ,
) si w )

provided there are no resonant or nearly resonant terms
in the latter. We observe that if A is nearly equal to 3,
however, the last term

A%k (2—N)

sin[[(2—A\){—2w

) [(2—-N)i—20]

is nearly resonant and would introduce either a small
divisor or a secular term in the additive correction x,.
In Sec. Vit is shown that under favorable circumstances
this leads to the phenomenon of entrainment of the
free response at the subharmonic frequency A/3. For A
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sufficiently different than 3, the second-order correction

54°% A?
Xy= — cosd (l—w)— (A2+8) cos3 (t—w)
3072 24

A2R(24+))
———(2— A% sin\l—
2(1—n%)? 4(1=A) (1+N)2(A+3)
A%(2—2)

xynﬂ2+“”‘gw}“«1—xya+mxk—3>

Xsin[ (2—\)i— 2]

may be accepted since it satisfies (31) to zero order in u.
Repeated iterations which determine higher-order
approximate solutions will reveal, at each step, new
resonant or nearly resonant possibilities. However,
increasing orders of the coefficients tend to decrease the
practical importance of these phenomena inasmuch

dw
[ZA—
dt 4P

dt4 d4 dw

ag¢  dt dt

A3

A
= —ZA [22—F¢)—A%] sin(t—-w)—l-pz sin3 (t—w) +#:LFOEF02—

dw\? d*w dA d2x, d*xy
+——A (E) ] cos(t—w)—{—[ZA——-l—Z—— — Zd—] sin(i— w)—i—y(——i—xl)-l- N ad (
4
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as the resonant ranges become correspondingly,
increasingly small. The magnitudes of the effects,
however, at or sufficiently near resonance may be
significant. 1f the magnitude of the forcing term is
large, some of the resonance phenomena appear in
earlier iterations. If we write (22) in the form

d’x

dx
—+tx=p(1—2®)—+F cos\, (32)
dg dt

where the coefficient of the forcing term may not be
small, the asymptotic series takes the form

x=A4 cos(t—w)+ ; cosNiF-pxr+- - - FuNaey.  (33)

Of course we must except values of A near 1 here.
Using (33) in (32) results in the equation
+xN)

A
2(2— A% 7] sinkt+uF 032 sin3ns

A2

y:| A
+uZF§U+QMsm[O+QMhﬂﬂ+wZF&ﬂ—2Msh[ﬂ—ZMhﬂﬂ+wﬂq%Z+Msm[@+ﬁﬁ—&ﬂ

where Fo=F/(1—M\?). In this expansion, we observe
three potentially resonant possibilities: A near 3, A near §
and X near 0. The first of these possibilities occurred in
(31) while the other two did not. (They are encountered
at a later stage of the development in the soft forced
case.) We discuss these resonant possibilities in Secs.
V, VI, and VIL

If resonance is not a problem in (34), one obtains
the variational system

wA
=—[202~F—A?), dw/dt=0
8

which possess the nontrivial solution

2(2~F¢)
2= , for F@?#2
2(2—F¢)
1—[1——7—] exp[——(Z FOZ)Z]
A= (—+ , for Fg@=2

with w=constant. It also possesses the trivial solution

A?

-l—,uFo—4— (2—X) sin[ (2—N)t—2w]+0(u?), (34)

A=0. Thus if F@z>2, A? tends to zero as { — o, while
if F?<2, A% tends to 2(2—F¢®) as t — 0. In the former
case the impressed force drives out the free response
portion and the steady state is always periodic with
frequency A, while in the latter case, the free response
portion persists into the steady state along with the
forced response. The steady state is then termed a
combination oscillation.

STABLE
6.

/
4 STABLE
4 FoCI

K® < 16/27

STABLE A
Foci

UNSTABLE
FOocCI

UNSTABLE NODESX 05 10

F16. 1. Response curves.
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b

F16. 2. Unstable focus.

IV. HARMONIC RESONANCE

The variational system (26) may be re-expressed
in the autonomous form

da u
—=-(4—A%a— (A—1)b
dt 8 (36)
db u uk
—=-(4=ANb+\—Dat+—
dt 8 A1
with
a=A4 cos{(A\—1)t+w]
and

b=A sin[ A\—1)i+w].

This system was originally derived by van der Pol® and
has been discussed in detail by Andronow and Witt.?

b

N

/

F1c. 3. Stable focus.

8 B. van der Pol, Phil. Mag. 3, 65 (1927).
¢ A, Andronow and A. Witt, Arch. Electrotech. 24, 99 (1930).
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However, the forms treated by these investigators
limited the application to small values of the detuning
|(A—1)/u|. Here Eqs. (36) apply for both large and
small values of the detuning, though for large values,
it is best to re-express the results in the nonresonant
form (30). Critical points of the system (36) depict
stationary oscillations of (22). These are periodic
solutions of frequency A. In fact, with “(A—1){+w”
constant, the frequency of the fundamental term
A4 cos(t—w) becomes 1— (dw/df)=\. A critical point
(@0,b0) satisfies the algebraic system

14— AP)ac—[(A—1)/u]be=0

(37)
§(4—ANbot+[ (A —1)/ulactk/(A+1)=0

and is conveniently expressed in the form

ao=[(1—N)A¢*]/uk
bo=[(1—7%) (4— As) 4]/ 8uk,

(38)

/

=
—

F1c. 4. Stable node.

)

where A is a positive root of the equation

s (). o

The nature of a critical point is generally characterized
by the Jacobian matrix

r 1— A aobo
%‘(4— A()Z— 2(102)

" 4

$(4—A0*—2b)
4 4 J

with determinant

1 A—14?2
=—'(4—A()2) (4—3Ao2)+ (—)
64 u

and trace

Q=3(2—A¢?). (40)
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The locus A=0 is an ellipse in the [A¢, A\ —1)/p]
plane, interior to which, A<0 and exterior to which,
A>0. Thus interior to the ellipse A=0, a critical point
is always a saddle point while exterior to the ellipse
A=0, a critical point is a stable node or focus if 2<0
or an unstable node or focus if @>0. The stability
characteristics of a critical point of (36) reflect the
orbital stability characteristics of the corresponding
periodic solution of (22). Figure 1 illustrates some of the
well-known response curves corresponding to harmonic
resonance. Figures 2-10 depict a variety of the possi-
bilities.!® In Fig. 2, there is a single critical point which
is an unstable focus. In such a case, a unique, asymp-
totically stable limit cycle forms about the critical point
and the corresponding steady-state response of (22)
is a combination oscillation. In Fig. 3, the single critical
point is a stable focus and the corresponding steady-
state response depicts harmonic entrainment. In Fig.

X

:
-
N7

P

N\

F16. 5. Saddle point—stable node—unstable node.

4, harmonic entrainment is reflected in a stable node.
Figure 5 depicts the circumstance wherein Eq. (39)
possesses three real roots. One critical point is a saddle
point, one is a stable node and one is an unstable node.
In Fig. 6, the saddle point and stable node have
coalesced to form an interesting unstable, asymptotically
stable critical point. In Fig. 7, the saddle point and
unstable node have coalesced to form an unstable
critical point. In Fig. 8, one sees a saddle point, a
stable node and an unstable focus. In Fig. 9, the focus
has become stable. In the latter case, there are two
possible steady-state responses, both depicting harmonic
entrainment. In Fig. 10, there are two stable nodes and
a saddle point. Again there are two possible steady-
state responses depicting harmonic entrainment.

The second-order (harmonic) resonant equations are
obtained by substituting the first-order solution (27)
in (22) and using (26) to evaluate the second-order
terms involving the derivatives dA/dt, dw/dt, d*4/de

10 See also reference 9.

887

L %

=)

F1c. 6. Unstable, asymptotically stable point—unstable node.

and d?w/df*. Here X is assumed to be very nearly unity
so that A—1 is treated as a first order term in u. When
the terms are appropriately distributed, one obtains the
second-order variational system

dA ud uk pk(A—1)
—=—(4— A%)+— sind——— sind
dt 8 2
wk
+—(4— 4?) cos®
16
(41)
dd pkcos® u?d® w24
A—=AN-1)+ +—(4—34%) (4— A?)
di 2 256 128
ikt ik uk
+—t—(4—34?) sin®@——(\—1) cosd
164 16 4
o 2k
——— sin2®+—— cos2®,
164 164

b

Tre. 7. Stable node—unstable critical point.
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F16. 8. Saddle point—stable node—unstable focus.

where &= (A—1){4w. Of course for g small, the near
solutions of (41) are qualitatively similar to those of
the first-order system. The second-order perturbational
equation already contains a multitude of terms and so
we choose not to exhibit it here. The higher-order
resonant systems may be obtained though the compu-
tational work soon becomes enormous.

It is, perhaps, of some interest to consider the transi-
tion from nearly resonant to nonresonant operation.
As the detuning | (A—1)/u| becomes large, the opera-
tion of the system is reflected in the response curves
of Fig. 1 which are far removed from the A¢ axis.
Unless the forcing amplitude factor 2 becomes corre-
spondingly large, Eq. (39) possesses a single root which
depicts an unstable focus, very near the origin in the
ab plane. In such a case, the stable limit cycle which
forms about this root (see Fig. 2) expands out to, and
becomes almost coincident with, the circle a*+4#2=4.
The period of this limit cycle is no longer large. In
fact, the fundamental frequency is approximately A—1.
The resulting steady-state operation given by (27) is a
combination oscillation which is equivalent, to first
order in g, to that given by (30). Of course, the phase
variable w is markedly different in these two formu-
lations. It is readily shown that the stability
demarcation given by (40), which is the determining
factor in producing a steady-state combination oscil-
lation, leads, as (A—1)/u becomes large, to that
obtained previously for the hard forced case at the end
of Sec. I11.

V. SUBHARMONIC RESONANCE

Subharmonic resonance occurs for A near 3. In such
a case, the term

uFo(42/4)(2—~ ) sin[ (2—A)t— 2]

on the right in (34) is pearly resonant. It may be

R. A. STRUBLE AND ]J.

E. FLETCHER

expressed in the form
uFo(A4%/4)(2—N) {cos[ A— 3)t+ 3w sin (—w)
+sin[ (A —3)t+3w] cos(t—w)}

and so introduced into the variational system. To first
order in u, the latter may be reduced to

d®/di=\—3+3uBF A sin®
d4/dt=p/8[2(2—F#?)— A¥]A — 1uBF,A? sind,

where 8=(A—2)/(A\—1) and &= (A—3){+3w. With
a=A4 cos® and b=4 sind, the system (42) may be

(42)

b

N

Fi6. 9. Saddle point—stable node—stable focus.

expressed in the form
da u

[2(2—F¢)— A”Ja— (\—3)b— —8Fs (36 a2)
dt 8 4

(43)
ab u i
—=-[2(2— F®)— A*]b+ (\— 3)a-+—BF ab.
dt 8 2

Singular solutions of (42) depict stationary oscil-
lations of (32). We find them to be 1 subharmonic
responses since &= (A—3){43w is constant and hence
1—(dw/dt)=N/3. These correspond to the nontrivial
critical points of (43). In addition (43) possesses a
critical point at the origin. This also depicts a stationary
oscillation of (32) but one which is a harmonic response.
The singular solutions of (42) are given by

ao=(28F3)[2(2—F&)— A¢]

(44)
bo=—(4/38F0)[(A—3)/u],

where

AP=2(2—F®)+28°F+28F,

()\—;—3)2+2(2—F02)]*, (45)

x[ﬁzpoz_
082F 2
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16 /A—3\2
(-—) +2(2—F¢?)
9BPF\

is positive. Thus, subharmonic entrainment may occur

for A near 3 only if
Fy¢<4/(2—p%)

provided
32F 02_

M “
gl:z (2'— F()2) _ A 0?'— 2b02]+53F000
7 3u
——aobo—' (}\— 3) - ——BFobo
4 2

with determinant

2 2

® u
A=—(2—F02—A())2-———A02
16 64

=3 1
+#26Fo[2(~—)bo2——avoZ]
m 8

+uP P b 1A O=3) (49)
and trace
Q= (u/2)2—F2—A4). (50)
b
T—/
> \ \
FIQ. 10. Saddle point—stable node-—stahle node.
In addition, one readily obtains the equation
d(A?)/dt=— (uA2/4)[A2—2(2—F*)+28Fw] (51)

which guarantees that for A2 large, the trajectories
are necessarily directed inward. Thus the index of a
large circle about the origin is necessarily 4 1. Now the
trivial solution ¢=5=0 of (43) corresponds to the
circumstances

A=p[5(2—F¢P~+({N—=3}/u)*] and @= (4/2)(2— F¢),
where 2—4A=—(A—3)2/4<0. Thus, except for de-
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and

A—3\? O9B2F
(—) < rgRet20-Fd)L @)
U 16

The nature of a critical point (a4,d¢) of the system (43),
is generally characterized by the Jacobian matrix

n u
- ;dobﬁ')\— 3 +5,3Fobo

|7 B
§[2 (2 et FQZ) —A4 02— 2(102]— EBFOGO

generate cases, the origin is always a focus which is
stable for F@?>2 and unstable for F¢*<2. This is in
agreement with the conclusions drawn at the end of
Sec. III in regard to the harmonic periodic solutions.
The sum of the indices of the remaining critical points
of (43) necessarily vanishes. Thus if (44) and (45)
define two nontrivial critical points, one is a saddle
point and one is a node or a focus. The latter turns out to
be a stable node. Of course, the origin will be the only
critical point if either of the inequalities (46) or (47)
is violated. Figures 11-14 depict the various possi-
bilities. In Fig. 11, the origin is unstable and there is a
saddle point and the stable node. The latter depicts
subharmonic entrainment at the subharmonic A/3. In
Fig. 12, the saddle point and node have coalesced to
form an unstable critical point. Note that every
nontrivial trajectory has for its positive limit set this
unstable, asymptotically stable critical point. In this
case the system would not exhibit a stable subharmonic
but the subharmonic would appear to depart and recur
sporadically. In Fig. 13, the saddle point has coalesced
with the origin to form an unstable critical point.
Subharmonic entrainment is depicted by the remaining
stable node. In Fig. 14, the saddle point has moved to
an intermediate position between the other two singu-

F16. 11. Saddle point—stable node—unstable origin.
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F1G. 12. Unstable, asymptotically stable point—unstable origin.

larities with the latter then stable. This depicts the
very interesting circumstances wherein both stable sub-
harmonic and stable harmonic entrainment takes place.
Which steady state results, of course, depends upon
the initial values.

Higher-order subharmonic resonance equations may
be derived much as in the harmonic resonance case,
but once again the computational work becomes
enormous.

VI. SUPERHARMONIC RESONANCE

Superharmonic resonance occurs for A near }. In

such a case, the term
uF@#(A\/4) sin3\¢

on the right in (34) is nearly resonant. It may be
expressed in the form

pFP (A /4){cos[ (BA—1)i+w] sin (t—w)
+sin[ (BA—1)i+w] cos(t—w)}

and so introduced into the variational system. To first
order in u, the latter may be reduced to

YT RN
—=pu———5sIln —1)t
TONED ¢
(52)
dA uA
O e—Fo)—a
i 8
3
0
—p— MA—Dt4+w].
Ky LA ite]
With
a=A cos[ (AA—1)i+w]

and
b=A sin[ BA—1)i+w],

STRUBLE AND ]J.

E. FLETCHER
(52) may be expressed in the form

Feédx
4(3\+1)

da u
—=—[202—F&)—A¥])a— B\—1)b—p
dt 8

53)
db u
—=—[2(2—F&)—A?)b+(3A—1)a.
dt 8

For Fo?<2, this system possesses exactly the same
structure as the harmonic resonant system (36). In
fact, a critical point (ag,bo) of (53) satisfies the algebraic
equations

Fe®A

" u
[202—F&)— 4a0— (BA—1)bp—- ———— =0
g2 )= A= (A= 1)k 44(3\+1)

54)
g[Z(Z—FOQ)—A2]b0+ (3\—1)a0=0,

and from these we obtain the response equation

1 MH—1y?
A -—[2(2—F02)2—A02:|+( ) ]
64 y

LI
_[4(3>\+1)]' 59)

To each positive root 4¢* of (55) there corresponds a
critical point of the system (53) given by the expressions

b0= - [4A 02 (9)\2— 1)]/}1)\F03
and (56)

ao={[22—F¥)— A4 (3N+1)}/2NF .

These formulas parallel those of the harmonic resonance
case. A critical point of (53) corresponds to a stationary
oscillation of (32). However, the frequency in this case
is readily found to be the superharmonic 3\. The
stability of the superharmonic response is generally

F16. 13. Stable node—unstable origin.
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Fic. 14. Saddle point—stable node—stable origin.

reflected in the Jacobian matrix

3)\" 1 dobo

" 4

(%[z (2— F&)— A¢—2b77] -

" 4

-1 aobo
%[2 (2—F02)'—A02—2(102]

with determinant

1 3A—1y?
A=——[2(2——FOZ)—A02][2(2—F02)—3A02]+( )
64 I

and trace
Q= %[(Z—Foz)—Aozj

The locus of saddle points is the interior of the ellipse

o[AP—1Q—FAT [A=1/u]
il =i
4 2—F¢ 2—F¢

)

and if 2—F2<A4,* for any other critical point, it is
certain to be stable.
For F@>2, the system (33) possesses exactly one
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stable critical point. In this circumstance, the free
response portion is always entrained at the frequency 3A.

VII. OTHER RESONANCE PHENOMENA

When the input frequency A is small, the two terms

(wAF2/4) (14+2)) sin[ (1+20)i— ]
d
o (wAF2/4)(1—2\) sin[ (1— 2\)i—w]

on the right in (34) become nearly resonant. If their
sum is expressed in the form

(uAF ¢?/2)[cos2\t sin{—w) 42X sin2\é cos(t—w) ]

and introduced into the variational equations, the
reduced system becomes

dA/dt=u/8A[2(2—F)— A¥]— (uAF?/40) cos2N
dew/di= (uF$\/28) sin2\t,

where o=1—2)\ and = (1—2\?)/(1—2?). It is readily
verified that the formulas

A2= A 1— (uF/4\e) sin2\t]

(57)

and
w=wo— (uF?/46) cos2At,

where As* is the amplitude variation given in (35),
yield a solution of the system (57) which is accurate
to first order in p.

In seeking higher order solutions, either in the hard
forced case or the soft forced case, other subharmonic
and superharmonic resonance cases are disclosed.
These may be investigated along similar lines. In
addition, higher-order solutions for each of the resonant
cases encountered may be obtained. The explicit
calculations considered in this paper cover those cases
of practical interest and are, perhaps, a sufficient
indication of the general procedure to be followed.

The phase-plane solutions illustrated in the figures
have been obtained with the aid of an analog computer.
Except for Figs. 7-10, where the separation of the
critical points is exaggerated, these illustrations are
tracings of the machine drawn curves.
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The current distributed for a dipole antenna driven by a step-function voltage is found shortly after

the switch-on of the voltage.

LTHOUGH many approximate methods have been
devised to deal with the dipole antenna of finite
length, no case has been solved exactly in a form
appropriate for computation insofar as the author is
aware. In this paper, the initial behavior of the transient
response of a model of the dipole antenna is considered.
If % is the half-length of the antenna, then for xo=ct<h
the dipole behaves as though it were infinitely long and
the problem can be solved exactly. The model of the
dipole antenna which we shall adopt is a perfectly
conducting, infinitely thin tube located at r=g, in
our cylindrical coordinate system #, 8, x. The external
voltage is applied at r=q, x=0:

8(x) >0,
Ezextz (1)
0 t<0.

The problem is rotationally symmetrical with respect
to 4.

Let G be the retarded Green’s function for the scalar
wave equation

(V2—3%/3x6")G (x,200) = — cd (1) (x0), 2

then the total current £7(x,x5) on the dipole induces
the vector potential

A(e,x0) = ok f s’ f AT (& ) (2m)1

—c0

2
X f &' (t—1', to—x0).  (3)
0

ko - Plane
THE CONTOUR
- r{f'\ -~
-m m

FiG. 1. Projection of Cp on ko plane.

* This work was supported in part by contract.

On the other hand, it follows from (1) that for r=aq,
A satisfies

(8%/0x2—3%/0x ) A- = — 16 (x)8 (o). 4)
Since G is explicitly given by
G (r,x0)= (dmxo) 28 (r— 1), (5)
(3) and (4) lead to the integral equation for 1

(62/6x2—62/6x02)f dx’f dxo'I (o' x0")

XK (x—2', xo—2x0) = —4ni18(x)8 (x0), (6)

where { is the characteristic impedance of free space,
and the kernel K is

K (x,20)= (27rx0)“1f1rd05 ([x24 (2asing/2)* P—=xo). (7)

Equation (6) may be solved exactly by a Fourier
transformation with respect to both variables. In
general, it is very hard to compute numerically the
value of a double Fourier transform. However, in the
present case, the double Fourier transform may be
reduced to a single integral due to the invariance of
(6) under the formal one-dimensional orthochronous
Lorentz transformation

Lax=1x coshg-+x, sinhe, @®
£x0=2x sinh¢-+x, coshe.

To make use of this invariance, introduce a formal
“photon mass” m>0, and consider (6) to be the limit
as m — 04 of

(62/8x2—62/6x02—m2)f dx’f dxo' I (2 ,x0")

XK (x—x', xo—xe")=— 4wt 8 (x)8(x0). (9)

The Green’s function g for the one-dimensional Klein-
Gordon equation

(8%/9x2— 3%/ dx gt — m?) g (x,50) = — 8{x)8{xy)  (10)
has the representation
g(x,x0)=— (21r)‘2f dkdko(ko®— k2—m?)~t
So
Xexp[i(kx—koxo)]. (11)

892
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It is desired to choose the complex surface of integration
So so that g of (11) is the retarded Green’s function and
also that Sy is invarient under the formal Lorentz

transformation in the momentum space.
Lk=Fk coshe+ko sinhg, (12)
£ko="Fk sinh¢+ ko coshe.

Let Co be a contour where £=0 and &, ranges from — oo
to o with detours near ky=-m as shown in Fig. 1.
Note that Cj is required to go through the origin in %,
Then a possible choice for Sy is:

So: &, ko both real if |£|> |k
So=£Co if |k >|k].
The kernel K has the presentation

K (a,100) = (2)2 f_ “a f_ " dhoL (b ko)

Xexp[i(kx—koxo) ], (13)
2 T T T T
L ]
o] l_é) 2‘0 m 3’0 4l0 50

F16. 2. Current distribution as a function of (x®—a2)}/a.

where
(il O[a(kd— k)T o[a(k2—Ek2)Y],
for ko> |E|,
—atH @[ a(k— k)3 M o[ a(k?—E2)4],
Lk =1 for ko<—|k|, (14
2K [a(k2— k) L[ a(k?— ko)t ],
{ for kol <|k|.

Thus the solution of (9) is
I(x,20)= (2m)~1 f dkdkoJ (k,ko) exp[i(kx—koxo) ], (15)
i)

where

J(kko)= —4mii (k@ —k2—m?) [ L(k,ko) T2 (16)

893

2

LoTlx )
xy= 20
Xo 250
xo=100a
%o =20a
X0 =300
%,2404a
%5500

Il 1 1 L

¢] 10 20 30 40 50
x/a

F1c. 3. Current distribution as a function of x for fixed xo.

As shown in the Appendix, (15) may be reduced to,
in the limit m — 04,

> dt Jo[§(xe*—x2)Y/a]
I(xxo)=4(mte) ™ | —
” o ¢ @ T+IT)

for xy>x and is zero otherwise. For the purpose of
numerical computation it may be advantageous to
use the alternative form

I(x,x0)
*d K, o2 —a%)3 0
e [
o & Ko(O{[Ko() P+=[1o(5) ]}
It is seen from (17) that, as x?—a2— 0+,
I (x,0) ~2al e Hw?—a2)~4. (19)

For x=0, the singularity at xp=0 is x5 L. This is not
integrable and is responsible for the logarithmic
singularity previously found for harmonic time depend-
ence at x=0.! On the other hand, in the limit xg*—x?
— o, various approximate techniques may be tried.

The behavior of the integral on the right-hand side
of (18) is shown in Fig. 2. This curve contains all the
information about the current distribution. In partic-
ular, it is straightforward to read off the dependence of
I on x for various fixed values of xo. This is shown in
Fig. 3.

Two remarks may be added. First, the transient
response of the dipole as found is very different from
that of a lossy transmission line excited in the same
manner. Secondly, the response to a rectangular pulse
may be obtained by superimposing two oppositely
directed step functions separated by a finite interval
of time.

LT, T. Wu and R. W, P. King, J. Appl. Phys. 30, 74 (1959).
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APPENDIX

In order to derive (17) from (15), let the «nrface Sy
be divided into four pieces:

(1) Reko>|k|; (2) k> kol ;
(3) —Reky>|k|; and (4) —k>|kol.

Let I;, i=1---4, be the contribution to / of (15) from
these four regions, respectively. With the variable
(ke:—k2)}, it may be verified that

Ii(w,xe)=— (w¢o)* .§'d§'[(§'2—m2)

XwiHoV (af) o(af) 1 Fi(x,x038). (A1)

In (A1), the four contours are as follows: Cy is from O
to « along the positive real axis except for an upward
detour near {=m; C; and C4 are both from ¢ to 0
along the positive imaginary axis; and C; is from 0 to
— o along the negative real axis except for an upward
detour near {= —m. The functions F; are explicitly

(—miHP[¢ (m?—a?)t],
for x> |l
2K o[t (a?—x)¥], for
miHO[§ (a2 —2)t],
for  —x> |%],
2K [¢(x2—x2)Y], for

x>1x°l)

Fy(x,x0; £) =1 (A2)

—x> ‘xo‘,

TSUN WU

(wiH O (60— 22)t],

for x> |x|,
2K [¢ (@ —x?) [+ 2milo[ (a2 —xe?) ],
P05 8)= for x>,
miH O (w—a?)],

for —ao> |x|,
2K [ (@2 —ad)t], for —a>|xol,

(A3)

(wiH P (22— a2 42w T o[¢ (w2 —a2) ],
for x> x|,

2K [ (2 — x4 2mil of E (a2 —x?)Y],
for &> |z,

i H @ B— (xoz_xz)%—],
for —xe> %],

2K [ (w2—xe?)t 1+ 2mil o[ £ (a2 —we?)Y],

L for —a>|%ol,

F3(x,0; §) =1 (A4)

and
(wiHo O (et —a?)1],

for x> |wl,
2K [E(x2—2)t], for  a> |,
Fo(x,x0; §) = wiHo @[t (xe2—a?)¥],

for —xo> %],
2K [t (#2— 2D [+ 2mil, o (a2 —x)t],
L for —a> |xl.
From (A2)-(AS) it is seen that I;+I,=1I,4+I;=0 for
xo<x and I;+1I,=1;+1,=0 for xy<—x. Thus I=0
unless xo> |x|. For xo> |x|, (A2)-(AS) give
I(x,x0)=2(wt0) ™ S ¢S ($2—m2) 7 o[ ¢ (wo>—a?)1]

X[H® (a6)To(a) T (A6)

where the contour of integration is that of Fig. 1.
Equation (17) now follows readily.

(AS)
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